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The problem and the solution

- Goal: Bayesian posterior inference for multiscale posteriors

- Measure of curvature: Spectrum (eigenvalues) of Hessian (2nd derivative
matrix) of log posterior density
- Multiscale: Spectrum varies with parameters
- Examples: hierarchical prior for varying effects, stochastic volatility models,
ODEs of varying stiffness w.r.t. parameters, etc.
Problem:
- Oth order (Gibbs, RWM) and 1st order (MALA, HMC, NUTS) methods fail.

- 2nd order (Riemannian HMC) too expensive in high dimensions.

- Solution: multiscale integrator (generalized HMC with delayed rejection)



Bayesian quantities of interest are expectations

- Posterior p(0 | y) < p(y | 0) - p(0) with data y and parameters 0 € RP.

- Parameter estimate minimizing expected square error:

0=TE[0]|yl=ro0-pO]y)do

- Event probability for event A ¢ RP:

PrlA|y]=E[I(0 € A) | y] = [rp (0 € A) - p(0 | y)dO

- Posterior predictive density for new data y:

p(F1y)=E[pH10)|y]l=|gop(16)-p@O]y) do



Monte Carlo method (Fermi, Ulam 1930s-1940s)

- Given a Bayesian posterior density p(60 | y), with support for parameters
0 € RP and data y, draw a sample

OM,...0M ~p|y)

- to evaluate posterior expectations of functions f
E[f(0) | yl1 = Jgp f(0) - p(0 | y)dO
= limp/— % M f (9(m))
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Markov chain Monte Carlo (Metropolis et al. 1950)

Usually impossible to draw an independent sample from a target density.

Instead, set up a Markov chain where the stationary distribution is the
target distribution.

- Same plug-in estimator still works with correlated draws.

MCMC central limit theorem says estimation standard error is J%, where

- sd is the posterior standard deviation of the estimand,

- and ESS is the effective sample size of the sample (as measured in indepen-
dent draws).

- With HMC, effective sample size can exceed sample size



Hessians are second derivatives

- Given a posterior density p(0 | y), its Hessian is the matrix of second
(partial) derivatives,
H(0) = Vo Vy p(0|y).

with entries )

0
H;;(0) = W

p(01y).

- If p(0 | y) =normal(0 | u,>) with positive definite covariance 3, then the
Hessian is the negative inverse covariance (i.e., negative precision),

H(9) = -3~ L.

. 3 =diag([o? - - - 05]) is diagonal, then its Hessian is diag([o7 2 - - - 0p°])



The spectrum of eigenvalues

- If Ais a D X D matrix, its eigendecomposition is
A=Q-diagd)- Q"

A a D-vector of eigenvalues, Q a D x D orthonormal matrix of eigenvec-
tors

- Eigenvalues are inverse squared scales in the direction of the eigenvalues



Positive definiteness and log concavity

- A matrix is positive definite if the eigenvalues are all positive
- A density is log concave at a point if its Hessian is positive definite.

- A multivariate normal with diagonal covariance X = diag([(rl2 ce (r,%]) has

- axis-aligned eigenvectors, Q =1 (I is identity)
- eigenvalues A = 0{2, ...,052
- Eigenvalues are rotation invariant.

- For non-diagonal covariance, just rotate to diagonal.



Condition numbers and iterative algorithms

- The condition of a positive definite matrix A is the ratio of largest to small-

est eigenvalue,
_ max(A)

~ min(A)

- To move a “unit,” gradient-based algorithms take steps proportional to
smallest scale and a number of steps equal to the condition.

- A posterior p(9 | y) has
- varying curvature if its Hessian changes for different 6, and

- varying scale if its smallest scale changes for different 6.

- Thus varying scales require varying step sizes (for gradient-based algo).



Neal’s funnel as a proxy for hierarchical priors

- Neal’s funnel for log scale (times two) y € R and varying effects x € RV is

p(x,¥) = normal(y | 0,3) - [Tn_; normal(xy | 0,exp(y/2)).

