
Language models for statisticians:
from n-grams to transformers to chatbots

Bob Carpenter
Center for Computational Mathematics
Flatiron Institute

July 2023

1

What is a language model?

• Language uses a finite number of symbols called tokens

– we assume a finite token set Tok of size K

• Tokens may be letters, words, sounds, syllables, etc.

– GPT uses sequences of letters (average 1.5 tokens per English word)

• Treat language as a stochastic process

– Y = Y1,Y2, . . . for random variables Yn ∈ Tok

• Models typically autoregressive, predicting next word from previous

2

N-gram language models (Shannon 1948)

• Assume language process is order-N Markov

– tokens conditionally independent given previous N − 1 tokens

p(yk | yk−1, . . . ,y1) = p(yk | yk−1, . . . ,yk−N−1︸ ︷︷ ︸
N−1 tokens

).

• Even GPT is Markovian

– GPT-3: N = 4096 GPT-4: N = 8192 Claude: N = 100,000

– bottleneck is O(N2) attention algorithm (Claude more clever?)

– cf. a real computer is technically a finite-state machine

3

Shannon’s N-gram models

• Claude Shannon. 1948. A Mathematical Theory of Communication. Bell
System Technical Journal.

• Shannon used English letters (K = 1,2,3) and words (K = 1,2)

• What is English? How do we collect a sample?

• Shannon used books of frequencies

– letter trigrams (1939 book); word bigrams (1923 book)

• Fit and inference usually regularized MLE for efficiency

– ensures non-zero probability for any sequence

4

Shannon’s fit

• MLE probabilities from compiled tables of letters (1923), words (1939)

– or, open books at random, find current context, generate following word

• Shannon generated random examples

– Order 1, letters: OCRO HLI RGWR NMIELWIS EU LL NBNESEBYA TH EEI ALHENHTTPA
OOBTTVA NAH BRL.

– Order 3, letters: IN NO IST LAT WHEY CRATICT FROURE BIRS GROCID PONDENOME OF
DEMONSTURES OF THE REPTAGIN IS REGOACTIONA

– Order 1, words: REPRESENTING AND SPEEDILY IS AN GOOD APT OR COME CAN DIFFER-
ENT NATURAL HERE HE THE A IN CAME THE TO

– Order 2, words: THE HEAD AND IN FRONTAL ATTACK ON AN ENGLISH WRITER THAT
THE CHARACTER OF THIS POINT IS THEREFORE

5

Measuring accuracy with entropy

• Accuracy of N-gram language model pY measured with entropy (rate)

• Given a random sequence Y ∈ TokK , its entropy in bits (base 2) is

H[Y] = E
[
log2 pY (Y)

]
=

∑
y∈TokK

pY (y) · log2 pY (y).

• The entropy rate is average entropy per token, limK→∞ H[Y]/K,

• The entropy rate for N-grams is given by conditional entropy,

H[YK | YK−1, . . . ,YK−N−1] = E
[

log2 p(YK | YK−1, . . . ,YK−N−1)
]

6

Signal processing: entropy and compression

• Shannon (1948) introduced information theory to model signal compres-
sion and decompression for communication

• Assume a language model with pmf pY

• Compress y ∈ Tok∗, to dlog2 pY (y)e bits

– in practice with arithmetic coding (Witten, Neal, Cleary 1987)

7

OpenAI’s GPT-3: Published

• Training set sizes

Source Tokens

Common Crawl 410 billion
Books2 55 billion

WebText2 19 billion
Books1 12 billion

Wikipedia 3 billion

≈ 500 billion

• Number of parameters: ≈175 billion

• Context history size: 4K tokens

• Let’s turn to how it works . . .

