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Statistics emerged as a distinct discipline around the beginning 
of the 20th century. During this time, fundamental concepts were developed, 
including the use of randomization in clinical trials, hypothesis testing, 

likelihood-based inference, P values, and Bayesian analysis and decision theory.1,2 
Statistics rapidly became an essential element of the applied sciences, so much so 
that in 2000, the editors of the Journal cited “Application of Statistics to Medicine” 
as one of the 11 most important developments in medical science over the previous 
1000 years.3 Statistics concerns reasoning with incomplete information and the 
rigorous interpretation and communication of scientific findings from data. Sta-
tistics includes determination of the optimal design of experiments and accurate 
quantification of uncertainty regarding conclusions and inferential statements from 
data analysis, expressed through the language of probability.

In the 21st century, artificial intelligence (AI) has emerged as a valuable ap-
proach in data science and a growing influence in medical research,4-6 with an 
accelerating pace of innovation. This development is driven, in part, by the enormous 
expansion in computer power and data availability. However, the very features that 
make AI such a valuable additional tool for data analysis are the same ones that 
make it vulnerable from a statistical perspective. This paradox is particularly per-
tinent for medical science. Techniques that are adequate for targeted advertising 
to voters and consumers or that enhance weather prediction may not meet the rigor-
ous demands of risk prediction or diagnosis in medicine.7,8 In this review article, we 
discuss the statistical challenges in applying AI to biomedical data analysis and the 
delicate balance that researchers face in wishing to learn as much as possible from 
data while ensuring that data-driven conclusions are accurate, robust, and repro-
ducible.

We begin by highlighting a distinguishing feature of AI that makes it such a 
powerful approach while at the same time making it statistically vulnerable. We 
then explore three particular challenges at the interface of statistics and AI that are 
of particular relevance to medical studies: population inference versus prediction, 
generalizability and interpretation of evidence, and stability and statistical guar-
antees. We focus on issues of data analysis and interpretation of findings. Space 
constraints preclude a discussion of the important area of AI and experimental de-
sign or a deep dive into the emerging area of generative AI and medical chatbots; 
however, we comment on this emerging area briefly.

Fe at ur e R epr esen tation Le a r ning

Traditional statistical modeling uses careful hands-on selection of measurements 
and data features to include in an analysis — for example, which covariates to in-
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clude in a regression model — as well as any 
transformation or standardization of measure-
ments. Semiautomated data-reduction techniques 
such as random forests and forward- or backward-
selection stepwise regression have assisted stat-
isticians in this hands-on selection for decades. 
Modeling assumptions and features are typically 
explicit, and the dimensionality of the model, as 
quantified by the number of parameters, is usu-
ally known. Although this approach uses expert 
judgment to provide high-quality manual analy-
sis, it has two potential deficiencies. First, it can-
not be scaled to very large data sets — for in-
stance, millions of images. Second, the assumption 
is that the statistician either knows or is able to 
search for the most appropriate set of features 
or measurements to include in the analysis 
(Fig. 1A).

Arguably the most impressive and distin-
guishing aspect of AI is its automated ability to 
search and extract arbitrary, complex, task-orient-
ed features from data — so-called feature repre-
sentation learning.9-11 Features are algorithmi-
cally engineered from data during a training 
phase in order to uncover data transformations 
that are correct for the learning task. Optimality 
is measured by means of an “objective function” 
quantifying how well the AI model is perform-
ing the task at hand. AI algorithms largely remove 
the need for analysts to prespecify features for 
prediction or manually curate transformations 
of variables. These attributes are particularly ben-
eficial in large, complex data domains such as 
image analysis, genomics, or modeling of elec-
tronic health records. AI models can search 
through potentially billions of nonlinear covari-
ate transformations to reduce a large number of 
variables to a smaller set of task-adapted features. 
Moreover, somewhat paradoxically, increasing the 
complexity of the AI model through additional 
parameters, which occurs in deep learning, only 
helps the AI model in its search for richer inter-
nal feature sets, provided training methods are 
suitably tailored.12,13

The result is that the trained AI models can 
engineer data-adaptive features that are beyond 
the scope of features that humans can engineer, 
leading to impressive task performance. The prob-
lem is that such features can be hard to interpret, 
are brittle in the face of changing data, and lack 
common sense in the use of background knowl-
edge and qualitative checks that statisticians 

bring to bear in deciding on a feature set to use 
in a model. AI models are often unable to trace 
the evidence line from data to features, making 
auditability and verification challenging. Thus, 
greater checks and balances are needed to ensure 
the validity and generalizability of AI-enabled 
scientific findings (Fig. 1B).14,15

