
It’s all neural nets to me
Bob Carpenter, Flatiron Institute, carp@flatironinstitute.org

February 4, 2025

This note provides a statistician-friendly explanation of how deep neural
networks provide a drop-in generalization of the linear predictor under-
lying a generalized linear model. To make the discussion concrete, we’ll
consider the industry-standard deep neural network built up by compos-
ing layers of perceptrons.

1 Perceptrons

A perceptron is a non-linear function f : RM → RN on real vectors defined
by composing an affine transform h and a univariate non-linear “activa-
tion” function g applied elementwise. We will consider the “default” form
of perceptron, which is

f (x) = relu(α + β · x),

with parameters α ∈ RN for the intercepts and β ∈ RN×M for the slopes.
The rectified linear unit function relu : R → R is defined for u ∈ R by

relu(u) =

u if u > 0, and

0 otherwise

and extended to vectors by

relu(
[
u1 · · · uK

]
) =

[
relu(u1) · · · relu(uK)

]
.

There are also smooth activation functions with non-zero derivatives
everywhere, such as the unbounded

softplus(u) = log(1 + exp(u)),

and the bounded
logit−1(u) = 1/(1 + exp(−u)).

1

2 Deep neural networks

A deep neural network (DNN) is the composition of a sequence of percep-
trons,

dnnα,β = fK ◦ · · · ◦ f1,

where the dimensions are conformal (i.e., the output dimensions of f1 match
the input dimensions of f2 and so on). The depth of the neural network is
K, and typically networks are deep with K ≫ 1, typically K ≥ 10 and
sometimes much higher. The parameters α, β are now indexed by 1, . . . , K.

Sometimes we apply a so-called layer norm to control the location and
scale of a layer. Typically this just standardizes the output vector to have
zero mean and unit variance.

3 Generalized non-linear models

Adding a link function and sampling distribution to a linear model pro-
duces a generalized linear model. For example, if we have covariates xn ∈ RD

and coefficients β ∈ RD, and observations yn ∈ N consisting of counts, we
can use a log link and Poisson likelihood, which looks as follows with the
inverse of the link function.

yn ∼ Poisson(exp(yn · β)).

3.1 Univariate generalized non-linear models

Suppose we have a deep neural network accepting N inputs and produc-
ing a single output, dnnα,β : RD → R1. Such a network can be used for
Bayesian unconstrained non-linear regression by assuming our sampling
distribution is

yn ∼ normal(dnnα,β(xn), σ).

If we have binary data, we can swap in the appropriate sampling distribu-
tion and link function to produce a logistic regression sampling distribu-
tion,

yn ∼ bernoulli(logit−1(dnnα,β(xn))).

Poisson and log link can be used for count data, etc.

2

3.2 Multivariate generalized non-linear models

Neural networks are popular as image classifiers. Images are represented
as pixels in RGB space and these are converted to covariate vectors xn. A
512 × 512 pixel image is rendered as a (3 × 512 × 512)-vector of intensity
values.

A multi-layer neural network is then arranged to produce K outputs.
These are run through softmax (a statistician might use the inverse isomet-
ric log ratio transform) to produce a simplex of probabilities which is the
output expected from a probabilistic classifier,

yn ∼ categorical
(
softmax

(
dnnα,β(xn)

))
,

where yn ∈ {1, . . . K}, xn ∈ RD, and β ∈ RK×D, and softmax : RN → ∆N−1

by

softmax(u) =
exp(u)

sum(exp(u))
,

where ∆N−1 ⊂ RN is the set of (N − 1)-dimensional unit simplexes (each
of which has N components).

4 What about uncertainty?

From a high-level perspective, all we have done here is swap a liner func-
tion xn · β for a non-linear function dnnα,β(xn). As such, it’s business as
usual for inference.

4.1 Penalized MLEs with confidence intervals

You can optionally put shrinkage priors on the slopes and intercepts α, β

and calculate an MLE. This is often done implicitly in practice by stopping
the neural network optimizer before it has converged.

