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The problem and the solution

• Goal: Bayesian posterior inference for multiscale posteriors

• Measure of curvature: Spectrum (eigenvalues) of Hessian (2nd derivative
matrix) of log posterior density

• Multiscale: Spectrum varies with parameters

– Examples: hierarchical prior for varying effects, stochastic volatility models,
ODEs of varying stiffness w.r.t. parameters, etc.

• Problem:

– 0th order (Gibbs, RWM) and 1st order (MALA, HMC, NUTS) methods fail.

– 2nd order (Riemannian HMC) too expensive in high dimensions.

• Solution: multiscale integrator (generalized HMC with delayed rejection)
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Bayesian quantities of interest are expectations

• Posterior p(θ | y)∝ p(y | θ) ·p(θ) with data y and parameters θ ∈ RD.

• Parameter estimate minimizing expected square error:

θ̂ = E[θ | y] =
∫
RD θ ·p(θ | y)dθ

• Event probability for event A ⊆ RD:

Pr[A | y] = E[I(θ ∈ A) | y] =
∫
RD I(θ ∈ A) ·p(θ | y)dθ

• Posterior predictive density for new data ỹ:

p(ỹ | y) = E
[
p(ỹ | θ) | y

]
=
∫
RD p(ỹ | θ) ·p(θ | y)dθ
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Monte Carlo method (Fermi, Ulam 1930s–1940s)

• Given a Bayesian posterior density p(θ | y), with support for parameters
θ ∈ RD and data y, draw a sample

θ(1), . . . θ(M) ∼ p(θ | y)

• to evaluate posterior expectations of functions f

E[f (θ) | y] =
∫
RD f (θ) ·p(θ | y)dθ

= limM→∞
1
M
∑M
m=1 f

(
θ(m)

)
≈ 1
M
∑M
m=1 f

(
θ(m)

)
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Markov chain Monte Carlo (Metropolis et al. 1950)

• Usually impossible to draw an independent sample from a target density.

• Instead, set up a Markov chain where the stationary distribution is the
target distribution.

• Same plug-in estimator still works with correlated draws.

• MCMC central limit theorem says estimation standard error is sd√
ESS

, where

– sd is the posterior standard deviation of the estimand,

– and ESS is the effective sample size of the sample (as measured in indepen-
dent draws).

– With HMC, effective sample size can exceed sample size
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Hessians are second derivatives

• Given a posterior density p(θ | y), its Hessian is the matrix of second
(partial) derivatives,

H(θ) = ∇θ∇>θ p(θ | y).

with entries

Hi,j(θ) =
∂2

∂θi ∂θj
p(θ | y).

• If p(θ | y) = normal(θ | µ,Σ) with positive definite covariance Σ, then the
Hessian is the negative inverse covariance (i.e., negative precision),

H(θ) = −Σ−1.

• Σ = diag([σ21 · · ·σ2D]) is diagonal, then its Hessian is diag([σ−21 · · ·σ−2D ])
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The spectrum of eigenvalues

• If A is a D×D matrix, its eigendecomposition is

A = Q · diag(λ) ·Q−1

λ a D-vector of eigenvalues, Q a D ×D orthonormal matrix of eigenvec-
tors

• Eigenvalues are inverse squared scales in the direction of the eigenvalues
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Positive definiteness and log concavity

• A matrix is positive definite if the eigenvalues are all positive

• A density is log concave at a point if its Hessian is positive definite.

• A multivariate normal with diagonal covariance Σ = diag([σ21 · · ·σ2D]) has

– axis-aligned eigenvectors, Q = I (I is identity)

– eigenvalues λ = σ−21 , . . . ,σ−2D

• Eigenvalues are rotation invariant.

• For non-diagonal covariance, just rotate to diagonal.
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Condition numbers and iterative algorithms

• The condition of a positive definite matrix A is the ratio of largest to small-
est eigenvalue,

c = max(λ)
min(λ)

.