Funnel Density (log scale)

log p(y,x[1])
| K
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Neal’s funnel has varying curvature and scale

- Here’s a plot of the (rotated) funnel and its condition number vs. scale
- central 95% interval for constant scale f—condition worsens in tails

- Eigenvectors change orientation (biggest along  in neck, along o« in mouth)

20

,_.
2

10

—
o
N

&
Condition Number
=
o

,_\
o
°




Hamiltonian dynamics
- Potential energy at 0 € R” is negative log density U(0) = —log (p(@ | y)).
- Kinetic energy for momentum p € RP is V(p) = —log (normal(p | O, 1)) .
- Hamiltonian is sum H(0) = U(0) + V(0)
- Leapfrog step for Hamiltonian dynamics w. discretization time € > 0
Pt+1/2 = Pt — % - VU(9)
011 =0 —€-VV(0O)

€
Pt+1 = Pt+1/2 — 5" vU (o)

- Precondition with pos. def. metric X by V(p) = —log (normal(p | O,Sigma)) .



Hamiltonian Monte Carlo (Duane et al. 1987)

- Input: initial position 09, step size €, steps L, metric X, sample size M

- For each iterationme 1,...,M
- (Gibbs) Resample momentum p ~ normal(0, X)
- (Metropolis) Run leapfrog algorithm L steps from (8(m~1) _p) to (6%, p*)
—
flip

xp(~H(0*,p )))

- accept = uniform(0, 1) < min (1 p(—H(O™ D 1))

- (0 pmy = (9%, —p*) if accept else (M~ pm=-1))
flip

- Output: sample 0V, ... 0*)



Generalized Hamiltonian Monte Carlo (Horowitz 1991)

- Generalized HMC: Partially resample momentum each iteration
p ~ normal(\/ﬁ cpm=D A Z) .
- Still (exact) Gibbs sampling
- if p(m=1 < normal(0,), then VI — A - p ~ normal(0, (1 — A) - =) and
p ~normal(0,X)
- weights balance variance (sqrt converts to scale)

- Usually take just one leapfrog iteration
- one step of HMC is identical to Metropolis-adjusted Langevin (MALA)

- but it operates on position and momentum vector



HMC works, but generalized HMC fails

HMC scales in dimension by making directed progress per iteration
Hamiltonian flow keeps trajectory in region of high probability

Leapfrog integrator is symplectic
- preserves Hamiltonian well, so high Metropolis accept rate
- it’s not an accurate ODE solver (but that’s OK)
- G-HMC reverts to random walk because of the flipped momentum
- G-HMC usually configured to use one leapfrog step (like MALA)
- required to preserve stationarity (cf. 100% refreshed in standard HMC)
- reverses momentum on failure, so need sequences of acceptances

- need large step size to move, small step sizes for acceptance



Non-uniform acceptance fixes G-HMC (Neal 2020)

- Neal (2020) replaced the i.i.d. u™ ~ uniform(0, 1) variate in Metropolis,
accept = uniform(0,1) < min(1,---)

with an identically distributed but not independent variate carving out a
sawtooth pattern

u™ = ym-Y 4§ + uniform(0, gitter)
and if u™ & (0,1) add or subtract 2 until it is.
. Jitter is for ergodicity so that u™ ~ uniform(0, 1) marginally (correlated)
- Acceptances cluster at sequences of small values of u'™.

. Adds tuning parameters §, g3t ¢ (0, ).



Neal’s evaluation of non-reversible u for G-HMC
for Bayesian neural network, 1.25 times faster than HMC!

16 pairs of normal variables with unit variance and 0.99 correlation, « color coded:
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HMC sensitive to integration time (steps x num steps)
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- Standard normal, 1000 dimensions; vertical axis ESS (log scale); horizontal axis
step size (€); columns (4, 16, 64) steps (L); top row HMC, bottom row uniformly
steps-jittered HMC; blue mean estimate, red variance; dashed line is NUTS (Stan)




HMC & MALA fail on the funnel

Fixed step size leads to truncated sampling with HMC (and NUTS), either
- Neck: step size too big, Hamiltonian diverges and we reject.
- Mouth: step size too small, diffusion too slow. explore.
- Result is biased estimation of quantities of interest.