The checking of AI-supported findings is 
particularly important in the emerging field of 
generative AI through self-supervised learning, 
such as large language models and medical sci-
ence chatbots that may be used, among many 
applications, for medical note taking in electronic 
health records.16 Self-supervised learning by these 
foundation models involves vast quantities of un-
documented training data and the use of broad 
objective functions to train the models with tril-
lions of parameters (at the time of this writing). 
This is in contrast to the “supervised” learning 
with AI prediction models, such as deep learning 
classifiers, in which the training data are known 
and labeled according to the clinical outcome, 
and the training objective is clear and targeted 
to the particular prediction task at hand. Given 
the opaqueness of generative AI foundation mod-
els, additional caution is needed for their use in 
health applications.

Pr edic tion v er sus Popul ation 
Infer ence

AI is especially well suited to, and largely designed 
for, large-scale prediction tasks.17 This is true, in 
part, because with such tasks, the training ob-
jective for the model is clear, and the evaluation 
metric in terms of predictive accuracy is usually 
well characterized. Adaptive models and algo-
rithms can capitalize on large quantities of an-
notated data to discover patterns in covariates 
that associate with outcomes of interest. A good 
example is predicting the risk of disease.18 How-
ever, the ultimate goal of most medical studies 
is not explicitly to predict risk but rather to gain 
an understanding of some biologic mechanism 
or cause of disease in the wider population or to 
assist in the development of new therapies.19,20

There is an evidence gap between a good pre-
dictive model that operates at the individual level 
and the ability to make inferential statements 
about the population.21 Statistics is mainly con-
cerned with population inference tasks and the 
generalizability of evidence obtained from one 
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study to an understanding of a scientific hy-
pothesis in the wider population. Prediction is 
an important yet simpler task, whereas scientific 
inference often has a greater influence on mech-
anistic understanding. As Hippocrates observed, 
“It is more important to know what sort of per-
son has a disease than to know what sort of 
disease a person has.”

An example comes from the recent corona-
virus disease 2019 (Covid-19) pandemic. Various 
prediction tools for determining whether a per-
son has severe acute respiratory syndrome corona-
virus 2 infection have been reported,22 but moving 
from individual prediction to inference regarding 
the population prevalence and an understanding 
of at-risk subgroups in the population is much 
more challenging.23

An additional challenge in the use of predic-
tive tools is that there are many ways to measure 
and report predictive accuracy — for instance, 
with the use of measures such as the area under 
the receiver-operating-characteristic curve, pre-
cision and recall, mean squared error, positive 
predictive value, misclassification rate, net re-
classification index, and log probability score. 
Choosing a measure that is appropriate for the 
context is vitally important, since accuracy in one 
of these measures may not translate to accuracy 
in another and may not relate to a clinically 
meaningful measure of performance or safety.24,25 
In contrast, inferential targets and estimands for 
population statistics tend to be less ambiguous, 
and the uncertainty is more clearly characterized 
through the use of P values, confidence intervals, 
and credible intervals. That said, robust, accurate, 
AI prediction models indicate the existence of 
repeatable signals and stable associations in the 
data that warrant further investigation.26 Bayesian 
procedures have an inherent link between pre-
diction and inference through the use of joint 
probabilistic modeling.27-29

An interesting area where AI prediction meth-
ods and statistical inference meet is causal ma-
chine learning that pays particular attention to 
inferential quantities.30-32 Adoption of structural 
causal modeling or potential outcomes frame-
works, with tools such as directed acyclic graphs, 
uses domain knowledge to reduce the probabil-
ity that an AI model will make data-driven 
mistakes such as misspecifying the temporal 
relationship between exposure and outcome, con-
ditioning on a variable that is caused by both ex-

posure and disease (a “collider”), or highlighting 
a spurious association — for example, a batch 
effect in a biomarker study.33 Causal inference 
methods may also be applied to AI for the inter-
pretation of radiologic or pathological images34 
and for clinical decision making and diagnosis,35 
and they may facilitate the handling of high-
dimensional confounders.36 Although AI meth-
ods may automate and assist in applying causal 
inference methods to biomedical data, human 
judgment is likely to be necessary for the foresee-
able future, if only because different AI algorithms 
may present us with different conclusions. More-
over, in order to avoid potential bias arising from 
ascertainment, mediation, and confounding, caus-
al analysis from observational data requires as-
sumptions that lie outside that which is learn-
able from the data.

