
Research and Applications

Reproducible variability: assessing investigator

discordance across 9 research teams attempting to

reproduce the same observational study

Anna Ostropolets 1, Yasser Albogami2, Mitchell Conover3, Juan M. Banda4,

William A. Baumgartner Jr 5, Clair Blacketer 3, Priyamvada Desai6, Scott L. DuVall7,8,

Stephen Fortin3, James P. Gilbert3, Asieh Golozar9, Joshua Ide10, Andrew S. Kanter1,

David M. Kern3, Chungsoo Kim 11, Lana Y.H. Lai12, Chenyu Li 13, Feifan Liu14,

Kristine E. Lynch7,8, Evan Minty15, Maria Inês Neves16, Ding Quan Ng17,

Tontel Obene18, Victor Pera19, Nicole Pratt20, Gowtham Rao3, Nadav Rappoport 21,

Ines Reinecke22, Paola Saroufim23, Azza Shoaibi3, Katherine Simon24,

Marc A. Suchard25,26, Joel N. Swerdel 3, Erica A. Voss3, James Weaver3,

Linying Zhang 1, George Hripcsak1,27, and Patrick B. Ryan1,3

1Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, New York, USA, 2Department of

Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia, 3Observational Health Data Analytics, Jans-

sen Research & Development, Titusville, New Jersey, USA, 4Department of Computer Science, Georgia State University, Atlanta,

Georgia, USA, 5Division of General Internal Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus,

Aurora, Colorado, USA, 6Research IT, Technology and Digital Solutions, Stanford Medicine, Stanford, California, USA, 7VA Salt

Lake City Health Care System, Salt Lake City, Utah, USA, 8Department of Internal Medicine, University of Utah School of Medi-

cine, Salt Lake City, Utah, USA, 9Odysseus Data Services, New York, New York, USA, 10Johnson & Johnson, Titusville, New Jer-

sey, USA, 11Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, South Korea,
12Department of Informatics, Imaging & Data Sciences, University of Manchester, Manchester, UK, 13Department of Biomedical

Informatics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA, 14Department of Population and Quantitative Health Scien-

ces, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA, 15O’Brien Institute for Public Health,

Faculty of Medicine, University of Calgary, Calgary, Canada, 16Real World Solutions, IQVIA, Durham, North Carolina, USA,
17Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, University of California, Irvine, Cali-

fornia, USA, 18Mississippi Urban Research Center, Jackson State University, Jackson, Mississippi, USA, 19Department of Medical

Informatics, Erasmus University Medical Center, Rotterdam, The Netherlands, 20Quality Use of Medicines and Pharmacy

Research Centre, University of South Australia, Adelaide, Australia, 21Department of Software and Information Systems Engineer-

ing, Ben-Gurion University of the Negev, Israel, 22Institute for Medical Informatics and Biometry, Carl Gustav Carus Faculty of

Medicine, Technische Universit€at Dresden, Dresden, Germany, 23Cleveland Institute for Computational Biology, Case Western

Reserve University, Cleveland, Ohio, USA, 24VA Tennessee Valley Health Care System, Vanderbilt University Medical Center,

Nashville, Tennessee, USA, 25Department of Biostatistics, University of California, Los Angeles, California, USA, 26Department of

Human Genetics, University of California, Los Angeles, California, USA, and 27Medical Informatics Services, New York-

Presbyterian Hospital, New York, New York, USA

Corresponding Author: Patrick B. Ryan, Epidemiology Analytics, Janssen Research & Development, 1125 Trenton Har-

bourton Road, Titusville, NJ 08560, USA; ryan@ohdsi.org

Received 25 November 2022; Revised 4 January 2023; Editorial Decision 17 January 2023; Accepted 23 January 2023

VC The Author(s) 2023. Published by Oxford University Press on behalf of the American Medical Informatics Association.

