
Frequentist Probability and Frequentist Statistics 

Author(s): J. Neyman 

Source: Synthese , Sep., 1977, Vol. 36, No. 1, Foundations of Probability and Statistics, 
Part I (Sep., 1977), pp. 97-131  

Published by: Springer 

Stable URL: https://www.jstor.org/stable/20115217

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide 
range of content in a trusted digital archive. We use information technology and tools to increase productivity and 
facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org. 
 
Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at 
https://about.jstor.org/terms

Springer  is collaborating with JSTOR to digitize, preserve and extend access to Synthese

This content downloaded from 
�����������85.114.54.163 on Tue, 09 Jul 2024 16:36:36 +00:00������������ 

All use subject to https://about.jstor.org/terms

https://www.jstor.org/stable/20115217


 J. NEYMAN

 FREQUENTIST PROBABILITY
 AND

 FREQUENTIST STATISTICS*

 I. INTRODUCTION

 The present paper is prompted by two stimuli. One is the gracious
 invitation of Professor Jaakko Hintikka to contribute to the issue of his

 journal especially given to foundations of probability and statistics. The
 other stimulus is multiple: letters from friends calling my attention to a
 dispute in journal articles, in letters to editors, and in books, about what is

 described as 'the Neyman-Pearson school' and particularly what is
 described as Neyman's 'radical' objectivism. While being grateful to my
 friends for their effort to keep me informed, I have to admit that, owing to

 a variety of present research preoccupations, I have not read the whole of
 the literature mentioned to me. However, I glanced at the published
 exchange of letters and at the book by de Finetti [1]. My reactions are
 somewhat mixed. First, I feel honored by the attention given to my
 writings, primarily those published more than a quarter of a century ago
 (see [2]). Next, I feel a degree of amusement when reading an exchange
 between an authority in 'subjectivistic statistics' and a practicing statisti
 cian, more or less to this effect:

 The Authority: 'You must not use confidence intervals; they are dis
 credited!'

 Practicing Statistician: T use confidence intervals because they corres
 pond exactly to certain needs of applied work.'

 My third present sensation is that of surprise at the intensity of feeling
 apparent in some publications. One illustration is the following statement
 by de Finetti and L. J. Savage, quoted from [1], page 192. Here, italics are
 mine:

 Every progress in scientific thought involves struggle against the distortion of outlook
 generated by the habits of ordinary language, the deficiencies and captiousness of which

 Synthese 36 (1977) 97-131. All Rights Reserved.
 Copyright ? 1977 by D. Reidel Publishing Company, Dordrecht, Holland.
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 98  J. NEYMAN

 must be denouced, combatted, and overcome, case by case. This has been done, and is being
 done, explicitly by all those scientists who find themselves in need of introducing and defending
 new concepts. And the struggle is rendered harder by the support that anyone averse to
 novelty finds in the opposing tendency of rhetoricians to identify thought and reasoning
 accidental with details - generally unfortunate or, at any rate, obsolete-of ways of
 speaking invented for the conditions of thousands of years ago.

 When I read this statement the scene of Giordano Bruno being led to
 the stake comes to my mind.
 The above passage is quoted from de Finetti's section, 'Critical Exami

 nation of Controversial Aspects' and is not necessarily addressed to my
 views or writings, to be 'denounced' or 'combatted'. My views are
 discussed in the two preceding sections, dealing with 'The Rise of
 Objectivistic Concepts' and with 'The Erosion of Objectivistic Positions'.
 It is here that I am quoted and, occasionally, misrepresented. Two quotes
 from page 175 must suffice.

 Other objectivistic works suggest rules for guiding the choice, but quite untenable ones,
 such as the minimax rule or else holding a to some fixed value (like 1 % or 5%) regardless of
 ?
 Many weaknesses of the objectivistic theory that can be detected and analysed in such

 perfectly coherent formulations as Neyman's, like the one just alluded to, result from the
 artificiality with which the procedures have to be constructed and from the impossibility of
 utilizing all the information

 The purpose of the present paper is to outline, briefly and non
 technically, my views on what I like to call the frequentist theory of
 probability and the frequentist theory of statistics, and to illustrate their
 applications in a few domains of study of nature in which I have been
 involved. My term 'frequentist' seems to correspond to what de Finetti
 labels 'objectivistic', but there is a difference which I hope the following
 pages will clarify.

 II. THE PHENOMENON OF APPARENTLY STABLE RELATIVE

 FREQUENCIES AS THE SOURCE OF THE FREQUENTIST
 THEORIES OF PROBABILITY AND OF STATISTICS

 1. General Ideas

 As described in a recent paper [3], it is my opinion that, directly or
 indirectly, all mathematical disciplines stem from human efforts to study

 Nature. Particularly this applies to 'young' mathematical disciplines or,
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 FREQUENTIST STATISTICS  99

 more precisely, to the relatively early period of their development. Later,
 the discipline reaches a state of maturity and begins to live its own life.
 Contacts with substantive studies diminish and recede, and new theoreti
 cal developments are motivated by their own intrinsic interest. However,
 cases of 'feedback' do occur from time to time. This happens when a
 'practitioner' in a mathematical discipline happens to develop interest in
 some domain of study of Nature. As I see it, this is just the case of
 mathematical statistics in its present state of development. My own status
 is that of a practitioner in the theory of statistics with deep interest in
 'chance mechanisms' that operate in Nature.

 In a humorous vein we might say that the honor of discovering the
 category of natural phenomena that generated the frequentist theory of
 probability belongs to the first crook who loaded his dice. Before embark
 ing on this project the particular individual must have realized that the
 relative frequencies of a die falling this way or that way are 'persistent'
 and constitute this die's measurable properties, comparable to its size and
 weight. Having discovered this fact (and this was a 'scientific discovery'),
 the crook decided to use the discovery for his own benefit (and this might

 be described as the initiation of a special 'technology').
 It so happens, see [3], that very substantial sections of modern science

 and of technology are working hard more or less to follow the steps of the
 above crook (no offense is intended!).

 2. Three Steps

 There are three distinct steps in this process:
 (i) Empirical establishment of apparently stable long-run relative

 frequencies (or 'frequencies' for short) of events judged interesting, as
 they develop in nature.

 (ii) Guessing and then verifying the 'chance mechanism', the repeated
 operation of which produces the observed frequencies. This is a problem
 of 'frequentist probability theory'. Occasionally, this step is labeled
 'model building'. Naturally, the guessed chance mechanism is
 hypothetical.

 (iii) Using the hypothetical chance mechanism of the phenomenon
 studied to deduce rules of adjusting our actions (or 'decisions') to the
 observations so as to ensure the highest 'measure' of 'success'. Naturally,
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 100  J. NEYMAN

 the definition of 'success' is a subjective matter, outside of mathematics.
 So is the 'measure' of success. On the other hand, the deduction of the
 'rules of adjusting our actions' is a problem of mathematics, specifically of

 mathematical statistics.

 Incidentally, the early term I introduced to designate the process of
 adjusting our actions to observations is 'inductive behavior'. It was meant
 to contrast with the term 'inductive reasoning' which R. A. Fisher used in
 connection with his 'new measure of confidence or diffidence' rep
 resented by the likelihood function and with 'fiducial argument'. Both
 these concepts or principles are foreign to me.

 I do deal with likelihood function and, occasionally, calculate the
 maximum likelihood estimators. However, I do so not as a matter of
 principle, but only in those cases when the frequency properties of the
 estimators fit my purposes. In other cases, illustrated in [4], other
 estimators appear preferable.
 As to 'fiducial argument', a detailed analysis of what was published in

 the 1930's showed (see pp. 375-393 in [2]) that it is a conglomeration of
 mutually inconsistent assertions, not a mathematical theory.