8

Top-level architecture

• Transformer, but decoder only

• tokn: n-th input token

• xkn: value of token n at layer k

• probt : probability next token is t

• circles enclose model parameters

Decoder

position & lexical embeda

tok1:N 2 (1 : T)N

attention layer 1b1, g1

x0
1:N 2 RN⇥M

...

x1
1:N 2 RN⇥M

attention layer KbK, gK

xK�1
1:N 2 RN⇥M

logistic regressiond

xK
1:N 2 RN⇥M

prob1:T 2 DT�1

3

9

Attention architecture

• attention then feedforward neural net

• ResNet architecture: tees to add input

– ≈ hierarchical model of differences

– non-centered parameterization

• standard two-layer neural nets

– shared params for each value

• standardized for numerics

Attention layer

>

xk
1:N

attend bk+1

xk
1:N

+

yk
1:N

xk
1:N

standardize

xk
1:N + yk

1:N

>

zk
1

>

feedforward nn

· · ·

gk+1 feedforward nn

zk
N

zk
1 zk

N

+ +· · ·

uk
1

zk
1:N zk

N

uk
1

standardize

uk
1 + zk

1

standardize
· · ·

uk
N + zk

N

xk+1
1 xk+1

N

4

10

Pseudocode: GPT in 40 lines

SIZES

T: number of distinct tokens
N: size of context (history)

V: size of token embedding vectors
A: number of attention layers
K: size of keys and queries
L: width of neural network

11

DECODE(tok: int<low=1,up=T>[N], alpha: matrix(T, V),
betas: { query:matrix(K, V),

key:matrix(K, V),
value: matrix(V, V) }[A]

gammas: nn(V, L)[A],
delta: {1: vector[T],

2: matrix(T, N * V)}): simplex[T]
--
for n in 1:N:

xs[0, n] = LEX(tok[n], alpha) + POS(n)
for a in 1:A:

xs[a] = ATTEND(xs[a - 1], betas[a], gammas[a])
for n in 1:N:

xs[a, n] = FEED_FORWARD(xs[a, n], gammas[a])
y = STANDARDIZE(delta.1 + delta.2 * xs[A].flatten())
return SOFTMAX(y)

12

LEX(t: int<low=1,up=T>,
alpha: vector(V)[T]): vector(V)

--
return alpha[t]

POS(n: int<low=1,up=N>): vector(V)
--
for i in 1:V / 2:

r = n / N**(2 * i / V) // pos / max_pos^(0..2]
u[2 * i] = sin(r)
u[2 * i + 1] = cos(r)

return u

13

ATTEND(x: vector(V)[N],
beta: { query: matrix(K, V), key: matrix(K, V),

value: matrix(V, V)},
gamma: nn(V, L)): vector(V)[N]

for n in 1:N:

q[n] = beta.query * x[n]
k[n] = beta.key * x[n]
v[n] = beta.value * x[n]

for n in 1:N:
lp[1:n-1] = [q[n]’ * k[1], ..., q[n]’ * k[n-1]] / sqrt(V)
lp[n:N] = -inf
p = SOFTMAX(lp)
u[n] = SUM(n in 1:N) p[n] * v[n]
y[n] = STANDARDIZE(u[n] + x[n])

return y

14

FEED_FORWARD(x: real[R],
alpha: { 1: real[S], 2: real[S, R],

3: real[R], 4: real[R, S]): real[R]
--
u = alpha.1 + alpha.2 * x
v = GELU(u)
y = alpha.3 + alpha.4 * v
return STANDARDIZE(x + y)

GELU(v: real[R]): real[R]
return [v_i * Phi(v_i) for v_i in v]

STANDARDIZE(v: real[R]): real[R]
return (v - mean(v)) / std_dev(v)

SOFTMAX(real[R] v): simplex(R)
return exp(v) / sum(exp(v))

15

Multi-head attention

• What we have presented is single-head attention

• In practice, GPT uses multi-head attention

– J parallel attention “heads”

– keys, values, queries for each head projected from previous layer value

– value projected for each head down to size to V/J

– concatenate output of each head to produce size V value

• GPT-4 rumored to use parallel GPTs in an ensemble

16

GPT-3 sizes

• 175 billion parameters

• 96 layers

• 12,288 total value width

• 96 parallel attention heads

– 128 value width per head

17

From LLM to Chatbot

• LLM goal: predict next token on web page

• Chatbot goal is to train a model that is

– helpful: help users solve task

– honest: shouldn’t fabricate or mislead user

– harmless: shouldn’t cause physical, psychological, social, or environmental
harm