All rights reserved. For permissions, please email: journals.permissions@oup.com 1

Journal of the American Medical Informatics Association, 00(0), 2023, 1–10

https://doi.org/10.1093/jamia/ocad009

Research and Applications

D
ow

nloaded from
 https://academ

ic.oup.com
/jam

ia/advance-article/doi/10.1093/jam
ia/ocad009/7056675 by AM

IA M
em

ber Access user on 28 February 2023

https://orcid.org/0000-0002-0847-6682
https://orcid.org/0000-0003-2570-2124
https://orcid.org/0000-0003-1802-1777
https://orcid.org/0000-0001-7434-6571
https://orcid.org/0000-0002-7218-2558
https://orcid.org/0000-0001-9491-2737
https://orcid.org/0000-0002-4356-4645
https://academic.oup.com/
https://academic.oup.com/


ABSTRACT

Objective: Observational studies can impact patient care but must be robust and reproducible. Nonreproducibil-

ity is primarily caused by unclear reporting of design choices and analytic procedures. This study aimed to:

(1) assess how the study logic described in an observational study could be interpreted by independent

researchers and (2) quantify the impact of interpretations’ variability on patient characteristics.

Materials and Methods: Nine teams of highly qualified researchers reproduced a cohort from a study by Albo-

gami et al. The teams were provided the clinical codes and access to the tools to create cohort definitions such

that the only variable part was their logic choices. We executed teams’ cohort definitions against the database

and compared the number of subjects, patient overlap, and patient characteristics.

Results: On average, the teams’ interpretations fully aligned with the master implementation in 4 out of 10

inclusion criteria with at least 4 deviations per team. Cohorts’ size varied from one-third of the master cohort

size to 10 times the cohort size (2159–63 619 subjects compared to 6196 subjects). Median agreement was 9.4%

(interquartile range 15.3–16.2%). The teams’ cohorts significantly differed from the master implementation by

at least 2 baseline characteristics, and most of the teams differed by at least 5.

Conclusions: Independent research teams attempting to reproduce the study based on its free-text description

alone produce different implementations that vary in the population size and composition. Sharing analytical

code supported by a common data model and open-source tools allows reproducing a study unambiguously

thereby preserving initial design choices.

Key words: reproducibility, observational data, credibility, open science

INTRODUCTION

Observational studies conducted on electronic health record and

administrative claims data have the potential to impact decision

making, especially in cases where randomized clinical trials are not

readily available or feasible.1 However, uncertainty about the ability

of analytical methods to mitigate bias and uncertainty about internal

validity as well as nontransparency in reporting of methods and

results contribute to the concerns raised about credibility of observa-

tional evidence.2

Reproducibility of findings has been commonly viewed as a means

of improving reliability and robustness of studies thereby building

trust in their results.3 Reliable evidence should be reproducible such

that a different researcher should be able to perform the same task of

executing a given analysis on a given dataset and produce an identical

result as another researcher. In the context of retrospective analysis of

observational healthcare databases, reproducibility requires the proc-

ess to be fully specified, generally in both human-readable and

computer-executable form, such that no study implementation deci-

sions are left to the discretion of the investigator.4

There is a concern that clinical informatics may also face the

“reproducibility crisis” that has been observed across multiple scien-

tific disciplines.5,6 Previous studies have shown that reproducing

clinical studies requires involvement of the original author(s) of the

study and, even after such, a quarter of the studies were not fully

reproducible.7 In preclinical and psychological studies, less than half

of the reproduced findings had the same direction and statistical sig-

nificance.8,9 In observational database research, Wang et al4 showed

that only half of the point estimates and confidence intervals of the

reproduced studies had the same direction (were on the same side of

null) as the original implementations. These studies demonstrate

that having open data or access to the same data source was insuffi-

cient for reproducibility and that nonreproducibility was primarily

caused by unclear reporting of design choices and analytic proce-

dures. Therefore, a critical challenge in reproducibility is ambiguity

and the lack of specificity associated with natural language descrip-

tion of study design. In the absence of source code to fully repeat an

analysis and a data source that was preprocessed exactly as the origi-

nal data source, investigator-induced error may occur with the inter-

pretation and translation of natural language descriptions into a

new implementation.