 III. ILLUSTRATIONS OF THE THREE STEPS

 3. The Crook and Insurance

 Presumably, after loading his die the crook must have tossed it quite a few
 times in order to acquire information about how frequently it falls on each

 of its sides. Without such information he could not hope to derive much
 profit from the loading.

 Similarly, in order to conduct their business properly, the insurance
 companies must use the actuarial tables of mortality, of sickness, of
 accidents, etc.

 4. Models of Chance Mechanisms Operating In Nature

 Several modern books on probability [5,6,7] include chapters or sections
 with telling titles, such as the following: 'Birth and Death Processes',
 'Queing Process', 'Branching Process', etc. Each such title refers to a
 hypothetical chance mechanism defined and developed with the idea that
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 FREQUENTIST STATISTICS  101

 its operation might mimic the natural phenomenon indicated in the title.
 The term frequently used to designate the hypothetical chance mechan
 ism is 'stochastic model'. Another word frequently used in connection

 with chance mechanisms is 'random', e.g. 'random events', 'random
 variable', etc.

 As things stand now, probability theory is a fully mature mathematical
 discipline 'living its own life', and this includes the three books quoted.
 The origins of this theory appear to be in the famous monograph of
 Kolmogorov [8]. Later developments may be symbolised by the books of
 Doob [9], of Dynkin [10], and of Lo?ve [11]. The ties with empirical
 frequencies are indicated by Kolmogorov. These ties are more pro
 nounced in the writings of von Mises, who built a probability theory of his

 own. While I prefer the theory of Kolmogorov, I am appreciative of von
 Mises' efforts to separate a frequentist probability theory from the
 intuitive feelings of what is likely or is unlikely to happen. The following

 somewhat emphatic quotation is from his book [12].

 Mit der Frage, ob und wie wahrscheinlich es ist, dass Deutschland noch einmal Krieg mit
 der Republik Liberia f?hren wird, hat unsere Wahrscheinlichkeitstheorie nicht das min
 deste zu tun.

 Ordinarily, the 'verification', or 'validation' of a guessed model consists
 in deducing some of its frequentist consequences in situations not previ
 ously studied empirically, and then in performing appropriate experi
 ments to see whether their results are consistent with predictions. Very
 generally, the first attempt at verification is negative: the observed
 frequencies of the various outcomes of the experiment disagree with the
 model. However, on some lucky occasions there is a reasonable agree
 ment and one feels the satisfaction of having 'understood' the phenome
 non, at least in some general way. Later on, invariably, new empirical
 findings appear, indicating the inadequacy of the original model and
 demanding its abandonment or modification. And this is the history of
 science!

 An outstanding example is the history of genetics, beginning with
 Mendel's laws of inheritance. They are 'frequentist'. Discovered in the
 mid-nineteenth century, overlooked or ignored for a long time, these
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 102  J. NEYMAN

 laws were rediscovered at the turn of the century, and were seemingly
 'confirmed'. Then some further studies revealed a number of unantici

 pated details, such as 'linkages' between genes, 'mutations', etc., all
 reflected in a variety of 'frequentist' findings. In consequence, the original
 chance mechanism invented by Mendel, fundamental as it continues to
 be, is now far away removed from the attention of scientists concerned.
 The idea of frequentist models of natural phenomena seems to be due

 to ?mile Borel. In fact, in his book [13], first published in 1909, Borel
 identified the construction of stochastic models with the general problem
 of mathematical statistics:

 Le probl?me g?n?ral de la statistique math?matique est le suivant. D?terminer un syst?me
 de tirages effectu?s dans urnes de composition fixe de telle mani?re que les r?sultats d'une
 s?rie de tirages, interpr?t?s ? l'aide de coefficients fixes convenablement choisis, puissent
 avec une tr?s grande vraisemblance conduire ? un tableau identique au tableau des
 observations.

 Here, the 'properly selected coefficients' appear to designate estimates
 of the parameters involved in the model, the values of which were left
 unspecified.

 5. Inductive Behavior

 Problems of category (iii) may be exemplified by efforts to 'validate' or to
 'verify' the Mendelian laws. Briefly and roughly, the situation may be
 summed up by the following question: shall we conduct our studies of
 heredity on the assumption that Mendelian laws may be realistic, or shall
 we ignore them? Early in this century many experiments were performed
 intended to answer this question. Let us consider the essence of such an
 experiment. Certain organisms such as plants or animals, are cross
 fertilized producing n progeny. The Mendelian laws predict that this
 progeny would fall into a number, say s, of distinct categories and that the

 ith category has the specified probability ph for i - 1, 2,... s. The
 performed experiment results in n? individuals of the ith category. The
 'expected value' of nt is the product np?. But the Mendel law specifies only
 a chance mechanism of inheritance and it is not contended that each n,

 must be equal to its expectation. The question is about an intelligible
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 FREQUENTIST STATISTICS  103

 methodology for deciding whether the observed numbers n? differing
 from nph contradict the stochastic model of Mendel.
 Early in this century this question was the subject of a lively discussion

 by Borel [14] and others. Borel was optimistic but insisted that: (a) the
 criterion to test a hypothesis (a 'statistical hypothesis') using some
 observations must be selected not after the examination of the results of
 observation, but before, and (b) this criterion should be a function of the

 observations 'en quelque sorte remarquable'. It is these remarks of Borel
 that served as an inspiration to Egon S. Pearson and myself in our effort to

 build a frequentist theory of testing hypotheses.

 IV. SKETCH OF THE THEORY OF TESTING STATISTICAL
 HYPOTHESES

 6. Basic Concepts

 Regretfully, I must admit that E.S.P. and I were rather slow. Our first,
 rather long but inadequate attempt [15] was published in 1928, and the
 paper with some really new ideas [16] appeared in 1933, five years later.
 This illustrates the observation that the most difficult parts of mathemati

 cal research in any field consist (a) in noticing the existence of an
 important problem (in the present case this was done by Borel in 1909,
 but we learned about it in the 1920's), and (b) in formulating the problem
 so it makes mathematical sense, and to initiate its solution.

 The basic ideas of the theory initiated in [16] are (i) the existence of two

 kinds of errors possible to commit while testing a hypothesis, (ii) the
 notion that these two kinds of error may be of unequal practical impor
 tance, (iii) that a desirable method of testing hypotheses must ensure an
 acceptably low probability, say a, of the more important error, and (iv)
 that, point (iii) being satisfied with an acceptable a, the probability of the

 less important error should be minimized.
 Remark. The reader will realise that the above brief description of the

 basic problem of testing statistical hypotheses is necessarily somewhat
 rough. In particular, the concepts of 'acceptable low probability level a
 and of 'minimizing the probability of the less important error' are
 described with an effort to avoid a number of technicalities, some of them

 quite difficult. Here an interested reader is referred to [18]. The modern
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 104  J. NEYMAN

 version of the theory is available in a number of books, frequently with
 many editions and translations. See [19, 20, 21].