• To move a “unit,” gradient-based algorithms take steps proportional to
smallest scale and a number of steps equal to the condition.

• A posterior p(θ | y) has

– varying curvature if its Hessian changes for different θ, and

– varying scale if its smallest scale changes for different θ.

• Thus varying scales require varying step sizes (for gradient-based algo).
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Neal’s funnel as a proxy for hierarchical priors

• Neal’s funnel for log scale (times two) y ∈ R and varying effects x ∈ RN is

p(x,y) = normal(y | 0,3) ·
∏N
n=1 normal(xn | 0, exp(y/2)).
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Neal’s funnel has varying curvature and scale

• Here’s a plot of the (rotated) funnel and its condition number vs. scale β

• central 95% interval for constant scale β—condition worsens in tails

• Eigenvectors change orientation (biggest along β in neck, along α in mouth)2 DR-HMC for sampling multiscale distributions

Figure 1: Neal’s funnel. (Left) Natural log density of the two-dimensional funnel (Equa-
tion 27). The neck of the funnel, where β ! 0, has low volume but high density; the
mouth, where β " 0, has high volume but low density. (Right) The condition number
of the inverse Hessian as a function of the log scale parameter β, with α = 0 fixed. This
plot covers two standard deviations of β, or about 95% of the probability mass, and the
conditioning continues to get worse in the tails.

One of the most common pathologies plaguing these algorithms is the multiscale
geometry of the posterior distributions (Betancourt and Girolami, 2015; Pourzanjani
and Petzold, 2019). When the curvature of the log density varies spatially over a large
dynamic range, small HMC time steps are needed for numerical stability in the high-
curvature regions, preventing the use of the larger time steps needed for sampling in
smoother regions. This geometry arises naturally in hierarchical models that provide a
population model for a group of effects in order to support regularization and partial
pooling. However since all the contributions at the bottom of the hierarchy depend on
the common global parameter, a small change in these high level parameters can induce
large changes in the conditional density of the effects. Consequently, when the data are
sparse and inference is sensitive to the priors on these parameters, the posterior density
of these models looks like a funnel with a neck of high density but low volume smoothly
widening to a mouth of low density and high volume as the hierarchical scale increases.
We show a two-dimensional example of this distribution in Figure 1. In the right panel
of the same figure, we show the dramatic variations in condition number as the log scale
parameter varies. Sampling this distribution is challenging because the mouth and the
neck of the funnel contain equal probability mass and so any sampling algorithm needs
to be able to sample both regions.

One option for managing varying curvature is to generalize HMC from Euclidean to
Riemannian geometry. This allows the use of local curvature information the form of
the Fisher information (Girolami and Calderhead, 2011) or conditioned Hessians (Be-
tancourt, 2013). However, constructing and differentiating through higher-dimensional
positive definite matrices does not scale well to the higher dimension problems that are
common in applied statistics.

An alternative way to deal with high curvature is to approximate the Hamiltonian
flow with an implicit symplectic integrator, which is able to naturally adjust stepping in

11



Hamiltonian dynamics

• Potential energy at θ ∈RD is negative log density U(θ) = − log
(
p(θ | y)

)
.

• Kinetic energy for momentum ρ ∈ RD is V(ρ) = − log
(
normal(ρ | 0,1)

)
.

• Hamiltonian is sum H(θ) = U(θ)+V(θ)

• Leapfrog step for Hamiltonian dynamics w. discretization time ε > 0

ρt+1/2 = ρt −
ε
2
·∇U(θ)

θt+1 = θt − ε ·∇V(θ)

ρt+1 = ρt+1/2 −
ε
2
·∇U(θ)

• Precondition with pos. def. metric Σ by V(ρ) = − log
(
normal(ρ | 0,Sigma)

)
.
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Hamiltonian Monte Carlo (Duane et al. 1987)

• Input: initial position θ(0), step size ε, steps L, metric Σ, sample size M

• For each iteration m ∈ 1, . . . ,M

– (Gibbs) Resample momentum ρ ∼ normal(0,Σ)

– (Metropolis) Run leapfrog algorithm L steps from (θ(m−1),−ρ︸︷︷︸
flip

) to (θ∗,ρ∗)

– accept = uniform(0,1) <min

(
1,

exp(−H(θ∗,ρ∗))
exp(−H(θ(m−1),ρ))

)

– (θ(m),ρ(m)) = (θ∗,−ρ∗︸ ︷︷ ︸
flip

) if accept else (θ(m−1),ρ(m−1)).