• Strategy is to align an LLM to be a Chatbot with fine tuning

– LLM acts as an informative prior

– In ML terms, LLM provides inductive bias

18

Reinforcement learning with human feedback
(RLHF)

1. Supervised fine tuning

• human raters provide desired output for sampled prompts

• fine-tune LLM with supervised learning

2. Reward model training

• human raters rank multiple outputs for sample prompts

• train a reward model

3. Reinforcement learning

• policy ranks outputs for sample prompts

• fine-tune LLM with proximal policy optimization (PPO)

19

Some caveats (OpenAI 2022)

• “This procedure aligns the behavior of GPT-3 to the stated preferences
of a specific group of people (mostly our labelers and researchers), rather
than to any broader notion of “human values”.

– cf. Cultural consensus theory provides mixture model of “values”

• “During RLHF fine-turning, we observe performance regressions com-
pared to GPT-3 on certain public NLP datasets.

– i.e., performance degrades relative to unaligned model

– partially mitigated by hierarchical modeling alternating reinforcement and
supervision

20

Loss vs. tokens, model size (OpenAI)

• Accuracy is bounded by parameter size (right)

• Accuracy is bounded by data size (left)

Larger models require fewer samples
to reach the same performance

10

8

6

4

The optimal model size grows smoothly
with the loss target and compute budget

Line color indicates

number of parameters

107 109 1011

Tokens Processed Compute (PF-days)
10-9 10-6 10-3 100

Test Loss

Compute-efficient
training stops far
short of convergence

103 109106

103 Params

109 Params

10

8

6

4

Figure 2 We show a series of language model training runs, with models ranging in size from 103 to 109

parameters (excluding embeddings).

100x Batch Size
<10x Serial Steps

>1,000,000x Model Size

Data requirements

grow relatively slowly

Optimal model size

increases very quickly

Minimum serial steps
increases negligibly

Figure 3 As more compute becomes available, we can choose how much to allocate towards training larger
models, using larger batches, and training for more steps. We illustrate this for a billion-fold increase in
compute. For optimally compute-efficient training, most of the increase should go towards increased model
size. A relatively small increase in data is needed to avoid reuse. Of the increase in data, most can be used to
increase parallelism through larger batch sizes, with only a very small increase in serial training time required.

1.2 Summary of Scaling Laws

The test loss of a Transformer trained to autoregressively model language can be predicted using a power-law
when performance is limited by only either the number of non-embedding parameters N , the dataset size D,
or the optimally allocated compute budget Cmin (see Figure 1):

1. For models with a limited number of parameters, trained to convergence on sufficiently large
datasets:

L(N) = (Nc/N)
↵N ; ↵N ⇠ 0.076, Nc ⇠ 8.8 ⇥ 1013 (non-embedding parameters) (1.1)

2. For large models trained with a limited dataset with early stopping:

L(D) = (Dc/D)
↵D ; ↵D ⇠ 0.095, Dc ⇠ 5.4 ⇥ 1013 (tokens) (1.2)

3. When training with a limited amount of compute, a sufficiently large dataset, an optimally-sized
model, and a sufficiently small batch size (making optimal3 use of compute):

L(Cmin) =
�
Cmin

c /Cmin

�↵min
C ; ↵min

C ⇠ 0.050, Cmin
c ⇠ 3.1 ⇥ 108 (PF-days) (1.3)

3We also observe an empirical power-law trend with the training compute C (Figure 1) while training at fixed batch
size, but it is the trend with Cmin that should be used to make predictions. They are related by equation (5.5).

4

Figure 4 Left: The early-stopped test loss L(N, D) varies predictably with the dataset size D and model
size N according to Equation (1.5). Right: After an initial transient period, learning curves for all model
sizes N can be fit with Equation (1.6), which is parameterized in terms of Smin, the number of steps when
training at large batch size (details in Section 5.1).