 Now it is necessary to introduce some terminology. We must begin with
 general considerations. Whatever hypothesis, say H, may come under
 consideration (for example the hypothesis of validity of Mendel laws), an
 attempt to test it using some experimental data implies the admission that

 the hypothesis H may be false. In turn, this implies that, in addition to H
 there must exist some other hypotheses, one of which may conceivably be
 true. Here, then, we come to the concept of the 'set of all admissible
 hypotheses' which is frequently denoted by the letter il. Naturally, il
 must contain H. Let H denote the complement, say il-H = H. It will be
 noticed that when speaking of a test of the hypothesis H, we really speak
 of its test 'against the alternative H\ This is quite important. The fact is
 that, unless the alternative H is specified, the problem of an optimal test
 of H is indeterminate [18]. In the 1930's this was one of the subjects of
 dispute with R. A. Fisher.
 As mentioned at the outset, a test of the hypothesis H can lead to an

 error which may be of two kinds. One kind of error consists in the
 rejection of H when it is true. The other kind of error is committed when

 H is false (and, therefore, H is true) and we fail to reject H. According to
 circumstances and according to the subjective attitudes of the research
 worker, one of these two kinds of error may appear more important to
 avoid than the other.

 In this connection, modifying somewhat the notions explained in [16],
 we introduce two important terms: (a) the error which is the more
 important to avoid will be called 'error of the first kind', and (b) of the two

 alternatives H and H, the one the unjust rejection of which constitutes
 the error of the first kind, will be called 'the hypothesis tested'. With this

 convention, the error of rejecting the hypothesis tested when true will
 mean the 'error of the first kind', the one we judge to be the more
 important error to avoid. As mentioned, the aim of the theory of testing is
 to reduce the probability of this error to some acceptable low level a. This
 level is called 'significance level'.
 Now we introduce the term 'power of a test'. This term means the

 probability of avoiding the error of the second kind. Customarily, it is
 denoted by ?. The word 'power' connotes 'power of detecting.the
 falsehood of the hypothesis tested'.
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 FREQUENTIST STATISTICS  105

 E.S.P.'s and my effort at a theory of testing statistical hypotheses [16]
 had a double aim: first reduce the probability of the first kind of error to a
 preassigned level a and, when a class of tests all satisfying this condition is
 found, determine the one with greatest possible power. This would be the
 'optimal' test.
 Remark. The above description of the aim of the theory of testing

 hypotheses is intentionally oversimplified. Otherwise, the present article
 would have to be both too long and too technical. One kind of technical
 difficulty occurs when it is found that the originally defined 'optimal test'

 fails to exist in some interesting category of cases [22]. Then one looks for

 a 'compromise optimal test'. One example of this kind is the concept of a
 'minimax' test introduced by E.S.P. and myself [23], which de Finetti
 finds 'quite untenable' (see one of the quotes above). The word 'untena
 ble' suggests the situation in which either E.S.P. or I made efforts to
 enforce the minimax procedures as a matter of principle or dogma, or at
 least to 'sell' them to some 'consumers', such as 'practicing statisticians'.

 We do not. Our object was, and continues to be, to investigate test
 procedures within the frequentist theory possible to be applied in a
 variety of situations. The 'minimax' procedure was invented for a particu
 lar case in which (a) the unavoidable errors are to be 'paid for' causing
 'losses' to the practitioner, and (b) in which it may be desired to 'minimize
 the maximum' possible loss. Incidentally, the term 'minimax' is not ours.
 This term was introduced by Abraham Wald [24], a great talent who
 perished in an airplane accident in 1950. He unified and generalized all
 the earlier efforts at developing the mathematical theory of statistics. In
 fact, the appearance of Wald's works may be considered as marking the
 'maturity' of mathematical statistics as an independent mathematical
 discipline. Wald's work is discussed by de Finetti in his section, 'The
 Erosion of Objectivistic Positions'. This title illustrates a difference in the
 attitudes of de Finetti and myself.

 A more recent and a very interesting compromise concept of optimality
 of a test is due to Robert Davies [25].

 Now, we need two more technical terms: 'simple' and 'composite'
 hypotheses. A hypothesis H is called 'simple' if it specifies completely the
 probability distribution of the observable variables. Otherwise it is called
 'composite'.
 Here are a few examples illustrating the concepts introduced.
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 106  J. NEYMAN

 7. Simple and Composite Hypotheses

 The hypothesis Hx that a given coin is 'fair' is simple. When tossed, this
 coin can fall in one of two ways: 'heads' or 'tails'. The hypothesis Hx
 means that both outcomes of a toss have the same probability, namely
 one-half.

 This is contrasted with the alternative, say H2, which asserts only that

 the coin is 'biased' and nothing else. Thus, according to H2, the probabil
 ity of the coin falling 'heads' is not equal to one-half and may be any other

 number between zero and unity. It follows that H2 is a 'composite
 hypothesis'. Obviously, this composite hypothesis H2 represents a combi
 nation (or is 'composed') of an infinity of simple hypotheses, such as that
 the probability of 'heads' is ^, or f, etc. etc.

 8. Hypothesis Tested

 Activities of the U.S. Food and Drug Administration include the testing
 of chemicals to be sold to customers as food additives or cosmetics. One

 of the questions asked is whether these chemicals are carcinogenic.
 Consider an experiment with mice (hoping that its results will also apply
 to man) intended to determine whether a chemical A is carcinogenic or
 not. This experiment, with m mice exposed to A and n control mice, will
 show some numbers X and Y of mice which died from cancer.

 Our question is: What is our 'hypothesis tested'? To answer this
 question we must first answer another question: which error in testing is
 the more important to avoid?
 As usual, there are two possible errors. The verdicts about A may be:

 (i) 'A is carcinogenic', and (ii) 'A is not carcinogenic'. Each of these
 verdicts may be wrong. Which of these errors is our 'error of the first
 kind'? Here we come to the subjectivity of judging importance. From the
 point of view of the manufacturer the error in asserting the carcinogenic
 ity of A is (or may be) more important to avoid than the error in asserting
 that A is harmless. Thus, for the manufacturers of A, the 'hypothesis
 tested' may well be: 'A is not carcinogenic'. On the other hand, for the
 prospective user of the chemical A the hypothesis tested will be unam
 biguously: 'A is carcinogenic'. In fact, this user is likely to hope that the
 probability of error in rejecting this hypothesis be reduced to a very small
 value!
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 FREQUENTIST STATISTICS  107

 9. Importance of the Power of the Test Used

 The mathematical results developed in [16], followed by those of many
 other workers, provide the possibility of reducing the probability of the
 first kind of error, at least approximately, to a preassigned level of
 significance a, applicable in a great variety of situations. See for example
 [26]. The problem of computing the power of a test is much more
 complicated. One reason is that the hypothesis alternative to the one
 tested is usually composite (see subsection 7). In such a case, while the
 adopted level of significance is just one number a, the power of the test is
 not. If the composite alternative hypothesis splits itself into simple
 hypotheses, say Hx, H2,..., Hn,..., then for each of them the power of a
 given test is likely to have a different value, say ?(Hx\a),
 ?(H2\a),... ,?(Hn\a),_In fact, in this case it is appropriate to speak
 of a 'power function' of a test, rather than simply of its power. Further
 more, of course, the power function must depend upon the chosen level of

 significance, and there is a conflict: if one decreases a, then the power of
 the adopted test decreases also.

 This particular circumstance is important in designing experiments.
 Not infrequently it happens that, with the contemplated number of
 observations and with the originally chosen rather low level of signifi
 cance, i.e. a = 0.01, one finds that the chance ? of detecting 'errors' in the
 hypothesis tested judged large is rather small, say ? = 0.02. Obviously, an
 experiment designed in this way is not worth performing. Unfortunately,
 this particular point escaped the attention of a large number of authors of
 statistical texts. Yes, the concept of power is occasionally mentioned, but
 its treatment is somewhat 'platonic'. As a result, important experiments
 are often performed with the possibility of very frequent most regrettable
 errors. An interesting paper on this subject has been recently published
 by Traxler [27].