• Output: sample θ(1), . . . ,θ(M)
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Generalized Hamiltonian Monte Carlo (Horowitz 1991)

• Generalized HMC: Partially resample momentum each iteration

ρ ∼ normal
(√
1−λ ·ρ(m−1), λ ·Σ

)
.

• Still (exact) Gibbs sampling

– if ρ(m−1) ∼ normal(0,Σ), then
√
1−λ ·ρ ∼ normal(0, (1−λ) ·Σ) and

ρ ∼ normal(0,Σ)

– weights balance variance (sqrt converts to scale)

• Usually take just one leapfrog iteration

– one step of HMC is identical to Metropolis-adjusted Langevin (MALA)

– but it operates on position and momentum vector
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HMC works, but generalized HMC fails

• HMC scales in dimension by making directed progress per iteration

• Hamiltonian flow keeps trajectory in region of high probability

• Leapfrog integrator is symplectic

– preserves Hamiltonian well, so high Metropolis accept rate

– it’s not an accurate ODE solver (but that’s OK)

• G-HMC reverts to random walk because of the flipped momentum

– G-HMC usually configured to use one leapfrog step (like MALA)

– required to preserve stationarity (cf. 100% refreshed in standard HMC)

– reverses momentum on failure, so need sequences of acceptances

– need large step size to move, small step sizes for acceptance
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Non-uniform acceptance fixes G-HMC (Neal 2020)

• Neal (2020) replaced the i.i.d. u(m) ∼ uniform(0,1) variate in Metropolis,

accept = uniform(0,1) <min(1, · · · )

with an identically distributed but not independent variate carving out a
sawtooth pattern

u(m) = u(m−1) +δ+ uniform(0,σ jitter)

and if u(m) 6∈ (0,1) add or subtract 2 until it is.

• Jitter is for ergodicity so that u(m) ∼ uniform(0,1) marginally (correlated)

• Acceptances cluster at sequences of small values of u(m).

• Adds tuning parameters δ,σ jitter ∈ (0,∞).
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Neal’s evaluation of non-reversible u for G-HMC
• for Bayesian neural network, 1.25 times faster than HMC!

• 16 pairs of normal variables with unit variance and 0.99 correlation, α color coded:

5 Results for Langevin updates with persistent momentum

To test whether non-reversible updating of u can improve the Langevin method with persistent mo-

mentum, I first tried sampling a multivariate Gaussian distribution consisting of 16 independent pairs

of variables having variances of 1 and correlations of 0.99 (i.e., a 32-dimensional Gaussian with block-

diagonal covariance matrix). For this test, the methods are not set up to use knowledge of this correlation

structure, mimicking problems in which the dependencies take a more complex, and unknown, form.

The high correlation within each pair and (moderately) high dimensionality limit the stepsize (η)

that can be used (while avoiding a high rejection rate). This test is therefore representative of problems

in which sampling is much more efficient when many consecutive small steps to go in the same direction,

rather than doing a random walk.

