
Transformer decoding in fifty lines of pseudocode
Bob Carpenter, Flatiron Institute, bcarpenter@flatironinstitute.org October 20, 2023

Overview

This note provides pseudocode for a decoder-only transformer as used by OpenAI’s generative pre-trained trans-
formers (GPT) version 2. Version 3 uses sparse multi-head attention (each head looks at a subset of the tokens in
the history). Version 4’s architecture was not released.

The first part presents the decoder pseudocode assuming the parameters (alpha, betas, gammas, delta) have
been estimated. We simplify to single-head attention in the first pass and circle back to multi-head attention after
presenting pseudocode for prompt completion and training.

What is a language model?

Tokenization

First, we will assume that language is a sequence of discrete symbols, which we will call tokens. For written lan-
guage, words or characters are obvious choices, but large language models tend to use token sets of roughly 50, 000
tokens that correspond to subwords. Let’s see how that sentence we just wrote is tokenized by the GPT API (avail-
able online at https://platform.openai.com/tokenizer):

These days, large language models tend to use token sets
of roughly $50,000$ tokens that correspond to subwords.

The colored boxes indicate the tokens. Most words and the spaces before them make up a single token, but note
that the word “subwords” was split into a token consisting of a space and “sub” and the token “words” with no
leading space. The punctuation items make up their own tokens, but notice that $ shows up tokenized with and
without a preceding space. Adding prefixes can change tokenization, e.g.,

discombobulatedness antidiscombobulatedness

Language modeling

Let Tok be the set of tokens and Tok∗ = {tok1, . . . , tokN : N ∈ N, tokn ∈ Tok} be the set of token sequences. A
language model will assign probabilities to elements of Tok∗.

We will use higher-order Markovian language models that generate the next token based on the identity of the
previous tokens. For GPT-3, the maximum history size is 212 = 4096 tokens. That is, we will assign conditional prob-
abilities p(tokN | tok1, . . . , tokN−1), which is the probabilty of generating tokN having seen tokens tok1, . . . , tokN−1.
Such a model is said to have order N. The probabilty of a sequence is then defined by the chain rule:

p(tok1, . . . , tokN) =
N

∏
n=1

p(tokn | tok1, . . . , tokn−1).

Training and generation

We use the log of the training sequence probability as the objective function to maximize during training. We fit with
maximum likelihood estimates of parameters (aka weights) θ, given M training token sequences with lengths Nm,

θ̂ = arg maxθ

M

∏
m=1

p(tok1, . . . , tokNm | θ)

This form of model is said to be autoregressive because it predicts the next item in a sequence based on the
previous items. To generate a sequence, we start by generating a token at random according to tok1 ∼ p(·), the
distribution over tokens. Then we generate tok2 ∼ p(· | tok1) and so on.

1

https://platform.openai.com/tokenizer

Notation

If A is an M × N matrix, then we will use A[m] or A[m, 1:N] for the m-th row, which is an N-dimensional
row vector. Ranges will be read inclusively, so that, for example, 1:5 denotes the sequence 1, 2, 3, 4, 5. We use
simplex(T) to denote a vector in [0, ∞)T that sums to unity. Given a type T we write T[N] for an N-dimensional
array of objects of type T. We will use .* for elementwise product.

Sizes

T: number of tokens K: key/query size A: attention layers
N: history length V: value size L: feedforward net width

Decoder

DECODE(tok: int<lower=1, upper=T>[N], // 0 <= N <= MAX_TOKENS
alpha: matrix(T, V),
betas: { query: matrix(V, K),

key: matrix(V, K),
value: matrix(V, V) }[A],

gammas: { 1: vector(L), 2: matrix(L, V),
3: vector(V), 4: matrix(V, L) }[A],

delta: matrix(T, V)): simplex(T)
--
for n in 1:N: // embed input

xs[n, 1:V] = alpha[tok[n], 1:V] + POS(n) // embedding of token n
for a in 1:A: // A attention layers

xs = ATTEND(xs, betas[a]) // update tokens jointly
for n in 1:N: // update tokens individually

xs[n, 1:V] = FEED_FORWARD(xs[n, 1:V], gammas[a]) // with shared NN
return LOGISTIC_REGRESSION(xs[N, 1:V], delta) // next token probs

Scaled Dot-Product Attention

ATTEND(x: matrix(N, V),
beta.query: matrix(V, K),
beta.key: matrix(V, K),
beta.value: matrix(V, V)): matrix(N, V)

--
for n in 1:N:

q[n, 1:K] = x[n, 1:V] * beta.query // optionally add intercept
k[n, 1:K] = x[n, 1:V] * beta.key
v[n, 1:V] = x[n, 1:V] * beta.value

for n in 1:N:
lp[1:n-1] = [q[n] * k[1]’, ..., q[n] * k[n-1]’] // dot product log probs