 In order to meet the situation in which the original design of an
 experiment yields a =0.01 and ?=0.02, there are several possible
 remedies, applicable singly or in combinations: (i) to alter the design of
 the experiment, (ii) to try to find a more powerful test, (iii) to increase the

 level of significance a and (iv) to increase the number of observations.
 Incidentally, the customary parlance with reference to testing hypoth

 eses involves two phrases which it is convenient to know. One phrase is
 that (some effect) is 'highly significant'; the other phrase is that the effect
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 108  J. NEYMAN

 in question is 'significant' or (perhaps) that it is 'significant at 5%'. The
 first phrase means that the hypothesis of no effect under discussion is
 rejected with the level of significance a =0.01. The meaning of the
 second is rejection with a = 0.05, but not with a = 0.01.

 10. Practical Applications of Theory of Testing Statistical Hypotheses

 With reference to the old dictum, 'the proof of the pudding is in the
 eating', the purpose of the present subsection is to visualise the working
 of the frequentist theory of testing hypotheses in a variety of studies of
 nature.

 As emphasized above, the theory was born and constructed with the
 view of diminishing the relative frequency of errors, particularly of'impor

 tant' errors. Thus, leaving aside the question of an error in testing some
 particular hypothesis, we have to contemplate a long sequence of situa
 tions, say {5,} = (Si, S2,..., Sn,... ) in which tests of some hypotheses
 will be performed. This sequence, which we may label 'human experi
 ence', will be very heterogeneous. Some situations will refer to problems
 of astronomy [48], others to highway traffic, still others to radiation
 biology [49], some to problems of big cities and slums or to weather
 modification, etc. etc. However, there will be some elements common to
 all the situations of the sequence.

 The elements common to all the situations typified by situation 5, will
 be: (1) a hypothesis Ht to be tested against an alternative Hh and (2) a
 subjective appraisal of the relative importance of the two kinds of error,
 leading to the adoption of an acceptably low level of significance at
 combined with an acceptable (hopefully 'optimal') power function. Let
 ?(Hi\oLi) denote the value of this function corresponding to some
 specified simple alternative to H? that may be judged important.

 Eventually, then, with each situation 5, there will be connected a pair of

 numbers, a, and ?(Hi\ai). The question is: what can one expect from the
 use of the theory of testing statistical hypotheses in the above heterogene

 ous sequence of situations summarizing human experimence in 'pluralis
 tic' studies of Nature? The answer is:

 The relative frequency of first kind errors will be close to the arithmetic mean of numbers
 ?i, ?2? ???,... adopted by particular research workers as 'acceptably low' probabilities
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 FREQUENTIST STATISTICS  109

 of the more important errors to avoid. Also, the relative frequency of detecting the
 falsehood of the hypotheses tested, when false, and the contemplated simple alternatives
 happen to be true, will differ but little from the average of ?{Hi\ax),
 ?(H2\a2),...,?(Hn\an),....

 This answer is a simple consequence of a theorem known as the central
 limit theorem of probability theory. An incredulous reader having access
 to a digital computer may wish to verify it empirically. The suggestion is to
 dream up a few hundred situations Sh each with some statistical
 hypothesis Ht to be tested against an alternative H?. In order to mimic the

 'human experience', the consecutive pairs (Hx, H?), (H2, H2),..., are
 likely to be all different but, for illustrative purposes, this is not necessary.

 In fact, all these pairs are not subject to any restriction.
 The next step would be to decide on the hypothetical sequence of 'true

 states of nature', namely on cases where the hypothesis tested H? will be
 true and where it will be false and how importantly false. There should be
 substantial numbers of cases of each kind, say at least 100. Consultations
 with a competent statistician will then determine the statistical test to be
 used in each case, the acceptably low significance level a, and the value of
 the power ? (Ht |a?). Then help of a programmer will be needed to prepare
 the input for the high speed computer, etc.
 All the above is emphasized at some length for a particular reason. This

 is that, at a variety of conferences with 'substantive scholars' (biologists,
 meteorologists, etc.), accompanied by their cooperating 'applied statisti
 cians', I frequently hear a particular regrettable remark. This is to the
 effect that the frequency interpretation of either the level of significance a
 or of power ? is only possible when one deals many times with the same
 HYPOTHESIS H, TESTED AGAINST THE SAME ALTERNATIVE. Assertions

 of this kind, frequently made in terms of 'repeated sampling from the
 same population', reflect the lack of familiarity with the central limit
 theorem.

 Is the above answer to the question of what to expect from the theory of
 testing hypotheses satisfactory? This is a subjective matter. On my own
 part, when faced by a hypothesis to be tested against an interesting
 alternative, I enjoy struggling for a criterion having just as high a power as
 possible. Also, I am uncertain about the possibilities of alternative ways
 of treating the many 'pluralistic' studies of Nature.
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 110  J. NEYMAN

 V. RANDOMIZATION OF EXPERIMENTS

 11. Basic Ideas

 Theory of frequentist statistics is so closely connected with that of
 experimentation with variable material that an article on the former must

 include at least some remarks on the latter. Here, a very important
 concept is 'randomization', introduced, emphasized and popularized by
 R. A. Fisher and his school, beginning with the mid 1920's [28,29,30]. It
 is concerned with an important pitfall in designing and conducting
 experiments.

 As nicely described by Cochran [31], the experimentalists have a rather
 general trait: an emotional attachment to one or more subjects of their
 study. In an experiment with 'variable material' there are entities
 described as 'units of experimentation'. For example, in testing chemicals
 for carcinogenicity, mentioned earlier, the 'units of experimentation' are
 mice. In order to test a chemical A there must be some units of
 experimentation having no contact with A (these will be 'control' mice)
 and some others ('experimental' mice) exposed to A. Ordinarily, a
 statistically unsophisticated experimentalist will arbitrarily select several
 mice to be controls and some others to be experiment?is. Depending
 upon his personal attitude (e.g., perhaps being attracted by the flavor of
 the food additive A, etc.) in selecting a sample of mice to serve as
 'experiment?is', the experimentalist will have a subconscious tendency to
 arrange that A is not unjustly diagnosed as 'carcinogenic'. To make sure,
 the experimentalist is likely to select his experimental mice out of those
 that look healthy and strong. Clearly, the experimentalist performing in
 this way is in danger of self-deception and in danger of deceiving others.
 The danger of such deception will be increased if the experimentalist
 happens to have some financial interest in marketing the additive A.

 Fisher's important idea was that, in order to avoid errors in judging
 what is generally called the experimental 'treatments', the subdivision of
 the available 'units' to serve as experiment?is and the controls must be

 made at random, not through an arbitrary choice of the experimentalist.
 This is what is called 'randomization' of an experiment.

 The further idea is that the personnel involved in a randomized
 experiment should not be informed of which units are 'experimental' and
 which are 'controls'. Experiments so conducted are occasionally called
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 'double blind' experiments. Unfortunately, in many practical situations,
 the 'double blindness' of an experiment is difficult to achieve.

 As of now, Fisher's idea that an experiment with variable material
 cannot be reliable unless it is randomized, has been accepted in many
 domains of science and technology. Generally, the acceptance came
 against strong opposition and after a substantial struggle (e.g., 'Oh, get
 this Fisher out of my hair! I know about my material and about my
 experiments all I need to know!')

 One of the domains in which the struggle for randomization continues
 is weather modification through so-called cloud seeding. As might be
 expected, the principal opponents are the commercial enterprises
 specializing in cloud seeding [32].