Figure 2 shows the results. The centre plots show that the run using a non-reversible update for u

(with δ = 0.03, η = 0.12/321/6 = 0.0673, and α = 0.5η = 0.954) is 2.73/1.69 ≈ 1.62 times better at

estimating the mean of the log probability density than the best run of the standard persistent Langevin

method (with η = 0.10/321/6 = 0.0561 and α = 0.4η = 0.950). The right plots show that rejections are

indeed clustered when non-reversible updates are used, which reduces random walks.
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Figure 2: Sampling from a 32-dimensional Gaussian distribution consisting of independent pairs of
correlated variables with persistent Langevin methods. The values of η used were the stepsizes shown
divided by 321/6. The values of α used were the colour-coded values on the left raised to the power η.
The autocorrelation times shown are for groups of 31 iterations. The plots on the right show the values
of u used for 500 individual Langevin updates, with the parameters that give the lowest autocorrelation
time for the log probability density, with values that led to rejection shown in red.
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(Neal 2020)
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HMC sensitive to integration time (steps × num steps)

• Standard normal, 1000 dimensions; vertical axis ESS (log scale); horizontal axis
step size (ε); columns (4, 16, 64) steps (L); top row HMC, bottom row uniformly
steps-jittered HMC; blue mean estimate, red variance; dashed line is NUTS (Stan)
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HMC & MALA fail on the funnel

• Fixed step size leads to truncated sampling with HMC (and NUTS), either

– Neck: step size too big, Hamiltonian diverges and we reject.

– Mouth: step size too small, diffusion too slow. explore.

– Result is biased estimation of quantities of interest.

• Vertical dashed lines show the left truncation (color = step size)
2 DR-HMC for sampling multiscale distributions

Figure 1: Neal’s funnel. (Left) Natural log density of the two-dimensional funnel (Equa-
tion 27). The neck of the funnel, where β ! 0, has low volume but high density; the
mouth, where β " 0, has high volume but low density. (Right) The condition number
of the inverse Hessian as a function of the log scale parameter β, with α = 0 fixed. This
plot covers two standard deviations of β, or about 95% of the probability mass, and the
conditioning continues to get worse in the tails.

One of the most common pathologies plaguing these algorithms is the multiscale
geometry of the posterior distributions (Betancourt and Girolami, 2015; Pourzanjani
and Petzold, 2019). When the curvature of the log density varies spatially over a large
dynamic range, small HMC time steps are needed for numerical stability in the high-
curvature regions, preventing the use of the larger time steps needed for sampling in
smoother regions. This geometry arises naturally in hierarchical models that provide a
population model for a group of effects in order to support regularization and partial
pooling. However since all the contributions at the bottom of the hierarchy depend on
the common global parameter, a small change in these high level parameters can induce
large changes in the conditional density of the effects. Consequently, when the data are
sparse and inference is sensitive to the priors on these parameters, the posterior density
of these models looks like a funnel with a neck of high density but low volume smoothly
widening to a mouth of low density and high volume as the hierarchical scale increases.
We show a two-dimensional example of this distribution in Figure 1. In the right panel
of the same figure, we show the dramatic variations in condition number as the log scale
parameter varies. Sampling this distribution is challenging because the mouth and the
neck of the funnel contain equal probability mass and so any sampling algorithm needs
to be able to sample both regions.

One option for managing varying curvature is to generalize HMC from Euclidean to
Riemannian geometry. This allows the use of local curvature information the form of
the Fisher information (Girolami and Calderhead, 2011) or conditioned Hessians (Be-
tancourt, 2013). However, constructing and differentiating through higher-dimensional
positive definite matrices does not scale well to the higher dimension problems that are
common in applied statistics.

An alternative way to deal with high curvature is to approximate the Hamiltonian
flow with an implicit symplectic integrator, which is able to naturally adjust stepping in
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Delayed rejection Metropolis (Mira and Green 2001)

• Within a single iteration, try again if proposal rejected.

• Require Hastings adjustment for detailed balance for trying again.

• Assume first level proposal F1 and second-level F2, and so on

• First level: accept s = F1(x) α1(x, s) =min

(
1,
p(s)
p(x)

)
.

• Second level: accept x, z: α2(x,y) =min

(
1,
p(y)
p(x)

1−α1(y ,g)
1−α1(x, s)

)
.