/ sqrt(V) // scaled by sqrt value size
lp[n:N] = -inf
p[1:N] = SOFTMAX(lp[1:N]) // attention probs
u[n, 1:V] = SUM(n’ in 1:N) p[n’] * v[n’, 1:V] // weighted avg of token values
y[n, 1:V] = STANDARDIZE(u[n, 1:V] + x[n, 1:V]) // add in to out (non-center)

return y

2

Positional embedding

POS(n: int<low=1,up=N>): vector(V)
--
for i in 1:(V / 2):

r = n / N**(2 * i / V) // exponent ranges from 2/V to 1
u[2 * i - 1] = sin(r)
u[2 * i] = cos(r)

return u

Feed-forward neural network

FEED_FORWARD(x: vector(V),
gamma.1: vector(L), gamma.2: matrix(L, V),
gamma.3: vector(V), gamma.4: matrix(V, L)}): vector(V)

--
u[1:L] = gamma.1 + gamma.2 * x // first layer
w[1:L] = GELU(u) // non-linearity
y[1:V] = gamma.3 + gamma.4 * w // second layer
return STANDARDIZE(x + y) // layer norm input + output

Logistic regression

LOGISTIC_REGRESSION(x: vector(V), delta: matrix(T, V)): simplex(T)
--
log_probs[1:T] = delta * x
return SOFTMAX(log_probs[1:T])

Helper functions

STANDARDIZE(u: vector(V)): vector(V) // aka layer norm
return (u - mean(u)) / standard_deviation(u)

SOFTMAX(u: vector(V)): simplex(V)
return exp(u) / sum(exp(u))

GELU(u: vector(V)): vector(V)
return u .* Phi(u) // Phi() std normal cdf (sigmoid)

3

Text completion

Given a sequence of input tokens, generate a response sequence of tokens. We assume a special “stop-generating”
token END_TOKEN ∈ 1 : T. The decoder can accept any size input, so we allow any size input to complete.

COMPLETE_TEXT(toks: int<low=1, up=T>[N’],
int<low=0> max_tokens,
...decoder params...): int<low=1, up=T>[]

--
toks_out = []
while (True):

while (toks.size() > N) toks.pop_first() // trim to <= N tokens
prob = DECODE(toks, ...decoder params...) // next token probs
next_tok = categorical_rng(prob) // gen. next token randomly
if (next_tok == END_TOKEN): return toks_out // return if end token
toks_out.push_last(next_tok) // append to output
if (toks_out.size() == max_tokens): return toks_out // return if max tokens
toks.push_last(next_tok) // add next token to end

Parameter estimation (aka “learning”)

Parameter estimates of the decoder parameters, all of which are real valued and unconstrained, proceeds by an
approximate optimization using stochastic gradient descent (SGD) with the negative log density as an objective,
using momentum as in the Adam optimizer. The input is a ragged array of tokens representing a total of I training
sequences, each of length J[i]. MAX_HISTORY is determined by decoder.

LOG_DENSITY(toks: int<low=1, up=T>[I, J[1:I]],
...decoder params...): real<up=0>

--
log_density = 0
for i in 1:I:

history = []
for j in 1:J[i]:

history_toks = []
next_tok = toks[i, j]
probs = DECODER(history_toks, ...decoder params...)
log_density += log(probs[next_tok])
if (history_toks.size() < MAX_HISTORY): history_toks.pop_first()
history_toks.append_last(next_tok)

return log_density

The functions are typically coded in a system supporting GPU-based automatic differentiation, such as PyTorch
Paszke et al. (2019) or JAX Bradbury et al. (2018), which allows the computation of the derivative of the output of
this function (the log density) with respect to the decoder parameters. In machine learning, this is called “back-
propagation,” the general form of which is known as “automatic differentiation.”

Dropout during parameter estimation

In practice, when training the neural networks involved, a random subset of nodes is selected to be “dropped out”
during each iteration of optimization. In the simplest case, there will be a probability for dropping nodes and
whether a node is dropped will be determined independently in each iteration. Dropout provides a form of implicit
regularization, as originally described by Srivastava et al. (2014). Vaswani et al. (2017) used dropout when training
transformers and this practice has continued with GPT.

4

Multi-head attention

In GPT-2, a total of H attention models, called “heads” are used in parallel. Each starts from the full value, but
produces a value of size V / H. These H values are concatenated to get back to a value of size V. Residual structure
and standardization are as before. The final affine layer was not in the original transformer architecture.