Gener a liz a bili t y a nd 
In ter pr e tation

One challenge in interpreting AI results is that 
algorithms for internal feature representation are 
designed to automatically adapt their complexity 
to the task at hand, with nearly infinite flexibil-
ity in some approaches. This flexibility is a great 
strength but also requires care to avoid overfitting 
to data. The use of regularization and controlled 
stochastic optimization of model parameters dur-
ing training can help prevent overfitting but also 
means that AI algorithms have poorly defined 
notions of statistical degrees of freedom and the 
number of free parameters. Thus, traditional sta-
tistical guarantees against overoptimism cannot 
be used, and techniques such as cross-validation 
and held-out samples to mimic true out-of-sample 
performance must be substituted, with the trade-
off that the amount of data available for discov-
ery is reduced. With these factors taken together, 
the risk is overinterpretation of the generalizabil-
ity and reproducibility of results.

Practices that medical scientists should pay 
careful attention to in planning AI-enabled 
studies include releasing all code and providing 
clear statements on model fitting and held-out 
data used for reporting of accuracy so as to facili-
tate external assessment of the reproducibility of 
findings.15 A recent report by McKinney et al. on 
the use of AI for predicting breast cancer on the 
basis of mammograms37 prompted a call by Haibe-
Kains et al. for greater transparency: “In their 
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study, McKinney et al. showed the high potential 
of AI for breast cancer screening. However, the 
lack of details of the methods and algorithm 
code undermines its scientific value.”38 The use 

of traditional statistical prediction methods 
alongside interpretable AI methods can contrib-
ute to an understanding of the prediction signal 
and can mitigate nonsensical associations. The 
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clear reporting of results and availability of code 
add to the potential for external replication and 
refinement by other groups but may be limited by 
a tendency to seek intellectual property rights for 
commercial AI products.

AI approaches may be useful in winnowing 
down a data set with a very large number of fea-
tures, such as “-omic” data sets (e.g., metabolo-
mic, proteomic, or genomic data), into a smaller 
number of features that can then be tested with 
the use of conventional statistical methods. Popu-
lar AI methods such as random forests, XGBoost, 
and Bayesian additive regression trees39-41 all pro-
vide “feature relevance” ranking of covariates, 
and statistical methods such as the least absolute 
shrinkage and selection operator42 use explicit 
variable selection as part of the model fitting. 
Although many AI procedures may not effectively 
distinguish between highly correlated variables, 
standard regression techniques with a smaller 

number of AI-selected features may do so. Fea-
ture reduction also helps the human analyst ex-
amine the data and apply additional constraints 
on an analysis that are based on previous subject 
knowledge. For example, feature A is often con-
founded by feature X, or a latency period of sev-
eral years between exposure to feature A and the 
disease outcome means that no relationship is 
expected in early follow-up. Some similarities and 
differences between AI and conventional statistics 
are summarized in Table 1.

AI approaches challenge some recent trends 
in conventional statistical analysis of clinical and 
epidemiologic studies. Randomized trials of in-
vestigational drugs have been held to a high stan-
dard of rigor, and concerns about overinterpre-
tation of the results of secondary end-point and 
subgroup analyses have led to an even stronger 
focus on prespecified description of primary 
hypotheses and control of the familywise error 
rate in order to limit false positive results. Pro-
tocols now often specify the precise estimands 
and methods of analysis that will be used to ob-
tain P values for inference and may include the 
covariates to be controlled for and the dummy 
tables that will be filled in once data are complete. 
Analyses in observational studies are usually less 
rigorously prespecified, although a statistical 
analysis plan established before the start of data 
analysis is increasingly expected as supplemen-
tary material in published reports.43

AI approaches, in contrast, often seek pat-
terns in the data that are not prespecified, which 
is one of the strengths of such approaches (as 
discussed above), and thus the potential for false 
positive results is increased unless rigorous pro-
cedures to assess the reproducibility of findings 
are incorporated. New reporting guidelines and 
recommendations for AI in medical science have 
been established to ensure greater trust and gen-
eralizability of conclusions.44-48 Moreover, highly 
adaptive AI algorithms inherit all the biases and 
unrepresentativeness that might be present in 
the training data, and in using black-box AI pre-
diction tools, it can be difficult to judge whether 
predictive signals arise as a result of confound-
ing from hidden biases in the data.49-52 Methods 
from the field of explainable AI (XAI) can help 
counter opaque feature representation learning,53 
but for applications in which safety is a critical 
issue, the black-box nature of AI models war-
rants careful consideration and justification.54

Figure 1 (facing page). Characteristics of Statistical 
and Artificial Intelligence (AI) Models.