Vertical dashed lines show the left truncation (color = step size)
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Delayed rejection Metropolis (Mira and Green 2001)

- Within a single iteration, try again if proposal rejected.
- Require Hastings adjustment for detailed balance for trying again.
- Assume first level proposal F; and second-level F», and so on

: . . < mm)
- First level: accept s = F1(x) ¢1(x,s) =min |1, — .
p(x)

1 -« ,
- Second level: accept x — z: x2(x,y) = min (1 POy 1y g)) .

"p(x) 1-oa(x,s)

- where g = F1(v) is a first level “ghost proposal”

- Third level (and beyond): next page figure (paper for general recursion)



Picture of delayed rejection
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Delayed rejection HMC (Modi, Barnett, Carpenter 2022)

For HMC, key is to try again with reduced step size.

- earlier attempts tried to save computation by extending rejected proposal
(Sohl-Dickstein et al. 2014, Campos and Sanz-Serna 2014)

- We evaluated up to 3 levels of retries,

- with step sizes €,e - A,e - A2 for A = %, %,é



Evaluation of DR-HMC

Neal’s funnel various dims, step sizes, step reduction ratios
vertical axis (log scale) is cost in gradients vs. ground truth

DR-HMC works and is also cheaper (HMC isn’t convergent here)
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Delayed rejection, generalized HMC  (turok et al. 2023+)

- Two great tastes that go great together.

- Swaps delayed rejection for Neal’s non-reversible uniform accept probs

- Two benefits:
- high acceptance rate needed for mixing in G-HMC

- works for multiscale distributions

- DR-G-HMC mixes faster than DR-HMC per gradient

- DR-HMC mixes as fast or faster than HMC but also handled varying scales
- Gilad Turok was an (undergrad) intern this summer with Chirag Modi.

- Edward Roualdes is working on adaptation (led to BridgeStan package!).



DR-G-HMC evaluation

Comparison of Sampler Algorithms

- HMC and G-HMC fail; DR-G-HMC outperforms DR-HMC (as in Neal’s evaluations)
- Results similar with constant integration time on retries (multiplying steps)

- Paper in progress as is code for Bayes-Kit (Python).



MEADS: Adaptation for G-HMC (Hoffman, Sountsov 2022)

- Starting point is Neal’s non-reversible acceptance G-HMC

- Less wasteful than HMC/NUTS (cf. Nicholas Chopin’s “waste-free” SMC)
- vs. HMC: doesn’t reject long chain of leapfrog steps
- vs. NUTS: doesn’t go forward and backward in time and choose non-final
point on trajectory
- Easier to deploy than HMC/NUTS
- much easier to parallelize than NUTS recursion

- easier to adaptively tune (steps more granular)



MEADS (cont.) (Hoffman, Sountsov 2022)

Ensemble of chains for complementary chain adaptation
- cf. Goodman-Weare affine-invariant, ter Braak differential evolution
t=0 t=1 t=2 t=3 t=4
85670 ] ] : 3 :
13101520 33 S_ s S
Heuristic eigenvalue estimator for step size
1

€ = ———————, where A™® js max eigenvalue operator
2 - yJAMax(_F)

- H=E[H(®) | y] =E[VVTlogp(® | y)], estimated with empirical average




Summary and Conclusions

- delayed rejection HMC enables multiscale sampling (Modi et al.)

- one-step generalized HMC can be tuned to be as efficient as HMC with
non-reversible acceptance (Neal)

- delayed rejection works as well as non-reversible acceptance and enables
multiscale sampling (Turok et al.)

- ensemble methods and eigenvalue step size estimate allow automatic
tuning of one-step G-HMC (Hoffman and Sountsov)

- same adaptation works for DR-G-HMC (Roualdes et al.)
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