– where g = F1(v) is a first level “ghost proposal”

• Third level (and beyond): next page figure (paper for general recursion)
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Picture of delayed rejection

C. Modi, A. Barnett, and B. Carpenter 9

Figure 3: Sketch of states (in the augmented state space R2d) involved in delayed re-
jection HMC. In this sketch, locations are chosen purely to aid visualisation. (a) Basic
2-stage scheme with proposal maps F1 and F2, each of which is a certain number of
leapfrog steps followed by a momentum-flip, hence an involution (see Section 3). The
first map F1 generates a proposal s = F1(x), which is accepted with probability α1(x, s).
If the first proposal is rejected, the second proposal y = F2(x) is accepted with prob-
ability α2(x, s, y). The target density at the “ghost” g = F1(F2(x)) is also needed. (b)
3-stage scheme, involving a third proposal map F3 (see Section 3.1). The target density
must be evaluated at 23 = 8 states, four of which are ghosts (shown by open circles).

is volume-preserving because each of the three substeps is a shear transformation,7 and
F is an involution because Lε(q′,−p′) = (q,−p), which can be verified by reversing the
order of the substeps, so LεPLε = P and (LnεP )2 = I. In practice, ε too large leads to
instability (large H changes, hence low acceptance rates), whereas small ε is stable but
inefficient since n is large. The main point of our DR-HMC proposal will be to locally
adapt ε in a somewhat automated manner.

It is worth mentioning that while leapfrog integration (L) of Hamilton’s equations
is the most commonly used proposal in HMC, it is not the only choice. The leapfrog
integrator itself can be extended to higher orders (Creutz and Gocksch, 1989; Yoshida,
1990). Neal points out that even the O(ε)-accurate modified Euler step is valid (Neal,
2011), and recent works have proposed using other maps, such as implicit integrators
(Pourzanjani and Petzold, 2019; Brofos and Lederman, 2021) for multiscale distributions
or generalizing HMC with neural networks (Levy et al., 2017).

3 Delayed rejection for HMC
In this section, we introduce delayed rejection Hamiltonian Monte Carlo (DR-HMC).
As with standard HMC, we work with the extended state x = (q, p) to sample from the
desired distribution π̃(q), which is the marginal of π(x), the resulting Gibbs pdf (12)
over the extended state. As in Section 2.2, we use s to represent intermediate proposals

7A shear is a map of the form (q, p) !→ (q + G(p), p) or (q, p + G(q)), and it is easy to check that
the determinant of the 2d× 2d Jacobian derivative matrix is 1.
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Delayed rejection HMC (Modi, Barnett, Carpenter 2022)

• For HMC, key is to try again with reduced step size.

– earlier attempts tried to save computation by extending rejected proposal
(Sohl-Dickstein et al. 2014, Campos and Sanz-Serna 2014)

• We evaluated up to 3 levels of retries,

– with step sizes ε, ε ·λ, ε ·λ2 for λ = 1
2 , 13 , 15
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Evaluation of DR-HMC
• Neal’s funnel various dims, step sizes, step reduction ratios

• vertical axis (log scale) is cost in gradients vs. ground truth

• DR-HMC works and is also cheaper (HMC isn’t convergent here)C. Modi, A. Barnett, and B. Carpenter 19

Figure 6: Efficiency of DR-HMC for Neal’s funnel. These plots show the ratio of cost per
effective sample of the log scale β for DR-HMC and HMC when sampling Neal’s funnel
for different dimensions (d = 5, 20, 50, 100). ESS for the cost is estimated using standard
error with reference samples (26). Black points and horizontal dotted black lines show
the reference ratio (=1 for HMC with ε = 0.01). Different colors show the cost for DR-
HMC with different first step sizes ε0; smaller is better. Different shapes correspond to
different configurations (number of proposals k and reduction factor a). We show only
configurations with εmin ≤ 0.01. Error-bars are estimated by bootstrapping over chains.

sample β to ±3σ. The right panel explores a DR-HMC setup that starts with a larger
step size (e0 = 0.2), and allows multiple retries with a reduction of a = 2. This setup is
also able to sample β to ±3σ. We show the density (distribution) of acceptances for the
first, second, and third proposals, as well as rejections admitted after the three propos-
als. As we would have expected based on the right panel of Figure 4, the largest step
size is sufficient to explore the mouth of the funnel and successive proposals are rarely
made. However to explore deeper in the neck, larger step sizes are rarely accepted and
we need second and third proposals with smaller step size for acceptance. In this simple
example, we can use these cut-offs to guide the choices of hyperparameters ε0, k, and a.