As shown in Panel A, statisticians, in conjunction with 
clinicians, can use expert judgment to design studies 
and analyze the resulting data. To avoid “data dredg-
ing,” the analysis is often prespecified in a statistical 
analysis plan, which may include such details as a list-
ing of primary and secondary hypotheses and specifi-
cation of variables that will be controlled for, how the 
variables will be categorized, which statistical meth-
ods will be used, how they will provide protection 
against type 1 error, and even how the tables will be 
presented. Additional or post hoc analyses are consid-
ered to be exploratory. A second statistician or statis-
ticians starting with the same data and statistical 
analysis plan should produce almost identical results. 
These principles are challenged by high-dimensional 
data (i.e., data with many variables from multiple 
sources), for which there may be numerous alternative 
approaches to reducing the data to a smaller number 
of variables, with many options for analyses, and the 
statistician may “drown” in the data. As shown in Pan-
el B, an AI algorithm can sift through vast amounts of 
data, but the way in which findings are derived from 
the data may be opaque, and it may be impossible for 
an analyst starting with the same data to succinctly 
describe and reproduce the analysis and results. Of 
most concern is the possibility of overfitting and of 
false positive results leading to findings that are not 
reproducible. Biases in the data that a human may un-
derstand may not be known to an AI algorithm. Inter-
nal reproducibility should be assessed by using meth-
ods such as partitioning the data into discovery and 
test sets. The generalizability to other data sets may 
be limited by idiosyncrasies in the first data set that 
are not shared with apparently similar data sets.
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Obermeyer and colleagues55 describe an AI-
informed algorithm that was applied to a popu-
lation of 200 million persons in the United 
States each year in order to identify patients who 
were at highest risk for incurring substantial 
health care costs and to refer them to “high-risk 
care management programs.” Their analysis sug-
gested that the algorithm unintentionally discrim-
inated against Black patients. The reason appears 
to be that at every level of health care expenditure 
and age, Black patients have more coexisting con-
ditions than White patients do but may access 
health care less frequently. Thus, the algorithm 
with an objective function that set out to predict 
health care utilization on the basis of previous 
costs did not recognize race-related disparities 
in health care needs. In the future, AI algorithms 
may be sufficiently sophisticated to avoid this 
sort of discrimination, but this example illus-
trates both the need for human experts in clini-
cal practice and health care policy to explore the 
consequences of AI applications in these domains 
and the need to carefully specify objective func-
tions for training and evaluation.

S ta bili t y a nd S tatis tic a l 
Gua r a n tees

Medical science is an iterative process of obser-
vation and hypothesis refinement with cycles of 
experimentation, analysis, and conjecture, lead-
ing to further experiments and ultimately toward 
a level of evidence that refutes existing theories 
and supports new therapies, lifestyle recommen-
dations, or both. Analytic methods, including tra-
ditional statistical and AI algorithms, are used to 
enhance the efficiency of this scientific cycle. 
The context and consequences of decisions made 
on the basis of evidence reported in medical stud-
ies carry with them important implications for 
the health of patients.

To a large extent, the concern about prevent-
ing false positive results in conventional medical 
statistics centers on the potential clinical conse-
quences of such results. For example, patients may 
be harmed by the licensing of a drug that has no 
benefit and may have adverse effects. In genetic 
analyses, falsely concluding that a chromosomal 
segment or a genetic variant is associated with a 

Table 1. Similarities and Differences between Artificial Intelligence and Conventional Statistics.

Feature Artificial Intelligence Methods Conventional Statistical Methods

Prior hypotheses Agnostic or very general Specific; often categorized as primary, secondary, and 
exploratory

Techniques (examples) Random forests, neural networks, XGBoost Parametric and nonparametric comparisons between 
groups; regression and survival models with linear 
predictors

Stability (end-to-end) Analyses are more prone to instability and variability 
as a result of application domains (e.g., multimod-
al data integration) and user choices in algorithm 
specification (e.g., architecture in deep learning)

Stable analyses that follow prespecification of a sta-
tistical analysis plan with minimal available user-
defined choices in model specification

Applications Analysis of images, outputs from monitors, massive 
data sets (e.g., electronic health records, natural 
language processing)

Data with a smaller number of predictors, tabular 
data, randomized trials

Purpose Pattern discovery; automatic feature representation; 
feature reduction to a smaller, more manageable 
set; prediction models

Statistical inference and testing of specific factors for 
departure from a null hypothesis, control of con-
founding and ascertainment bias, quantification of 
uncertainty

Reproducibility Often internal (i.e., performed with original data set); 
cross-validation or split samples