Confidence intervals cannot be calculated analytically or even easily ap-
proximated, but they can be estimated through the bootstrap.

3

4.2 Bayesian inference

Other than compute cost, there’s no obstacle to putting priors on the slopes
and intercepts and sampling from Bayesian posteriors.1

5 Why deep neural networks?

Deep neural networks are attractive for two reasons: (1) in the infinite
width limit, they are general function approximators, and (2) they are par-
allel compute friendly.

5.1 General function approximation

In the infinite-width limit, a neural network is a general function approx-
imator. Consequently, they can be dropped in for just about any applica-
tion for which there is enough data to estimate a general function. This is
the same thing that motivates other black-box regression techniques like
random forests, boosted decision trees, Bayesian additive regression trees
(BART), and even Gaussian processes (GP).

5.2 Parallel compute friendly

The huge advantage neural nets have over competing black-box function
approximators is that they are very parallel compute friendly. Moore’s law,
which is a conjecture that the density of transistors on chips will double
every eighteen months, is still going strong. This isn’t as evident as in the
1990s when our computers just got twice as fast every 18 months. Now
every 18 months, they can do twice as many operations in parallel, not
twice as many operations in a straight line.

This growth in computing is largely being realized on graphics process-
ing units (GPUs). As I write this, a single state-of-the-art GPU, such as an
NVIDIA H100 (≈ US$50,000), can run over 50 teraflops (50 trillion floating
point operations per second). That’s as fast as the world’s fastest computer
20 years ago and it’s a single card that’s expensive, but trivial to install. As
an aside, the world’s fastest computer today, El Capitan at Lawrence Liver-

1This is so popular that Matt Hoffman ran a large bake-off at NeurIPS after burning a
ton of Google compute estimating a baseline.

4

more, runs at 2 exaflops, which is two quintillion floating point operations
per second on over 1 million CPU cores and 10 million GPU cores.

There is an important caveat to using all these flops on a GPU. To exploit
GPU parallelism, we have to use single-instruction multiple-data (SIMD)
parallelism, which means executing the same operation on a lot of data
in parallel. This repetitive structure is exactly what emerges from matrix
arithmetic, for which GPUs are ideal.

6 Can it Stan?

It’s just a regular old density, so of course it can be coded in Stan; see Fig-
ure 1 for the listing. We can even make it smooth by using softplus instead
of relu activation. It’s just not clear that Stan’s sampling algorithms could
sample this—the deep neural network community relies on stochastic gra-
dient descent and a lot of data to fit these models.

Fitting with Stan is going to be tricky because the neural network is
massively over-parameterized if D ≪ W. Typically neural network models
are fit with stochastic gradient descent optimization with early stopping.

In order to vectorize the loop over N, most neural network program-
ming frameworks (e.g., PyTorch, JAX) allow operations to be batched across
observations using tensor operations.

5

functions {
vector relu(vector u) {
return step(u) .* u;

}
}
data {

int<lower=0> N;
int<lower=0> D;
int<lower=0> W;
matrix[N, D] x;
array[N] int y;

}
parameters {

vector[W] alpha1;
matrix[W, D] beta1;

vector[W] alpha2;
matrix[W, W] beta2;

real alpha3;
row_vector[W] beta3;

}
model {

for (n in 1:N) {
// neural network by layer
vector[D] input = x[n]’;
vector[W] layer1 = relu(alpha1 + beta1 * input);
vector[W] layer2 = relu(alpha2 + beta2 * layer1);
real output = alpha3 + beta3 * layer2;

// likelihood, with inverse link
y[n] ~ bernoulli(inv_logit(output));

}

// shrinkage priors
alpha1 ~ std_normal(); beta1 ~ std_normal();
alpha2 ~ std_normal(); beta2 ~ std_normal();
alpha3 ~ std_normal(); beta3 ~ std_normal();

}

Figure 1: Stan program implementing a neural net-logistic regression.

6