Figure 6 illustrates the efficiency gain of DR-HMC over HMC for Neal’s funnel. We
show the cost per effective sample of β for funnels of dimensions d = 5, 10, 20, 100. ESSr

can be biased to the high side because it only depends on the autocorrelation length of
the chain and not that it is sampling the correct stationary distribution. Thus we use
square errors to estimate effective sample size (ESSc). This requires reference samples
from the distribution, which are simple to generate independently using a non-centered
parameterization of the funnel (Betancourt and Girolami, 2015).

23



Delayed rejection, generalized HMC (Turok et al. 2023+)

• Two great tastes that go great together.

• Swaps delayed rejection for Neal’s non-reversible uniform accept probs

• Two benefits:

– high acceptance rate needed for mixing in G-HMC

– works for multiscale distributions

• DR-G-HMC mixes faster than DR-HMC per gradient

– DR-HMC mixes as fast or faster than HMC but also handled varying scales

• Gilad Turok was an (undergrad) intern this summer with Chirag Modi.

• Edward Roualdes is working on adaptation (led to BridgeStan package!).
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DR-G-HMC evaluation

• HMC and G-HMC fail; DR-G-HMC outperforms DR-HMC (as in Neal’s evaluations)

• Results similar with constant integration time on retries (multiplying steps)

• Paper in progress as is code for Bayes-Kit (Python).
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MEADS: Adaptation for G-HMC (Hoffman, Sountsov 2022)

• Starting point is Neal’s non-reversible acceptance G-HMC

• Less wasteful than HMC/NUTS (cf. Nicholas Chopin’s “waste-free” SMC)

– vs. HMC: doesn’t reject long chain of leapfrog steps

– vs. NUTS: doesn’t go forward and backward in time and choose non-final
point on trajectory

• Easier to deploy than HMC/NUTS

– much easier to parallelize than NUTS recursion

– easier to adaptively tune (steps more granular)
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MEADS (cont.) (Hoffman, Sountsov 2022)

• Ensemble of chains for complementary chain adaptation

– cf. Goodman-Weare affine-invariant, ter Braak differential evolutionMatthew D. Ho↵man, Pavel Sountsov

diate states, we are left with an update that updates
all but one of the states (the graphical model on the
right2). We can then permute the states and repeat
the procedure to ensure that all states are updated.

Sometimes we may want to cut some connections from
the general update structure in Figure 1. In this work,
we use the “K-fold” update structure illustrated in
Figure 2, in which we break the states into K “folds”
of N states each, compute parameters based on each
fold, and share those parameters across all updates
in the neighboring fold3. We skip one fold’s update
each iteration to maintain the correct conditional inde-
pendence structure. After K iterations, we randomly
reshu✏e the states into K new folds.

This scheme has two main advantages over the denser
graphical model in Figure 1: it ensures that the pa-
rameters � are always computed based on the same
number of states N , which facilitates e�cient batch-
ing, and it ensures that no parameters are estimated
from less than N states, which might lead to undesir-
able behavior (e.g., momentum-negating rejections in
GHMC, which are worse than standing still). Its main
downside is that it skips updates for 1/K of the states
each iteration, possibly reducing utilization of parallel
resources. This can be mitigated by increasing K, at
the expense of possibly increasing the variance of the
kernel parameters �. We use K = 4 as a compromise,
which incurs at most a 25% slowdown; in Appendix A
we empirically explore the e↵ect of adjusting K.