 The statistical hypotheses that come under test in connection with
 randomized experiments are of a special type. This type can be exemp
 lified by the question: are the distributions of the observable variables
 corresponding to experimental and to control units identical or not?
 Alternatively, the same question is often worded as follows: how fre
 quently can the known scheme of randomization produce differences
 between the experimental and the control units as great or greater than
 those observed? (Naturally, the term 'differences' requires specification,
 and it is here the problem of most powerful tests comes to the fore.)

 12. An Embarrassing Incident

 In order to emphasize the importance of Fisher's idea of randomization, it
 seems appropriate to mention a somewhat anecdotal case in our studies
 of cloud seeding experiments intended to verify the claims that the
 seeding (by a particular method and in specified conditions) tends to
 increase the average rainfall. In this particular case, with the experiment
 called the Whitetop, the experimental unit was a day satisfying certain
 weather conditions and cloud seeding was performed from three aircraft,
 supposed to fly back and forth over indicated points on the ground. The
 hope was to increase the rainfall over a specified circular 'target', at least
 over some points of this target.

 Unfortunately, contrary to these hopes, the average rainfall on days
 with seeding was 'significantly' lower than that on control days [33].
 Furthermore, it was found that this decrease in rain, ascribable to
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 seeding, occurred not only in the intended target, but over a huge area
 surrounding it, an area greater than the whole area of the United
 Kingdom. The estimated average decrease was about 20% of non-seeded
 days rainfall.
 The descriptions of the widely publicized experiment included the

 statement that it was 'properly randomized in the statistical sense'.
 Therefore, initially, I had no doubts about the findings, but there was an
 intriguing question about the mechanisms in the atmosphere that could
 have produced the unexpected effect. A personal communication from
 James Hughes, a cloud physicist in the U.S. Office of Naval Research,
 suggested a possibility. This was connected with the change in cloudiness
 and temperature between the periods before the beginning of seeding
 (10-11 o'clock before noon) and after. When trying to verify this
 hypothesis we ran into most unexpected facts relating to precipitation
 during the ten hours before the commencement of seeding.

 It appeared [34] that in three vast areas the average seed-no seed
 rainfall difference was 'approximately significant', 'significant' or 'highly
 significant', respectively. Furthermore, all these differences were nega
 tive: less rain on seeded than on not seeded days. Still more surprising,
 these differences occurred in areas 90 to 180 miles away from the target,
 either directly or partly upwind. The seeded day average precipitation in
 these three areas was about f, \ and \, respectively, of that without
 seeding! Since these differences could not have been caused by seeding
 and could hardly be ascribed to chance in the process of faultless
 randomization, the inescapable conclusion is that there must have been
 some flaw in the strict randomization.

 Some reading of climatological literature brought to light the fact that,

 depending upon winds, not infrequently the three areas in question must
 have included the Ozark Plateau, which some authors described as the

 'breeding ground' of severe storms. Could it be that the early morning
 weather reports indicating particularly stormy weather in upwind areas
 caused the abandonment of seeding, even though the randomized deci
 sion was to seed? Who knows? In any case, no reliable conclusions about
 the effects of seeding in this experiment appear possible.
 When thinking of designs of experiments, Fisher visualized many

 difficulties and invented ways of circumventing them. The experience
 with the Whitetop trial, which lasted five years and must have cost the
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 U.S. Government some millions of dollars, suggests an idea which Fisher
 overlooked. This is that an important experiment should be so designed
 that the personnel involved in it do not find it too uncomfortable to
 adhere to strict randomization. Flying a small plane in stormy weather,
 particularly flying through a thunderstorm cloud, must be unpleasant and
 may well be dangerous. Thus, the method of cloud seeding used in the
 Soviet Union, by firing rockets or artillery shells into selected points
 within the clouds, is likely to be preferable to the use of aircraft, unless
 they can fly high above the cloud top where the turbulence is less
 pronounced. Regretfully, in spite of an excellent school of probability in
 the Soviet Union, their cloud seeding experiments known to me are not
 randomized.

 In this connection, it is appropriate to mention a recent article [35] on
 the subject of 'Who Needs Randomization?' The answer is: the randomi
 zation is necessary to the 'consumer' of the results of an experiment. In
 particular, if a costly experiment is financed by a governmental institu
 tion, then, along with the customary auditing of the expenditures, the
 institution concerned should insist on randomization, and should 'audit'
 the process of randomization. Better still, it should 'monitor' the ran
 domization. Mere assertions to the effect that 'the experiment was
 properly randomized in the statistical sense' are not enough.

 VI. SKETCH OF THE PROBLEM OF STATISTICAL
 ESTIMATION

 The following examples are intended to illustrate two different kinds of
 statistical problem of estimation, as they occur in a variety of studies of
 nature.

 13. Example of an Isolated Problem

 For some reason, the government of a country needs data on all the farms

 in its territory, a very large number N of them. The data needed relates to

 some date in the not very distant past, say 1 January 1976. Among other
 things, the government needs a number 0, perphaps some average. The
 errorless value of 6 can be obtained through a complete survey of all the

 N farms and a detailed study of each of them. Because of the time needed,
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 a complete survey of all the N farms is impractical. Instead, a sample
 survey of a much smaller number n of farms is contemplated, using one or
 another of the developed methods of random sampling [36, 37]. Let Xx,
 X2,..., Xn denote the relevant data for the n farms of the sample, and let
 a single letter X denote their totality. Before the sample is taken the
 values of X are not determined and the chance mechanism of random

 sampling, jointly with the characteristics of the population of farms,
 determine the variability of X or, as we call it, 'the distribution of X\ For
 this reason, the variables X are called 'observable random variables'.

 The mathematical-statistical problem of estimation of 0 consists in
 devising methods whereby the observable random variables X could be
 used to obtain reliable information on the value of 0.

 Note that, while the problem involves a known chance mechanism
 governing the variability of X, no such chance mechanism affects 0. 0 is
 just a fixed, but an unknown, number.

 14. Example of Connected Problems Treated Routinely

 The daily routine of a clinic with many customers includes the analysis of
 the blood sugar content. Denote by 0? the true blood sugar content of the
 /th patient. All analyses are subject to error and the clinic performs a
 number n of parallel analyses for each patient. Let X(i) =
 [XiX, Xi2,..., Xin] denote the results of such analyses performed for the
 /th patient. We shall proceed on the assumption that the chance mechan
 ism of variability of the X(i) is sufficiently established by the so-called
 'theory of errors'.
 The theoretical-statistical problem of estimation relating to the ith

 patient in the clinic consists in developing a method of using the observa
 ble random variables X(i) in order to obtain reliable information regard
 ing his true blood sugar content 0?.
 At first sight, the problem of estimation in the two examples is

 identical. In both cases one has to do with some unknown number 6 or 0,
 and several observable random variables X or X(i ), the chance mechan
 ism governing their variability assumed known. However, there is a
 difference. In Example 1 we deal with just one (as we call it) 'parameter' 0
 to be estimated. Contrary to this, Example 2 involves routine analyses of
 blood sugar content for patients, the number of which, over a year, may
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 well run into thousands. Depending upon circumstances, among these
 patients certain categories can be established, each with a rather fixed
 condition of life, perhaps coal miners or office workers, which influence
 the frequencies of the blood sugar content ft having small or large values.

 In other words, Example 2 differs from Example 1 by the fact that the
 consecutive values of the blood sugar content ft can be considered as
 particular values of a certain random variable which we shall denote by 0.
 Naturally, if the distribution of 0 were known, this information could be
 used in order to improve the precision of estimating each ft. It is here that
 the famous formula of Bayes comes to the fore with the distribution of 0
 playing the role of the so-called 'prior'. Unfortunately, however, while it
 is' appropriate to consider the successive values of the ft as particular
 values of a random variable 0, the distribution of this variable is not
 known and there are obvious difficulties to establish it (see point (i) in
 Section 2). The difficulty is that the analyses performed for the consecu
 tive patients in the clinic do not give us the values of their true blood sugar

 content ft, but only the determinations X(i), and the transition from the
 distribution of the latter to that of the former constitutes quite a problem.