These relations hold across eight orders of magnitude in Cmin, six orders of magnitude in N , and over two
orders of magnitude in D. They depend very weakly on model shape and other Transformer hyperparameters
(depth, width, number of self-attention heads), with specific numerical values associated with the Webtext2
training set [RWC+19]. The power laws ↵N, ↵D, ↵min

C specify the degree of performance improvement
expected as we scale up N , D, or Cmin; for example, doubling the number of parameters yields a loss that
is smaller by a factor 2�↵N = 0.95. The precise numerical values of Nc, C

min
c , and Dc depend on the

vocabulary size and tokenization and hence do not have a fundamental meaning.

The critical batch size, which determines the speed/efficiency tradeoff for data parallelism ([MKAT18]), also
roughly obeys a power law in L:

Bcrit (L) =
B⇤

L1/↵B
, B⇤ ⇠ 2 · 108 tokens, ↵B ⇠ 0.21 (1.4)

Equation (1.1) and (1.2) together suggest that as we increase the model size, we should increase the dataset
size sublinearly according to D / N

↵N
↵D ⇠ N0.74. In fact, we find that there is a single equation combining

(1.1) and (1.2) that governs the simultaneous dependence on N and D and governs the degree of overfitting:

L(N, D) =

"✓
Nc

N

◆↵N
↵D

+
Dc

D

#↵D

(1.5)

with fits pictured on the left in figure 4. We conjecture that this functional form may also parameterize the
trained log-likelihood for other generative modeling tasks.

When training a given model for a finite number of parameter update steps S in the infinite data limit, after
an initial transient period, the learning curves can be accurately fit by (see the right of figure 4)

L(N, S) =

✓
Nc

N

◆↵N

+

✓
Sc

Smin(S)

◆↵S

(1.6)

where Sc ⇡ 2.1 ⇥ 103 and ↵S ⇡ 0.76, and Smin(S) is the minimum possible number of optimization steps
(parameter updates) estimated using Equation (5.4).

When training within a fixed compute budget C, but with no other constraints, Equation (1.6) leads to the
prediction that the optimal model size N , optimal batch size B, optimal number of steps S, and dataset size
D should grow as

N / C↵min
C /↵N , B / C↵min

C /↵B , S / C↵min
C /↵S , D = B · S (1.7)

with
↵min

C = 1/ (1/↵S + 1/↵B + 1/↵N) (1.8)
which closely matches the empirically optimal results N / C0.73

min , B / C0.24
min , and S / C0.03

min . As the
computational budget C increases, it should be spent primarily on larger models, without dramatic increases
in training time or dataset size (see Figure 3). This also implies that as models grow larger, they become
increasingly sample efficient. In practice, researchers typically train smaller models for longer than would

5

21

Scaling models (DeepMind)

• Accuracy determined by flops

– for given flops, there is an optimal choice of training tokens and model size

– fits held out predictions very well

Figure 2 | Training curve envelope. On the left we show all of our di�erent runs. We launched a
range of model sizes going from 70M to 10B, each for four di�erent cosine cycle lengths. From these
curves, we extracted the envelope of minimal loss per FLOP, and we used these points to estimate the
optimal model size (center) for a given compute budget and the optimal number of training tokens
(right). In green, we show projections of optimal model size and training token count based on the
number of FLOPs used to train Gopher (5.76 ⇥ 1023).

3.1. Approach 1: Fix model sizes and vary number of training tokens
In our first approach we vary the number of training steps for a fixed family of models (ranging from
70M to over 10B parameters), training each model for 4 di�erent number of training sequences.
From these runs, we are able to directly extract an estimate of the minimum loss achieved for a given
number of training FLOPs. Training details for this approach can be found in Appendix D.