Ideally external (i.e., performed with “new” data); for-
mal tests of significance against null hypotheses

Barriers Increasingly, use of proprietary algorithms not avail-
able to other researchers; lack of clarity in reporting

Slow progress in sharing of primary data to allow oth-
ers to check or extend results

Interpretability Often black-box; automatic algorithmic feature engi-
neering introduces opaqueness

Explicit features, clear number of free parameters and 
degrees of freedom

Equity Data-driven feature learning susceptible to biases pres-
ent in data, compounding health inequities

Less flexible, more explicit (interpretable) models, 
which are more easily checked for equity if relevant 
data are available
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disease can lead to much wasted effort attempt-
ing to understand the causal association. For this 
reason, the field has insisted on high LOD (loga-
rithm of the odds) scores for linkage and very 
small P values for an association in genomewide 
studies as evidence that the association is a priori 
likely to represent a true positive result. In con-
trast, if data are being analyzed to decide wheth-
er one should be shown a particular advertise-
ment on a browser, even a small improvement in 
random assignment is an improvement, and a 
mistake imposes a financial penalty only on the 
advertiser.

This difference between statistical analysis in 
medicine and AI analysis has consequences for 
the potential of AI to affect medical science, 
since most AI methods are designed outside of 
medicine and have evolved to improve perfor-
mance in nonmedical domains (e.g., image clas-
sification of house numbers for mapping soft-
ware56). In medical science, the stakes are 
higher, either because the conclusions may be 
used in the clinic or, at a minimum, false posi-
tive results will drain scientific resources and 
distract scientists. Trust in the robustness and 
stability of analyses and reporting is vital in or-
der for the medical science community to pro-
ceed efficiently and safely. Stability refers to the 
end-to-end variability in the analysis, by persons 
skilled in the art of analysis, from project con-
ception to end-user reporting or deployment. AI-
enabled studies are increasing in complexity with 
the integration of multiple data techniques and 
data fusion. Thus, assessment of the end-to-end 
stability of the analysis that includes data engineer-
ing, as well as model choice, becomes vital.57,58

Methods that provide statistical guarantees 
for AI findings, such as in subgroup analysis in 
randomized trials59 or observational studies,60 can 
help. In the emerging area of machine learning 
operations, which combines machine learning, 
software development, and information technol-
ogy operations, particular attention is paid to the 
importance of data engineering in the AI devel-
opment cycle61 and the problem of “garbage in, 
garbage out,” which can affect automated ma-
chine learning in the absence of careful human 
intervention.

There are many examples of data analysis in 
medical science in which we undertake an “ag-
nostic” analysis because a specific hypothesis 
does not exist, or if it does, it is global (e.g., some 

genetic variants among the very large number 
being tested are associated with the disease of 
interest). This obviously leads to a substantial 
multiplicity problem. Multiplicity can be controlled 
by using standard approaches such as the Bon-
ferroni correction or explicitly using a Bayesian 
prior specification on hypotheses, but new AI ap-
proaches to graphical procedures for controlling 
multiplicity are being developed.62 Another stan-
dard approach is to validate findings in an inde-
pendent data set on the basis of whether the AI 
predictions are reproduced. Where such indepen-
dent validation is not possible, we must resort 
to mimicking this approach by using in-sample 
partitioning. Dividing the data into two sets, one 
for discovery and one for validation, can provide 
statistical guarantees on discovery findings.63 
More generally, multiple splits with the use of 
cross-validation can estimate future predictive 
risk,64 although statistical uncertainty in the pre-
dictive risk estimate is harder to assess. Emerg-
ing techniques in conformal inference look prom-
ising for quantifying uncertainty in prediction 
settings.65

S tatis tic a l Sense a nd the A rt  
of S tatis tics

Much of the art of applied statistics and the 
skills of a trained statistician or epidemiologist 
involve factors that lie outside the data and, 
hence, cannot be captured by data-driven AI algo-
rithms alone. These factors include careful design 
of experiments, an understanding of the research 
question and study objectives, and tailoring of 
models to the research question in the context 
of an existing knowledge base, with ascertainment 
and selection bias accounted for and a healthy 
suspicion of results that look too good to be true, 
followed by careful model checking. Bringing 
these skills to bear on AI-enabled studies through 
“human-in-the-loop” development (in which AI 
supports and assists expert human judgment) will 
enhance the effect and uptake of AI methods and 
highlight methodologic and theoretical gaps to 
be addressed for the benefit of medical science. 
AI has much to bring to medical science. Statis-
ticians should embrace AI, and in response, the 
field of AI will benefit from increased statistical 
thinking.