 15. Empirical Bayes Theory

 Naturally, if the problem of Example 1 is solved, then this solution can be
 applied to problems illustrated in Example 2. But it is also natural to try to
 do better. A brilliant idea as to how it can be done, initiating a novel
 chapter of frequentist mathematical statistics, is due to Herbert Robbins

 [38]. The new theory of Robbins is known under the title Empirical Bayes
 Theory. See also [39].

 16. Point Estimation

 Problems of Example 1 within the frequentist theory of statistics fall
 under two headings: 'point estimation' and 'confidence intervals'. The
 first of these has a long history, going back to Laplace and particularly to
 Gauss, and is at the base of the theory of least squares. Briefly and
 roughly, it consists in determining a function, say d*(X), of the observa

 ble variables (now termed 'estimator') the values of which are frequently
 'close' to the estimated 6. In many cases, the theory also provides
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 information on the frequency distribution of the 'error' d*(X) ? 6. In
 frequent cases (but not always) an excellent 'point' estimator d*{X) is
 found by maximizing the so-called 'likelihood function', a concept due to
 R. A. Fisher.

 The theory of confidence intervals is sketched in the next section.

 VII. SKETCH OF THE THEORY OF CONFIDENCE INTERVALS

 17. Basic Concepts

 With reference to the preceding section we denote by 6 a fixed but
 unknown number, to be estimated using certain observable random
 variables X = (Xx, X2,..., Xn), the distribution of which depends on 6.
 The datum of the problem includes the set of values that 6 can possibly
 have. Usually, but not always, it is given that 6 can be any number
 between some given limits a and b, such as a = 0 and b = 1 or a = 1 and
 b = +00 etc.

 The other datum of the problem is the distribution of the observables X
 depending upon the value of the parameter 6.

 The problem of confidence intervals consists in determining two func
 tions of the observables, say YX(X) and Y2(X), satisfying the inequalities
 a ^ YX(X)< Y2(X)^b to be used in the following manner: Whenever
 the observable variables X assume some values x = (xx, x2,..., xn), we
 shall calculate the corresponding values of Yx and Y2, say Yx(x) < Y2(x),
 and then assert (or act on the assumption) that

 (1) Yx(x)^e^Y2(x).

 The two functions YX(X) and Y2(X) are called the lower and the upper
 confidence limits (or 'bounds') for 6 and the interval between them, say
 I(X) = [YX(X), Y2(X)] the confidence interval.

 Being functions of the random variable X, the two confidence bounds
 and the confidence interval I(X) will be random variables also. (Here
 certain conditions of 'measurability' must be imposed, but they are
 customarily satisfied and are too technical for the present article.) In
 order to be useful as tools of inductive behavior, the confidence bounds,
 and the interval I(X) between them, must possess certain well defined
 frequency properties.
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 One important property is that the assertions about the unknown
 number 6 typified by the double inequality (1) be frequently correct,
 and this irrespective of the value that 0 may possess. Accordingly, we
 select a positive number a < 1, acceptably close to unity, and require that
 the probability of the two confidence bounds 'bracketing' the true vale of
 6 be identically equal to a whatever the value of 6 may be. This
 requirement is expressed by the formula:

 (2) P{Yx(X)^d^Y2(X)\6} = a.
 The number a used is called the 'confidence coefficient'. The frequently
 used values of a are 0.90,0.95 and 0.99, for which convenient numerical
 tables are available.

 The theory published since late 1930's [40, 41, 42] indicates the
 possibility of satisfying the identity (2) in many different ways. This
 circumstance poses the question of which of the many (usually, an
 infinity) of different pairs of bounds [YX(X), Y2(X)] to use. In other

 words, just as in the problem of statistical tests, there is the question of
 optimality of the confidence intervals, all corresponding to the same
 chosen confidence coefficient a. As might be expected, there have been
 conceived quite a few concepts of optimality, depending upon the nature
 of the applied problem and, frequently, on the difficulty of the relevant
 mathematical problem of reaching the desired 'optimum'.

 One intuitively easy definition of optimality is that the length of the
 confidence interval, say

 (3) L(X\a)=Y2(X)-Yx(X)
 be, in a sense, just as small as possible without the infringement of the
 basic requirement (2). However, even with this apparently simplest
 condition of optimality there are delicate conceptual points. They are
 connected with the fact that the difference in the right side of the formula

 (3) is a random variable of which it is only known that all its possible
 values are positive. This being the case, what does it really mean to
 require that this difference be 'as small as possible'? One possibility is to
 require that the average value of L(X\0) be a minimum. In mathemati
 cal terms this would mean the requirement that the 'expectation' of
 L(X\a) be a minimum. However, the requirement that the expectation of
 L(X\a) be a minimum is not the only way of defining the optimum.
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 The reader will realize that the above descriptions of the problem of
 confidence intervals involves oversimplifications, necessary to make the
 presentation 'uncluttered' by technicalities and yet emphasizing the basic
 concepts. Further below a simple example is likely to be helpful. Here, it
 is appropriate to mention that, in some cases, an exact satisfaction of the
 basic identity (2) is impossible (i.e. without introducing certain
 artificialities). This occurs when the observable variables X are so-called
 'discrete'. In cases of this kind, rather than require the exact equality to a
 in formula (2) one can require 'at least equal' or 'approximately equal',
 etc. Another important technical difficulty arrives when the distribution
 of the observables X depends on not just one parameter 0 that one wants
 to estimate, but on several of them, the values of which are of no
 particular interest. On the initiative of the late Harold Hotelling, such
 additional, not immediately interesting, parameters are called 'nuisance
 parameters': they interfere with the problem of estimating 0 which is of
 prime interest.

 18. Anticipated Misunderstandings

 Before proceeding to the construction of confidence intervals, we must
 discuss the meaning of formulas (1) and (2) and anticipate certain
 misunderstandings.

 The important point is the distinction between the symbols X and x.
 The first denotes a set of the observable random variables X =
 (Xx, X2,..., Xn) the variation of which is governed by a chance mechan
 ism which, in some specified way, depends upon the unknown number 0.
 The second symbol x = (xx,x2,... ,xn) denotes some n numbers which,
 in some particular case, may have been assumed by the random variables,
 so that Xx = xx, X2 = x2,..., Xn = xn. When this occurs, our inductive
 behavior would require us to assert (1). However, the basic formula (2) is
 written not in terms of the observed x but in terms of the observable X.

 Barring some blunders in calculations, etc. this formula is true whatever
 may be the value of the unknown 0. However, if one substitutes in (2) the
 observed x in the place of the observable X, the result would be absurd. In
 fact, the numerical results of the substitution may well be

 (4) P{Y1(jc)^0^Y2(jc)|0} = P{1^5^3|5} = O.95,
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 or alternatively,

 (5) P{1^2^3|2} = 0.95.
 It is essential to be clear that both (4) and (5) are wrong. The probability

 in the left hand side of (4) has the value zero (and thus not 0.95), and that

 in the left hand side of (5) is unity, neither of any interest.

 The meaning of the identity (2) is that a systematic use of confidence
 bounds YX(X) and Y2(X), whether in estimating one particular unknown
 0, or all different, without any restriction, the relative frequency of
 correct assertions will be close to the selected a = 0.95.