Several initiatives and working groups have been established to

improve study design reporting, namely arguing for the field to

improve its prespecification of analyses through public registration

and posting of protocols and detailed reporting of methodological

design decisions in manuscripts. Similar to the templates developed

for study protocols, several templates and checklists, such as

STROBE, RECORD, ENCePP, and TRIPOD guidelines, have been

proposed for study reporting.10–14 While promising, it is unclear

whether detailed reporting by the original investigators can be con-

sumed by independent research groups and consistently interpreted

and reimplemented. Given that practices for study protocol prespe-

cification remain severely underutilized, it is also not clear to what

extent such templates will be consistently and comprehensively used

by the broader research community.5,15,16

In this work, we aimed to: (1) assess how the study design

described in an observational research study could be interpreted by

multiple teams of independent researchers and (2) quantify the

impact of the variability of replication design choices made by those

teams on patient characteristics.

Reproducing a study entails several design steps: choosing the

hypothesis; defining entities like the treatments, outcomes, and

patient characteristics as sets of codes (concept sets); defining the logic

around those concept sets to produce phenotype algorithms (cohort

definitions) that, when executed against a data source, translate into

cohorts of study subjects; statistical analyses; diagnostics and sensitiv-

ity analyses; and presentation of results. This study addressed a single

step, the definition of the logic of a phenotype algorithm while pre-

serving the other elements such as concept sets stable.

MATERIALS AND METHODS

This study included selecting a paper for replication, constructing

and executing a cohort definition from the paper together with the
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original author, having 9 teams independently implement the cohort

definition, executing their definitions on the same data source and

subsequently comparing patient selection and composition. Over-

view of the study is presented in Figure 1.

Publication for reproduction
To select the study for reproduction, we screened PubMed articles

published after 2020. We then reviewed the papers for sufficient

description of the study methods using the text in the main body, in

diagrams and attrition tables and Supplementary Materials. Another

criterion was having the same data source at our disposal for repro-

duction. We selected the article by Albogami et al17 based on the

availability of the data source used and the completeness of the

study design description in the main body of the text and Supple-

mental Materials. The study was published in 2021 and investigated

an association of glucagon-like peptide 1 receptor agonists (GLP-

1RA) and chronic lower respiratory disease (CLRD) exacerbation in

a population with type 2 diabetes mellitus (T2D) and CLRD. The

study suggested a strong negative association between GLP1-RA use

and CLRD exacerbations (hazard ratio 0.52, 95% confidence inter-

val [CI] 0.32–0.85 for inpatient CLRD admissions and incidence

rate ratio 0.70, 95% CI 0.57–0.87 for outpatient CLRD visits). The

study used sound statistical approaches to mitigate potential bias:

inverse probability of treatment weights to adjust for confounding

and a number of sensitivity analyses with different statistical meth-

ods (Bayesian additive regression trees, propensity score matching,

imputation techniques for obesity and tobacco dependence, and neg-

ative control outcomes) and design choices (using sulfonylureas as

an alternative comparator, supplementing principal position in

claims for CLRD diagnosis and using GLP1-RA drugs as an add-on

to metformin). The authors extensively described the methods in the

paper, supplied the codes for T2D and CLRD, provided a flow chart

for patient selection as well as for study timeline, inclusion and

exclusion criteria using the diagram previously suggested for

reporting.18

Conceptual definition
For the purpose of this manuscript, we focused on the target patient

cohort, which was defined in the manuscript as new users of GLP1-

RA add-on therapy aged more than 17 years with at least 1

outpatient or 2 inpatient encounters with T2D and CLRD in the

year before the index date with no prior insulin or dipeptidyl pepti-

dase 4 inhibitors exposure and no prior type 1 diabetes mellitus,

cystic fibrosis, lung cancer, pulmonary embolism, pulmonary hyper-

tension, conditions requiring chronic systemic corticosteroid therapy

within a year or pregnancy at the index date.

Master implementation
Based on the conceptual definition of the cohort, together with the

original author, we constructed a target cohort definition using the

Observational Health Data Sciences and Informatics (OHDSI) tool

ATLAS (Figure 2). ATLAS is a web-based application that allows

defining phenotypes, constructing and executing cohorts against

local data source(s), characterizing subjects in a cohort, and design-

ing and implementing various observational studies.19 The defini-

tion specified the entry event upon which a patient enters the cohort

(first GLP1-RA exposure in 2007–2017), 10 inclusion and exclusion

criteria and the exit event upon which the patient leaves the cohort

(is right-censored). Each inclusion and exclusion criterion comprised

a start and end date, a duration (for drug exposures), one or multiple

associated concept sets, a set of Boolean or temporal logic applied to

the concept set(s) and an order in which the criteria were applied.