Disclosure forms provided by the authors are available with 
the full text of this article at NEJM.org.

The New England Journal of Medicine 
Downloaded from nejm.org at PENN STATE UNIVERSITY on October 5, 2023. For personal use only. No other uses without permission. 

 Copyright © 2023 Massachusetts Medical Society. All rights reserved. 



n engl j med 389;13  nejm.org  September 28, 20231218

T h e  n e w  e ngl a nd  j o u r na l  o f  m e dic i n e

References
1.	 Gorroochurn P. Classic topics on the 
history of modern mathematical statis-
tics: from Laplace to more recent times. 
Medford, MA:​ Wiley, 2016.
2.	 Wasserman L. All of statistics. New 
York:​ Springer, 2013.
3.	 Looking back on the millennium in 
medicine. N Engl J Med 2000;​342:​42-9.
4.	 Rajkomar A, Dean J, Kohane I. Ma-
chine learning in medicine. N Engl J Med 
2019;​380:​1347-58.
5.	 Topol EJ. High-performance medi-
cine: the convergence of human and arti-
ficial intelligence. Nat Med 2019;​25:​44-56.
6.	 Rajpurkar P, Chen E, Banerjee O, 
Topol EJ. AI in health and medicine. Nat 
Med 2022;​28:​31-8.
7.	 Parikh RB, Obermeyer Z, Navathe AS. 
Regulation of predictive analytics in med-
icine. Science 2019;​363:​810-2.
8.	 He J, Baxter SL, Xu J, Xu J, Zhou X, 
Zhang K. The practical implementation of 
artificial intelligence technologies in med-
icine. Nat Med 2019;​25:​30-6.
9.	 Bengio Y, Courville A, Vincent P. 
Representation learning: a review and 
new perspectives. IEEE Trans Pattern Anal 
Mach Intell 2013;​35:​1798-828.
10.	 Schölkopf B, Locatello F, Bauer S, et 
al. Toward causal representation learn-
ing. Proc IEEE 2021;​109:​612-34.
11.	 Choi E, Bahadori MT, Searles E, et al. 
Multi-layer representation learning for 
medical concepts. In:​ Proceedings and 
abstracts of the 22nd ACM SIGKDD Inter-
national Conference on Knowledge Dis-
covery and Data Mining, August 13–17, 
2016. San Francisco:​ Special Interest Group 
on Knowledge Discovery and Data Mining, 
2016.
12.	 LeCun Y, Bengio Y, Hinton G. Deep 
learning. Nature 2015;​521:​436-44.
13.	 Goodfellow I, Bengio Y, Courville A. 
Deep learning. Cambridge, MA:​ MIT press, 
2016.
14.	 Kelly CJ, Karthikesalingam A, Suley-
man M, Corrado G, King D. Key chal-
lenges for delivering clinical impact with 
artificial intelligence. BMC Med 2019;​17:​
195.
15.	 Vollmer S, Mateen BA, Bohner G, et 
al. Machine learning and artificial intel-
ligence research for patient benefit: 20 
critical questions on transparency, repli-
cability, ethics, and effectiveness. BMJ 2020;​
368:​l6927.
16.	 Lee P, Bubeck S, Petro J. Benefits, lim-
its, and risks of GPT-4 as an AI chatbot for 
medicine. N Engl J Med 2023;​388:​1233-9.
17.	 Agrawal A, Gans J, Goldfarb A. Pre-
diction machines: the simple economics 
of artificial intelligence. Cambridge, MA:​ 
Harvard Business Press, 2018.
18.	Goldstein BA, Navar AM, Carter RE. 
Moving beyond regression techniques in 
cardiovascular risk prediction: applying 
machine learning to address analytic 
challenges. Eur Heart J 2017;​38:​1805-14.