 Here is another kind of misunderstanding against which the reader
 must be warned. Consider two practicing statisticians who happen to treat
 the same problem of estimating an unknown 0 at the same confidence
 coefficient a, and are faced with some already observed x =
 (xx,x2,... ,xn). However, the two statisticians differ in their concepts of
 optimality and the confidence bounds they use are different, say [Y*(X),
 YtW\ and [Y*X*(X), Yf*(X)], respectively.

 Having the data x provided by the observations, the assertions about 0
 of the two statisticians may well be:

 (6) 1^0^3 and 4^0=^5,
 respectively. Another possibility is

 (7) 1^0^3 and 2^0^4.
 The pair of assertions (6) is contradictory and, if the two statisticians

 are employed as consultants, perhaps in the same government agency, the
 practical problem of whom to believe may be quite acute. The proper
 solution is for the 'consumer' to understand a little the long run frequency

 properties of the two pairs of confidence bounds used and then to make
 an informed choice.

 As to the difference between two assertions exemplified in (7) I have
 seen occasions in which such differences did occur and where the practical
 conclusion was reached that the unknown 0 must be included in the

 common part of the two intervals, namely 2 ^ 0 ^ 3. At the time when this

 conclusion was reached, there was no theoretical basis supporting it and I
 am not sure whether it exists now. However, it may be interesting to
 investigate the frequency properties of the procedure involving the
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 calculation of two different specified confidence intervals and, in cases
 when they overlap, to use their common part as some kind of 'summary'
 confidence interval.

 19. Construction of Confidence Intervals : Regions of Acceptance

 The purpose of this subsection is to provide the reader with an intuitive
 feeling about the general problem of constructing confidence intervals. In
 order to avoid inessential technicalities connected with the consideration

 of multidimensional spaces, we shall assume that the number n of
 observable variables is n = 1. Alternatively, we may consider the case
 where it is decided to base the estimation of 0 on some selected function

 of n > 1 observables, such, for example, as their arithmetic mean.
 The horizontal axis in Figure 1 is used to measure the possible values x

 of X, the single observable random variable. For the sake of simplicity, we
 shall assume that all possible values of X are those in the interval from 0
 to some number M. Thus, the segment from zero to M of the horizontal
 axis represents what is called the 'sample space' of X. The vertical axis is
 reserved for all possible values of the parameter0, all of them between the
 indicated limits a < b.

 The three points marked <px, <p2, <p3 on the vertical axis symbolize three

 particular values that 0 may possess. The horizontal lines through these
 points are replicas of the sample space of X. The fancy curve above the
 lowest of these lines is meant to represent or symbolize the probability
 density of X as determined by 0 = cpx. A somewhat different curve is
 drawn above the line corresponding to <p3. A glance at the two curves
 indicates that, if 0 = <p3, then X will assume larger values somewhat more

 frequently than with 0 = cpx. Whatever the case may be and whatever be
 the true value of 0, on each of the horizontal lines like those correspond
 ing to <px, <p2 and <p3 there will be an infinity of intervals, say A(<p) such

 that the probability of X falling within A (<p), as determined by 0 = <p, will

 be exactly equal to the chosen a. Intervals having this property are called
 'regions of acceptance'. A(cpx) and A(<p3) are indicated in Figure 1.
 Now visualize that for every possible value <p of 0 we selected arbitrar

 ily a region of acceptance A(cp). Next, visualize a line, say <p = Yx(x),
 connecting the right ends of all these regions and another line <p = Y2(x)
 connecting their left ends. Depending on how the particular A (<p)'s are
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 Fig. 1. Illustration of the concept of 'regions of acceptance' A(<p). Quantity measured on
 the horizontal axis is x = possible value of the observable r.v. X. Quantity measured on the

 vertical axis is <p = possible value of the estimated parameter 0.

 Fig. 2. Illustration of the 'confidence belt': the curve on the left passes through the left
 boundaries of acceptance regions A(<p) corresponding to all the possible values ? of the
 estimated parameter 6. Similarly, the curve on the right passes through the right boundaries
 of the same A (<p). Equations of the two curves can be solved either with respect to x or with
 respect to <p. The latter solutions Y\{x) and Y2(x) give the confidence interval correspond

 ing to X = x.
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 selected, the two lines determined by Yx(x) and Y2(x) may be very fancy
 and discontinuous. However, since the particular A (<p) are subjected to a
 single condition that the probability determined by ? of X falling into
 A ((p) is equal to preassigned a, it is obvious that, through a little pushing
 of the A(<p) one can achieve a degree of regularity of the two curves.
 Now, assume that this is done and have a glance at Figure 2 exhibiting

 the two fairly regular curves selected by us. Remembering that the
 vertical axis in Figure 1 is allocated to possible values <p of the estimated 0,

 the equations of the two lines may be written as

 (8) cp = Yx(x) and <p = Y2(x)

 The construction of a confidence interval for estimating 0 at the chosen
 confidence coefficient is now complete. In fact, substitute in (8) the
 random variable X for its value x and examine the probability that YX(X)
 and Y2(X) as defined through (8) will bracket the unknown true value of
 0. Obviously, for this to happen it is both necessary and sufficient that the
 observable random variable X falls within the region of acceptance A (0).
 But these regions were purposefully selected to ensure that the probabil
 ity in question be equal to a ! Thus, the probability that the two bounds
 YX(X) and Y2(X) will bracket the unknown 0 is also equal to a.

 20. An Example

 A book of instructions about how to drive an automobile is a very useful
 source of information. However, those who learned to drive are sure to

 agree that the real feel of what is involved is acquired only after a few
 exercises on the road. The following example is offered in this spirit. In
 order to be non-technical, the problem considered is 'bookish', without
 contact with any real study of nature.

 It is given that the n observable random variables Xt are mutually
 independent and are uniformly distributed within an interval (0, 0) of
 unknown length 0. It is this length 0 that is the parameter to be estimated

 by confidence intervals corresponding to a preassigned confidence coeffi
 cient a, say a = 0.90. It is also given that 0 may have any value, say
 50^0 ^600. (These numerical limits are included in order to ensure an
 appropriate degree of approximation, suggested below, and for conveni
 ence in certain graphs.)
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 Leaving aside the dealing with all the n variables, let us visualize two
 possibilities of summarizing them by just one function. One suggestion is
 that the arithmetic mean, say X, of the n observable variables might be a
 good 'summary' variable to estimate 0. The other suggestion is to use for
 the same purpose the greatest of the n observations, say X*.
 With a moderate value of n, say n = 10, the distribution of X will be

 approximately 'normal', centered at 0/2, with a variance equal to
 02/12n = 02/12O. This circumstance suggests the possibility of adopting
 as the region of acceptance, say AX(X), the symmetric interval about 0/2,
 of an appropriate length so chosen that the probability of X falling in it be

 equal to a = 0.90. In other words, our intuitively selected region of
 acceptance Ax will extend from 0/2 ? k to 0/2 + fc, where k is to be
 adjusted to the chosen value of the confidence coefficient a. Using the
 normal approximation to the distribution of X the value of k is easily
 found to be k = (0.15)0. Thus, whatever 0 may be, the probability that X
 will fall within the interval

 (9) 0/2-(O.15)0^X^0/2 + (O.15)0

 is approximately equal to a = 0.90.
 The symbols YX(X) and Y2(X) introduced in the preceding subsection

 denote, respectively, the smallest and the largest values of 0 for which X
 falls within the region of acceptance corresponding to that 0. The right
 part of the double inequality (9) indicates that the least value of 0 for
 which a given X does not exceed the right boundary of the acceptance
 region is equal to (1.548)X This is, then, our YX(X) or, as we shall denote
 it now, YX(X). Similarly, the greatest value of 0 for which an observed X

 will be at least equal to the left boundary of the corresponding acceptance
 region is, say, Y2(X) = (2.857)X It follows that, in the present case, the
 two curves sketched in Figure 2 as connecting the boundaries of accep
 tance regions, are simply two straight lines passing through the origin with

 slopes approximately equal to 1.54 and to 2.86, respectively. They are
 exhibited in Figure 3.