The master implementation used a list of predefined concept sets

created in collaboration with the original author (Supplementary

Table S1).

When creating the master implementation, we also assessed the

influence of each individual criterion on patient selection when exe-

cuted against the same data source used in the original study (IBMVR

MarketScanVR Commercial database, Table 1). Several criteria, such

as not being pregnant on the index date or being older than 17, had

negligible impact on patient selection as subjects with T2D are likely

to be older and, therefore, not pregnant. The requirement of the first

GLP1-RA exposure within 365 days did not have large influence on

patient attrition because we initially chose the earliest event in the

cohort.

On the other hand, requiring a prior CLRD diagnosis, at least a

year of prior observation and add-on antidiabetic therapy had a

large impact on patient selection with only 7.8%, 55.3%, and

56.2% of subjects satisfying these criteria, respectively. Requiring

no prior insulin exposure eliminated some subjects, but the influence

Figure 1. Study design overview.

Journal of the American Medical Informatics Association, 2023, Vol. 00, No. 0 3

D
ow

nloaded from
 https://academ

ic.oup.com
/jam

ia/advance-article/doi/10.1093/jam
ia/ocad009/7056675 by AM

IA M
em

ber Access user on 28 February 2023

https://academic.oup.com/jamia/article-lookup/doi/10.1093/jamia/ocad009#supplementary-data
https://academic.oup.com/jamia/article-lookup/doi/10.1093/jamia/ocad009#supplementary-data
https://academic.oup.com/jamia/article-lookup/doi/10.1093/jamia/ocad009#supplementary-data
https://academic.oup.com/jamia/article-lookup/doi/10.1093/jamia/ocad009#supplementary-data
https://academic.oup.com/jamia/article-lookup/doi/10.1093/jamia/ocad009#supplementary-data


of this criteria was limited by the fact that we excluded GLP1-RA

and insulin combinations from the list of target drugs for selecting

the target subjects.

Study settings
Reproduction of the master cohorts was organized as a 1-day work-

shop, which was held as a part of Observational Health Data Scien-

ces and Informatics (OHDSI) 2021 Global Symposium on

September 13, 2021. OHDSI is an international multistakeholder,

interdisciplinary data network of electronic health records, adminis-

trative claims, hospital discharge data, registries, and other observa-

tional data sources that standardizes data through a common data

model (Observational Medical Outcomes Partnership Common

Data Model, OMOP CDM) and harmonizes the content of the

CDM through applying a common reference vocabulary system

(OMOP Standardized Vocabularies). OHDSI encompasses more

than 800 million patients across 30 countries.

Prior to the Symposium, we invited all OHDSI collaborators to

participate in the challenge. Fifty-four collaborators met all prereq-

uisites (familiarity with the paper, OMOP CDM, Standardized

Vocabularies, and OHDSI tools) and were divided into 9 groups

supervised by 2 workshop co-hosts (PBR and AO).

Each group had at least one informatician with extensive CDM

and ATLAS knowledge and one epidemiologist or clinical expert.

They were provided with access to an ATLAS instance with an

empty cohort definition template. The ATLAS instance was prepo-

pulated with the same predefined concept sets used in the master

implementation such that the reproducibility exercise was focused

on the logic of the cohort definitions and not on selection of the cor-

rect drug and diagnosis codes which in itself is challenging and

would introduce significant variation. Over the day, each team sepa-

rately implemented the cohort definition based on their interpreta-

tion of the paper and the Supplementary Materials. Groups could

define any number of criteria in their implementation and apply

them in any order.