19.	 Bzdok D, Engemann D, Thirion B. In-
ference and prediction diverge in biomed-
icine. Patterns (N Y) 2020;​1:​100119.
20.	Cox DR. Statistical modeling: the two 
cultures. Stat Sci 2001;​16:​216-8.
21.	 Bzdok D, Ioannidis JPA. Exploration, 
inference, and prediction in neuroscience 
and biomedicine. Trends Neurosci 2019;​
42:​251-62.
22.	Wynants L, Van Calster B, Collins GS, 
et al. Prediction models for diagnosis and 
prognosis of covid-19: systematic review 
and critical appraisal. BMJ 2020;​369:​m1328.
23.	 Rossman H, Segal E. Nowcasting the 
spread of SARS-CoV-2. Nat Microbiol 2022;​
7:​16-7.
24.	Oren O, Gersh BJ, Bhatt DL. Artificial 
intelligence in medical imaging: switch-
ing from radiographic pathological data 
to clinically meaningful endpoints. Lancet 
Digit Health 2020;​2(9):​e486-e488.
25.	 Collins GS, Moons KGM. Reporting 
of artificial intelligence prediction mod-
els. Lancet 2019;​393:​1577-9.
26.	 Sammut S-J, Crispin-Ortuzar M, Chin 
S-F, et al. Multi-omic machine learning 
predictor of breast cancer therapy response. 
Nature 2022;​601:​623-9.
27.	 Rubin DB. Bayesian inference for 
causal effects: the role of randomization. 
Ann Stat 1978;​6:​34-58.
28.	Gelman A, Carlin JB, Stern HS, Rubin 
DB. Bayesian data analysis. New York:​ 
Taylor and Francis, 2014.
29.	 Fong E, Holmes C, Walker SG. Mar-
tingale posterior distributions. November 
22, 2021 (https://doi​.org/​10​.48550/​arXiv 
​.2103​.15671). preprint.
30.	 Peters J, Janzing D, Schölkopf B. Ele-
ments of causal inference: foundations 
and learning algorithms. Cambridge, MA:​ 
MIT Press, 2017.
31.	 Van der Laan MJ, Rose S. Targeted 
learning: causal inference for observational 
and experimental data. New York:​ Springer, 
2011.
32.	Blakely T, Lynch J, Simons K, Bentley 
R, Rose S. Reflection on modern meth-
ods: when worlds collide-prediction, ma-
chine learning and causal inference. Int J 
Epidemiol 2021;​49:​2058-64.
33.	 Sanchez P, Voisey JP, Xia T, Watson 
HI, O’Neil AQ, Tsaftaris SA. Causal ma-
chine learning for healthcare and preci-
sion medicine. R Soc Open Sci 2022;​9:​
220638.
34.	Castro DC, Walker I, Glocker B. Cau-
sality matters in medical imaging. Nat 
Commun 2020;​11:​3673.
35.	 Richens JG, Lee CM, Johri S. Improv-
ing the accuracy of medical diagnosis 
with causal machine learning. Nat Com-
mun 2020;​11:​3923.
36.	Clivio O, Falck F, Lehmann B, Deligi-
annidis G, Holmes C. Neural score match-
ing for high-dimensional causal inference. 
Presented at the 25th International Con-
ference on Artificial Intelligence and Sta-

tistics, virtual, March 28–30, 2022. poster 
(https://virtual​.aistats​.org/​virtual/​2022/​
poster/​3447).
37.	 McKinney SM, Sieniek M, Godbole V, 
et al. International evaluation of an AI sys-
tem for breast cancer screening. Nature 
2020;​577:​89-94.
38.	Haibe-Kains B, Adam GA, Hosny A, 
et al. Transparency and reproducibility 
in artificial intelligence. Nature 2020;​
586(7829):​E14-E16.
39.	 Breiman L. Random forests. Mach 
Learn 2021;​45:​5-32.
40.	Chipman HA, George EI, McCulloch 
RE. BART: Bayesian additive regression 
trees. Ann Appl Stat 2010;​4:​266-98.
41.	 Chen T, Guestrin C. Xgboost: a scal-
able tree boosting system. In:​ Proceed-
ings and abstracts of the 22nd ACM  
SIGKDD International Conference on 
Knowledge Discovery and Data Mining, 
August 13–17, 2016. San Francisco:​ Spe-
cial Interest Group on Knowledge Discov-
ery and Data Mining, 2016.
42.	Tibshirani R. Regression shrinkage 
and selection via the lasso. J R Stat Soc 
Series B Stat Methodol 1996;​58:​267-88.
43.	 Harrington D, D’Agostino RB Sr, Gat-
sonis C, et al. New guidelines for statisti-
cal reporting in the Journal. N Engl J Med 
2019;​381:​285-6.
44.	Sounderajah V, Ashrafian H, Aggar-
wal R, et al. Developing specific report-
ing guidelines for diagnostic accuracy 
studies assessing AI interventions: the 
STARD-AI Steering Group. Nat Med 2020;​
26:​807-8.
45.	 CONSORT-AI and SPIRIT-AI Steering 
Group. Reporting guidelines for clinical 
trials evaluating artificial intelligence in-
terventions are needed. Nat Med 2019;​25:​
1467-8.
46.	Norgeot B, Quer G, Beaulieu-Jones 
BK, et al. Minimum information about 
clinical artificial intelligence modeling: 
the MI-CLAIM checklist. Nat Med 2020;​
26:​1320-4.
47.	 DECIDE-AI Steering Group. DECIDE-AI: 
new reporting guidelines to bridge the 
development-to-implementation gap in 
clinical artificial intelligence. Nat Med 
2021;​27:​186-7.
48.	Nagendran M, Chen Y, Lovejoy CA, et 
al. Artificial intelligence versus clinicians: 
systematic review of design, reporting 
standards, and claims of deep learning 
studies. BMJ 2020;​368:​m689.
49.	 Seyyed-Kalantari L, Zhang H, McDer-
mott MBA, Chen IY, Ghassemi M. Under-
diagnosis bias of artificial intelligence 
algorithms applied to chest radiographs 
in under-served patient populations. Nat 
Med 2021;​27:​2176-82.
50.	 Parikh RB, Teeple S, Navathe AS. Ad-
dressing bias in artificial intelligence in 
health care. JAMA 2019;​322:​2377-8.
51.	 Mehrabi N, Morstatter F, Saxena N, 
Lerman K, Galstyan A. A survey on bias 