For each parameter count # we train 4 di�erent models, decaying the learning rate by a factor of
10⇥ over a horizon (measured in number of training tokens) that ranges by a factor of 16⇥. Then, for
each run, we smooth and then interpolate the training loss curve. From this, we obtain a continuous
mapping from FLOP count to training loss for each run. Then, for each FLOP count, we determine
which run achieves the lowest loss. Using these interpolants, we obtain a mapping from any FLOP
count ⇠, to the most e�cient choice of model size # and number of training tokens ⇡ such that
FLOPs(#, ⇡) = ⇠.4 At 1500 logarithmically spaced FLOP values, we find which model size achieves the
lowest loss of all models along with the required number of training tokens. Finally, we fit power laws
to estimate the optimal model size and number of training tokens for any given amount of compute
(see the center and right panels of Figure 2), obtaining a relationship #=>B / ⇠0 and ⇡=>B / ⇠1. We
find that 0 = 0.50 and 1 = 0.50—as summarized in Table 2. In Section D.4, we show a head-to-head
comparison at 1021 FLOPs, using the model size recommended by our analysis and by the analysis of
Kaplan et al. (2020)—using the model size we predict has a clear advantage.

3.2. Approach 2: IsoFLOP profiles

In our second approach we vary the model size5 for a fixed set of 9 di�erent training FLOP counts6

(ranging from 6 ⇥ 1018 to 3 ⇥ 1021 FLOPs), and consider the final training loss for each point7. in
contrast with Approach 1 that considered points (#, ⇡, !) along the entire training runs. This allows
us to directly answer the question: For a given FLOP budget, what is the optimal parameter count?

4Note that all selected points are within the last 15% of training. This suggests that when training a model over ⇡ tokens,
we should pick a cosine cycle length that decays 10⇥ over approximately ⇡ tokens—see further details in Appendix B.

5In approach 2, model size varies up to 16B as opposed to approach 1 where we only used models up to 10B.
6The number of training tokens is determined by the model size and training FLOPs.
7We set the cosine schedule length to match the number of tokens, which is optimal according to the analysis presented

in Appendix B.

5

– (l) loss by model size, (c) optimal parameters, (r) optimal train tokens

22

OpenAI’s GPT-4: Unpublished

• Training set unpublished (estimated ≈5 trillion)

• Parameter set unpublished (estimated ≈2 trillion)

• Context history size: 8K or 32K tokens

• Cluster cost training: ≈US$500 million (incl. 10K+ US$15K GPUs)

• Marginal cost training: ≈US$10s of millions (hardware, power, staff)

• Open AI is now ClosedAI: “Given both the competitive landscape and the safety

implications of large-scale models like GPT-4, this report contains no further de-

tails about the architecture (including model size), hardware, training compute,

dataset construction, training method, or similar.”

23

The cat’s out of the bag

• Transformer LLM architecture published by Google (2017)

• Alignment to ChatBots published by OpenAI (2022)

– Meta (nee Facebook): LLaMA

* Open source for research (since leaked)

* Stanford CS: Alpaca fine-tuned

* Runs 2 tokens/second on iMac with 4-bit floating point

– Google: Bard

– Google and OpenAI: Copilot (code/programming API integration)

– Anthropic: Claude (100K token context) (branded as Poe for writing)

– Many smaller, less widely used alternatives

24

LLM References

1. The transformer paper:

Vaswani et al. (Google). 2017. (82K citations)
Attention is all you need. NeurIPS.

2. LLMs are highly generalizable:

Brown et al. (OpenAI). 2020. (12K citations)
Language models are few-shot learners. NeurIPS.

3. Going from GPT to ChatGPT :

Ouyang et al. (OpenAI). 2022. (1.5K citations)
Training language models to follow instructions. NeurIPS.

25

4. Original OpenAI paper on scaling:

Kaplan et al. 2020. (0.6K citations)
Scaling laws for neural language models. arXiv

5. Chinchilla paper on scaling laws for transformers:

Hoffmann et al. (DeepMind) 2022. (0.1K citations)
Training compute-optimal large language models. arXiv

6. What can GPT-4 do?

Bubeck et al. (Microsoft). 2023. (0.4K citations)
Sparks of artificial general intelligence. arXiv.

26

7. Another pseudocode I found after I did mine:

Phuong & Hutter (DeepMind). 2022. (0.02K citations)
Formal algorithms for transformers. arXiv.

8. Reproducible PyTorch case study with Colab notebook fitting Shakespeare:

Andrej Karpathy (now at OpenAI). 2023. (2.8M views)
Let’s build GPT: from scratch, in code, spelled out. YouTube!

27