MULTI_HEAD_ATTEND(x: matrix(N, V),
beta.query: matrix(V, K)[H],
beta.key: matrix(V, K)[H],
beta.value: matrix(V, V/H)[H],
tau: matrix(N, N),
rho: vector(V)): matrix(N, V)

--
for h in 1:H: // parallel heads

for n in 1:N:
q[n, 1:K] = x[n, 1:V] * beta_query[h] // q, k, v vary by head
k[n, 1:K] = x[n, 1:V] * beta_key[h]
v[n, 1:V/H] = x[n, 1:V] * beta_value[h]

for n in 1:N: // loop unchanged
lp[1:n-1] = [q[n] * k[1]’, ..., q[n] * k[n-1]’]

/ sqrt(V)
lp[n:N] = -inf
p[1:N] = SOFTMAX(lp[1:N])
u[h, n, 1:V/H] = SUM(n’ in 1:N) p[n’] * v[n’, 1:V/H]

for n in 1:N:
z[n, 1:V] = concat(u[1, n, 1:V/H], ..., u[H, n, 1:V/H]) // concat results

w[1:N, 1:V] = tau * z + rho * [1 ... 1] // affine transform
for n in 1:N:

y[n, 1:V] = STANDARDIZE(x[n, 1:V] + z[1:V]) // residual + std
return y

Sparse attention

GPT-3 adds sparse, multi-head attention where each of the multiple attention heads restricts attention to a subse-
quence of the full token history.

From decoders to chatbots

As presented, we have a very sophisticated text completion engine. To turn a decoder-style transformer as we have
presented into a chatbot, OpenAI proceeded in two stages. First, the text stream is marked up (with text) to indicate
“user” and “assistant” turns with an additional “system” prompt prefixed to user queries.

1. fine tune (additional training) on human-generated answers to example prompts

2. have GPT generate multiple answers to prompts

3. humans rank GPT’s output and provide ordinal scores (e.g., 1–5)

4. rankings used in reinforcement learning with human feedback (RLHF)

• requires training a reward model on the side

The goal is to “align” a large language model to be (a) helpful, (b) truthful, and (c) harmless. These are subjec-
tive notions, the implementation of which will depend on the human-generated answers and human-generated
rankings.

5

History and further reading

Language models were introduced by Shannon (1948), who explored estimating and generating from 3rd order
character models and 2nd order word models.

The transformer architecture was introduced by Vaswani et al. (2017), who used an encoder-decoder architecture
for translation. It actually simplifies some of the architectures it replaced, hence the paper title, “Attention is all you
need.” The encoder embedded the text to translate and it was available as additional context during decoding.

Phuong and Hutter (2022) also provide pseudocode for transformers. Their pseudocode is more finely factored
and general than what I have presented here. They provide pseudocode for multiple applications of transform-
ers including the original encoder/decoder machine translation application, the BERT architecture, as well as the
autoregressive, decoder-only architecture of GPT.

Other implementations

There are several useful complete implementations of the transformer architecture.

• Python with TensorFlow (OpenAI): https://github.com/openai/gpt-2,

• Python with PyTorch (Andrej Karpathy): https://github.com/karpathy/nanoGPT,

• C++ (Georgi Gerganov): https://github.com/ggerganov/llama.cpp

• C (Febrice Bellard): https://bellard.org/nncp/, and

• Stan (Daniel Lee): https://github.com/bayesianops/gpt-tutorial/.

References

Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary, C., Maclaurin, D., Necula, G., Paszke, A., VanderPlas, J.,
Wanderman-Milne, S., and Zhang, Q. (2018). JAX: composable transformations of Python+NumPy programs.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L.,
Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai,
J., and Chintala, S. (2019). Pytorch: An imperative style, high-performance deep learning library. In Advances in
Neural Information Processing Systems 32, pages 8024–8035.

Phuong, M. and Hutter, M. (2022). Formal algorithms for transformers. arXiv, 2207.09238.

Shannon, C. E. (1948). A mathematical theory of communication. The Bell System Technical Journal, 27(3):379–423.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. (2014). Dropout: a simple way to
prevent neural networks from overfitting. The Journal of Machine Learning Research, 15(1):1929–1958.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. (2017).
Attention is all you need. Advances in Neural Information Processing Systems, 30.

6

https://github.com/openai/gpt-2
https://github.com/karpathy/nanoGPT
https://github.com/ggerganov/llama.cpp
https://bellard.org/nncp/
https://github.com/bayesianops/gpt-tutorial/

Decoder diagram

position & lexical embedα

tok1:N ∈ (1 : T)N

attention layer 1β1, γ1

x0
1:N ∈ RN×V

...

x1
1:N ∈ RN×V

attention layer AβA, γA

xA−1
1:N ∈ RN×V

project last token’s value

xA
1:N ∈ RN×V

logistic regressionδ

xA
N ∈ RV

prob1:T ∈ ∆T−1

7

Attention layer diagram

tee

xa
1:N

attend βa+1

xa
1:N

+

ya
1:N

xa
1:N

standardize

xa
1:N + ya

1:N

tee

za
1

tee

feedforward nn

· · ·

γa+1 feedforward nn

za
N

za
1 za

N

+ +· · ·

ua
1

za
1:N za

N

ua
1

standardize

ua
1 + za

1

standardize
· · ·

ua
N + za

N

xa+1
1 xa+1

N

8

