Softening human feedback improves classification calibration

Bob Carpenter

Center for Computational Mathematics Flatiron Institute

GPT-3 RL-HF

- · Transformer pre-trained on massive amounts of text (the "P" in "GPT")
- · Transformer retrained ("aligned") to be helpful, harmless, and truthful
- · Alignment training data is based on human feedback (HF)
 - humans rank examples, eg., $A_n > B_n$; use reinforcement learning
- Training loss for $A_n > B_n$ is log logistic difference (Bradley, Terry 1952)
 - reward $(A \mid w)$ is reward/utility of answer A given weights w

$$loss_n = -\log logit^{-1} \Big(reward(A_n \mid w) - reward(B_n \mid w) \Big)$$

Human feedback relatively inexpensive

- · 40 contractors from Upwork/ScaleAI
- · Pre-tested vs. desired answers
- 40 contractors cost ≈ US\$2M per year, cf.
 - training hardware (≈ US\$500M)
 - Al researchers (≈ US\$500K+ per year)
 - data licensing (?)
 - servers (?)
 - Conjecture: headroom for more investment

Raters are very noisy

· inter-annotator agreement only 73%

(Ouyang et al. 2022)

- · Goals conflict: helpful vs. harmless vs. truthful
 - OpenAl prioritized helpful; then filtered for harmless/truthful
- Traditional approaches to multi-annotation
 - just don't do it (single annotate)
 - majority voting
 - censor non-agreement (i.e., remove from data set)

A simple classifier example

· Suppose I simulate a Bayesian logistic regression for $X_n \in \mathbb{R}^D$

$$Y_n \sim \mathrm{bernoulli}(\alpha + \beta^\top \cdot X_n)$$
 likelihood $X_n \sim \mathrm{normal}(\mu, \Sigma)$ covariate data $\alpha, \beta_d \sim \mathrm{normal}(0, \tau)$ prior

i.e., logit
$$\Pr[Y_n = 1 \mid X_n = x_n, \alpha, \beta] = \alpha + \beta^\top \cdot X_n$$

- · How to create a "gold" standard with $y_n \in \{0, 1\}$?
 - **Best Guess**: $y_n = 1$ if $Pr[Y_n = 1 | X_n = x_n, \alpha, \beta] ≥ \frac{1}{2}$
 - **Sample**: $y_n = 1$ if uniform $(0, 1) < \Pr[Y_n = 1 \mid X_n = x_n, \alpha, \beta]$

It's Fool's Gold

- · Sampling dominates best quess (best quess biased)
- Oversampling Y_n dominates single sampling
- Weighted training is optimal; let $\phi_n = \Pr[Y_n = 1 \mid X_n = x_n, \alpha, \beta]$

$$loss_n = -\phi_n \cdot log \, logit^{-1} \left(reward(A_n \mid w) - reward(B_n \mid w) \right)$$
$$- (1 - \phi_n) \cdot log \, logit^{-1} \left(reward(B_n \mid w) - reward(A_n \mid w) \right)$$

- · Why? It provides task-driven regularization
 - calibrated means assigning probability ϕ_n to item $y_n = 1$ given x_n

Models of annotation

- No access to truth $Pr[A_n > B_n \mid X_n = x_n, \alpha, \beta]$ during training
- · Can ask multiple raters and build a model of annotation
- · e.g., Dawid and Skene (1978) model of rater accuracy and bias yields

$$Pr[A_n > B_n \mid \text{human feedback}]$$

- · Weighted training » sampling » highest probability
 - weighting training Rao-Blackwellizes sampling
 - multiple sampling → weighting as sample size increases
 - majority voting is best guess w.r.t. degenerate model

Weighted training regularizes

· Dawid-Skene model is effective

- (Raykar et al. 2010)
- jointly estimate classifier and Dawid-Skene, but not necessary
- · Effectiveness due to task-specific regularization
- e.g., if $Pr[A_n > B_n \mid \text{human rating}] = \psi_n$ and

$$\begin{aligned} \operatorname{loss}_n &= -\psi_n \cdot \operatorname{log} \operatorname{logit}^{-1} \left(\operatorname{reward}(A_n \mid w) - \operatorname{reward}(B_n \mid w) \right) \\ &- (1 - \psi_n) \cdot \operatorname{log} \operatorname{logit}^{-1} \left(\operatorname{reward}(B_n \mid w) - \operatorname{reward}(A_n \mid w) \right) \end{aligned}$$

Regularizes because **loss minimized** at $Pr[A_n > B_n \mid X_n = x, w] = \psi_n$

Some references

- Ouyang et al. 2022. Training language models to follow instructions with human feedback. OpenAl Blog.
- Cheng, C., Asi, H. and Duchi, J., 2022. How many labelers do you have? A closer look at gold-standard labels. arXiv.
- Passonneau, R.J. and Carpenter, B., 2014. The benefits of a model of annotation. TACL.
- Raykar, V.C., Yu, S., Zhao, L.H., Valadez, G.H., Florin, C., Bogoni, L. and Moy, L., 2010. Learning from crowds. JMLR.
- Bradley, R.A. and Terry, M.E., 1952. Rank analysis of incomplete block designs: I. The method of paired comparisons. Biometrika.
- Dawid, A.P. and Skene, A.M., 1979. Maximum likelihood estimation of observer error-rates using the EM algorithm. JRSS(C).