The New England Journal of Medicine 
Downloaded from nejm.org at PENN STATE UNIVERSITY on October 5, 2023. For personal use only. No other uses without permission. 

 Copyright © 2023 Massachusetts Medical Society. All rights reserved. 



n engl j med 389;13  nejm.org  September 28, 2023 1219

Where Medical Statistics Meets AI

and fairness in machine learning. ACM 
Comput Surv 2021;​54:​1-35.
52.	Chen IY, Pierson E, Rose S, Joshi S, 
Ferryman K, Ghassemi M. Ethical ma-
chine learning in healthcare. Annu Rev 
Biomed Data Sci 2021;​4:​123-44.
53.	 Tjoa E, Guan C. A survey on explain-
able artificial intelligence (xai): Toward 
medical xai. IEEE Trans Neural Netw 
Learn Syst 2021;​32:​4793-813.
54.	Rudin C. Stop explaining black box 
machine learning models for high stakes 
decisions and use interpretable models 
instead. Nat Mach Intell 2019;​1:​206-15.
55.	 Obermeyer Z, Powers B, Vogeli C, 
Mullainathan S. Dissecting racial bias 
in an algorithm used to manage the 
health of populations. Science 2019;​366:​
447-53.
56.	 Deng L. The MNIST database of hand-
written digit images for machine learning 

research. IEEE Signal Process Mag 2012;​
29:​141-2.
57.	 Yu B, Kumbier K. Veridical data sci-
ence. Proc Natl Acad Sci U S A 2020;​117:​
3920-9.
58.	Gelman A, Loken E. The statistical 
crisis in science: data-dependent analysis 
— a “garden of forking paths” — ex-
plains why many statistically significant 
comparisons don’t hold up. Am Sci 2014;​
102:​460 (https://www​.americanscientist​ 
.org/​article/​the​-statistical​-crisis​-in​
-science).
59.	 Watson JA, Holmes CC. Machine 
learning analysis plans for randomised 
controlled trials: detecting treatment ef-
fect heterogeneity with strict control of 
type I error. Trials 2020;​21:​156.
60.	Nie X, Wager S. Quasi-oracle estima-
tion of heterogeneous treatment effects. 
Biometrika 2021;​108:​299-319.

61.	 Treveil M, Omont N, Stenac C, et al. In-
troducing MLOps. Newton, MA:​ O’Reilly, 
2020.
62.	Zhan T, Hartford A, Kang J, Offen W. 
Optimizing graphical procedures for mul-
tiplicity control in a confirmatory clinical 
trial via deep learning. Stat Biopharm Res 
2022;​14:​92-102.
63.	 Cox DR. Some problems connected 
with statistical inference. Ann Math Stat 
1958;​29:​357-72.
64.	Stone M. Cross-validatory choice and 
assessment of statistical predictions. J R 
Stat Soc Series B Stat Methodol 1974;​36:​
111-47.
65.	 Lei J, G’Sell M, Rinaldo A, Tibshirani 
RJ, Wasserman L. Distribution-free pre-
dictive inference for regression. J Am Stat 
Assoc 2018;​113:​1094-111.
Copyright © 2023 Massachusetts Medical Society.

The New England Journal of Medicine 
Downloaded from nejm.org at PENN STATE UNIVERSITY on October 5, 2023. For personal use only. No other uses without permission. 

 Copyright © 2023 Massachusetts Medical Society. All rights reserved. 


