Christian Hennig and I write:

Decisions in statistical data analysis are often justified, criticized, or avoided using concepts of objectivity and subjectivity. We argue that the words “objective” and “subjective” in statistics discourse are used in a mostly unhelpful way, and we propose to replace each of them with broader collections of attributes, with objectivity replaced by transparency, consensus, impartiality, and correspondence to observable reality, and subjectivity replaced by awareness of multiple perspectives and context dependence. Together with stability, these make up a collection of virtues that we think is helpful in discussions of statistical foundations and practice. The advantage of these reformulations is that the replacement terms do not oppose each other and that they give more specific guidance about what statistical science strives to achieve. Instead of debating over whether a given statistical method is subjective or objective (or normatively debating the relative merits of subjectivity and objectivity in statistical practice), we can recognize desirable attributes such as transparency and acknowledgment of multiple perspectives as complementary goals. We demonstrate the implications of our proposal with recent applied examples from pharmacology, election polling, and socioeconomic stratification. The aim of this paper is to push users and developers of statistical methods toward more effective use of diverse sources of information and more open acknowledgement of assumptions and goals.

The paper will be discussed tomorrow (Wed 12 Apr) 5pm at the Royal Statistical Society in London. Christian and I will speak for 20 minutes each, then various people will present their discussions. Kinda like a blog comment thread but with nothing on the hot hand, pizzagate, or power pose.

You can also see here for a link to a youtube where Christian and I discuss the paper with each other.