 The use of this Figure is as follows. One observes the n = 10 variables
 as defined at the outset, one calculates their arithmetic mean, say x, and
 one draws a vertical line through the point x on the horizontal axis. The
 intersections of this vertical with the two sloping lines determine the
 confidence interval [Yx(x), Y2(x)]. This is illustrated in Figure 3.
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 Fig. 3. Diagram facilitating the determination of the confidence intervals based on X.
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 Fig. 4. Diagram facilitating the determination of the confidence interval based on X*.
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 Now, consider the second suggestion, namely that the ten observations
 on X be 'summarized' by the greatest of them, denoted by X*. Here,
 then, the probability that X* will not exceed a preassigned number t < 0
 coincides with the probability that each and every one of the n observa
 tions will not exceed t. Obviously this probability is exactly equal to (t/6)n.

 This is, then, the exact distribution function of the random variable X*.

 As to a plausibly good region of acceptance, say A2(0), based on X*,
 one might take into consideration the fact that X* cannot possibly exceed
 0. Thus, what about defining A2(0) as an interval ending at 0 and
 beginning with a value t such that (t/d)n = 1-a? Simple calculations
 show that with n = 10 and a = 0.90, the requisite value of / equals 0
 divided by the tenth root of 10. Calculations similar to those leading to
 the confidence interval based on X yield, say

 (10) YX(X*) = X* and Y2(X*) = (1.26)X*.

 Confidence intervals determined by (10) can be read directly from
 Figure 4.

 Now we come to the important question as to what might be the long
 run results of using the two confidence intervals [YX(X), Y2(X)] and
 [YX(X*), Y2(X*)] corresponding to the same a =0.90. The anticipated
 answer is that both intervals will bracket the true value of 0 with about the

 same relative frequency of 90%. But will they? The other interesting
 question is which of the two intervals will offer the better 'precision' of
 estimation?

 In order to answer these questions empirically a total of 100 experi
 ments were simulated by the Monte Carlo technique and Figures 5 and 6
 exhibit the results.

 Each of the 100 experiments consisted in adopting some value, of
 0 = 50, 100, 150 etc. Next, for each of these values the high speed
 computer simulated 20 experiments, each of n = 10 observations, on a
 random variable uniformly distributed between zero and 0. Then the
 arithmetic mean of these observations was used to calculate the confi

 dence interval from formula (9). The vertical lines in Figure 5 exhibit
 these intervals which makes it possible to count how many times they
 cross the horizontal line that marks the assumed true value of 0. Similarly,
 Figure 6 exhibits the confidence intervals based on the greatest of the ten
 observations in each sample.
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 Fig. 5. High speed computer output simulating 100 experiments, each yielding a confidence
 interval for 6 based on X. Solid vertical lines give the confidence intervals obtained for each

 of the 100 samples.
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 Fig. 6. High speed computer output simulating 100 experiments (same as in Figure 5), each
 yielding a confidence interval for 6 based on X*. Solid vertical lines give the confidence

 intervals obtained for each of the 100 samples.
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 A glance at the two Figures indicates an affirmative answer to the
 question about the frequency of each confidence interval bracketing the
 true value of 0: the actual frequency is pretty close to 90%. But what
 about the 'precision' of estimating 0? Another glance at the two Figures
 should give an emphatic answer that the precision in the two cases is not
 the same. Specifically, the precision of estimating 0 by using X* is much
 better than that using the mean X. This is the justification of the
 theoretical efforts (a) to define appropriately the 'optimality' of the
 confidence intervals, and (b) to develop the methodology of reaching or,
 at least, approaching the optimum. Depending upon the nature of the
 experiment and/or the distributions of the observable variables, these
 mathematical problems can be very difficult.

 21. Concluding Remark

 The reader will notice that the properties of the confidence intervals
 illustrated in Figures 5 and 6 are entirely independent of whether the true
 values of 0 are just constants as in subsection 13, or are particular values
 of some random variable 0 as in subsection 14.

 VIII. A GLANCE AT THE HISTORY OF ESTIMATION BY
 CONFIDENCE INTERVALS OR REGIONS

 The first authorship of a scholarly idea of some delicacy is extremely
 difficult to establish. The first publications involving the basic ideas of
 confidence intervals known to me [43, 44] appeared in 1929 and 1931,
 both concerned with particular problems, as reflected in their titles:
 'Applications of the Theory of Errors to the Interpretation of Trends',
 and 'The Generalization of Student's Ratio', respectively. However, the
 basic idea that randomness and the calculation of the probabilities refer
 to the estimators rather than to the estimated parameters is contained in
 these papers. The more important of these papers appears to be that of
 1931 due to Hotelling. This paper is concerned with simultaneous
 estimation of not just one unknown parameter but several of them,
 namely of means of several possibly correlated normal variables.

 For quite some time the results of Hotelling remained unnoticed, but
 later their importance became increasingly appreciated, particularly due
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 to the idea of Henry Scheff? [45] concerned with the 'multiple compari
 son problem'. A more recent book on the subject [46] is due to Rupert
 Miller. Predominantly, this literature is concerned with random variables
 assumed normally distributed. Another outstanding characteristic of
 these papers is that, from the very start, the ideas involved were entirely
 free of Bayesianism: the estimated quantities were unknown constants,
 not subject to prior distribution.
 My own involvement in the field was also due to the necessity of solving

 an applied problem, in which a student of mine, Waclaw Pytkowski was
 involved. However, contrary to Hotelling, I began as a quasi-Bayesian.

 My assumption was that the estimated parameter (just one!) is a particu
 lar value of a random variable having an unknown prior distribution. My
 efforts were directed towards an estimator interval with its probability of

 covering the true value of the estimated parameter being independent of
 the prior distribution [36].
 The elements of the theory I developed were the subject of my lectures

 first in Warsaw and, in 1934, also at the University College, London.
 Pytkowski's work [47] acknowledging my lectures on confidence inter
 vals, was published in 1932. My first publication [36] mentioning and
 briefly discussing confidence intervals appeared in 1934. The first basic
 results appeared in 1937-38 [40,41]. From one point of view my first
 results were less general than those of Hotelling: I was concerned with
 estimating just one parameter while Hotelling estimated several of them
 jointly. However, one particular aspect of my results is more general than
 that of Hotelling: my results were not tied to normal, or to any other
 distribution of the observable variables.

 Here it is a pleasure to acknowledge help of another of my former
 students, namely Churchill Eisenhart. He attended my lectures at the
 University College, London, and witnessed my introducing a prior dis
 tribution of the estimated 0 and then making efforts to produce an
 interval estimator, the properties of which would be independent of the
 prior. Once, Eisenhart's comment was that the whole theory would look
 nicer if it were built from the start without any reference to Bayesianism
 and priors. This remark proved inspiring.

 Statistical Laboratory, University of California, Berkeley
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 NOTE

 * The present paper was prepared using the facilities provided by three grants: the U.S.
 Energy Research and Development Agency; the National Institutes of Health, research
 grant No. ES01299-13; the Office of Naval Research, contract No. N00014-75-C
 0159/NRO82-230. I am indebted to Mr. Keith Sharp for performing the Monte Carlo
 simulation experiment which produced Figures 5 and 6.
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