4 ECA-FRIENDLY HEURISTICS
FOR GHMC

In this section, we derive ECA-compatible heuristics
for automatically tuning parameters of GHMC: a diag-
onal preconditioning matrix, a step size ✏, a damping
coe�cient ↵, and a slice-drift coe�cient �. Putting
these pieces together yields Algorithm 3, which we
call Maximum-Eigenvalue Adaptation of Damping and
Step-size (MEADS).

4.1 Diagonal preconditioning

(G)HMC algorithms can benefit from preconditioning,
and one common practice is to scale each dimension
by the inverse of an estimate of the posterior stan-
dard deviation in that dimension (e.g.; Carpenter

2This graphical model resembles that of inverse autore-
gressive flows (Kingma et al., 2016), which are also de-
signed to permit e�cient parallel sampling.

3Leimkuhler et al. (2018) consider a related scheme, up-
dating only one fold at a time conditioned on all other folds,
which reduces the number of states that can be updated in
parallel by a factor of K � 1.

θ1,2,3,4

t=0 t=1 t=2 t=3 t=4

θ5,6,7,8

θ9,10,11,12

θ13,14,15,16

Figure 2: Graphical model illustrating K-fold ECA.
The states are split into K folds of N states each,
and each fold k is updated using parameters computed
from its neighbor fold k + 1 mod K. Each iteration
we skip the update for a di↵erent fold. Solid black
lines denote MCMC updates, dashed blue lines denote
dependence through kernel parameters, dashed gray
lines denote skipping an update.

et al., 2017; Langmore et al., 2021). This can be im-
plemented by giving the leapfrog integrator a vector
of per-dimension step sizes scaled by that dimension’s
standard deviation (Neal, 2011). In MEADS, we sim-
ply compute an estimate �̂d of the marginal standard
deviations �d from each fold’s states and multiply the
neighboring fold’s step size accordingly.

In the following sections, we use the transformed
variables and gradients ✓̄d , ✓d/�̂d and ḡd ,
r✓̂d

log p(✓) = r✓d
log p(✓)�̂d to compute step-size and

damping parameters. This yields parameters that are
properly adapted to the transformed dynamics.

4.2 Step size

When applied to quadratic potential functions 1
2✓

>H✓
(corresponding to multivariate-Gaussian target distri-
butions with covariance H�1), the stability of the
leapfrog integrator requires that the step size ✏ and
largest eigenvalue �max of H satisfy ✏  2p

�max

(Leimkuhler and Reich, 2004). More generally, the ac-
curacy of uncorrected underdamped Langevin MCMC
likewise depends on keeping the step size inversely pro-
portional to the square root of the largest eigenvalue of
the negative Hessian of the log-density (Dalalyan and
Riou-Durand, 2020). This suggests trying to set

✏ := 1
2

1p
�max(�H̄)

; H̄ ,
R
✓
p(✓)r2 log p(✓)d✓,

where �max(A) is defined as the largest eigenvalue of A.
We use the average Hessian H̄, since we will estimate
�max from states that may be far from the states we
are updating. The 1

2 is there to give us some margin
of error; in Appendix A we show that MEADS is not
very sensitive to this factor.

Fortunately, we can estimate �max from gradients

• Heuristic eigenvalue estimator for step size

– ε =
1

2 ·
√
λmax(−H)

, where λmax is max eigenvalue operator

– H = E[H(Θ) | y] = E[∇∇> logp(Θ | y)], estimated with empirical average
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Summary and Conclusions

• delayed rejection HMC enables multiscale sampling (Modi et al.)

• one-step generalized HMC can be tuned to be as efficient as HMC with
non-reversible acceptance (Neal)

• delayed rejection works as well as non-reversible acceptance and enables
multiscale sampling (Turok et al.)

• ensemble methods and eigenvalue step size estimate allow automatic
tuning of one-step G-HMC (Hoffman and Sountsov)

• same adaptation works for DR-G-HMC (Roualdes et al.)
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Dramatis Personae
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