Data analysis
All cohort definitions were subsequently executed on the IBMVR

MarketScanVR Commercial database (CCAE) and compared to the

master implementation of the cohort definitions created together

with the original author. For each cohort, the number of subjects

and demographic characteristics (age and sex) at index date were

extracted, along with diseases and drugs used as recorded in the

365 days prior to the index date. To assess the influence of the

design choices on patient selection, we calculated the agreement

between each cohort created by the participants and the master

cohort using the Jaccard index20 defined as the number of subjects

included in both cohorts divided by the total number of subjects in

Figure 2. Master new glucagon-like peptide 1 receptor agonists (GLP1-RA) user cohort implementation: entry and exit event and 10 inclusion and exclusion

criteria.
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either cohort. Additionally, we extracted the variables used to

describe the population in the original study and calculated the

standardized difference of means between each cohort and the mas-

ter implementation for each variable.21

RESULTS

Comparison of the master implementation and each

team’s implementations
On average, each team’s interpretation fully aligned with the master

implementation in 4 out of 10 inclusion criteria; all teams had at

least 4 criteria deviating from the master implementation. As shown

in Figure 3, all 9 teams fully reproduced 2 criteria: (1) having 365

days of prior observation; and (2) age greater than 17 years at the

index date. Two additional criteria were implemented correctly by

the majority of the 9 teams: (3) no conditions of exclusion within

365 days prior (1 of 9 teams implemented this differently), and (4)

no insulin exposure (4 of 9 teams implemented this differently).

Other criteria were less reproducible. Interpretation of the crite-

ria requiring complex logic was highly variable. As per the paper,

the subjects had to have “. . . at least one inpatient or two outpatient

encounters with T2D and CLRD, defined based on the presence of

diagnoses or medication dispensing. . .during the year before index

date.” This criterion was implemented as (1 inpatient visit with

CLRD diagnosis OR 2 outpatient visits with CLRD diagnosis OR

CLRD drug exposure and CLRD diagnosis within �365 to 0 day

prior to the index date) AND (1 T2D diagnosis within �365 to 0

day prior to the index date).

Subsequently, the teams implemented it as follows:

a. (1 inpatient visit with CLRD diagnosis OR 2 outpatient visits

with CLRD diagnosis OR CLRD drug exposure within �365 to

�1 day prior to the index date) AND (1 inpatient visit with T2D

diagnosis OR 2 outpatient visits with T2D diagnosis OR T2D

drug exposure within �365 to �1 day prior to the index date);

b. (1 inpatient visit with (CLRD diagnosis OR CLRD drug expo-

sure) OR 2 outpatient visits with (CLRD diagnosis OR CLRD

drug exposure) within �365 to �1 day prior to the index date)

AND (1 inpatient visit with (T2D diagnosis OR T2D drug expo-

sure) OR 2 outpatient visits with (T2D diagnosis OR T2D drug

exposure) within �365 to �1 day prior to the index date);

c. (1 inpatient visit with (CLRD diagnosis OR CLRD drug expo-

sure) OR 2 outpatient visits with (CLRD diagnosis OR CLRD

drug exposure) within �365 to 0 day prior to the index date)

AND (1 inpatient visit with (T2D diagnosis OR T2D drug expo-

sure) OR 2 outpatient visits with (T2D diagnosis OR T2D drug

exposure) within �365 to 0 day prior to the index date);

d. ((1 inpatient visit with (T2D drug exposure OR T2D diagnosis)

AND (CLRD drug exposure OR CRLD diagnosis)) OR (2 out-

patient visit with (T2D drug exposure OR T2D diagnosis) AND

(CLRD drug exposure OR CRLD diagnosis)) within �365 to

�1 day prior to the index date).

Here, variation in implementation stemmed from different com-

binations of timing of events, their co-occurrence, and combination

of individual subcriteria.

Similarly, the criterion of add-on therapy was implemented in 3

different ways: (a) having another antidiabetic drug on the index

date, (b) having an overlapping drug exposure that starts before the

index date and ends after the index date, and (c) having drug expo-

sure with a typical number of days of supply.

A detailed description of the deviations per each criterion is pro-

vided in Supplementary Table S2.

Influence of different choices on patient characteristics
We observed high variation in cohort size from having one-third of

the master implementation patient count to having 10 times the

cohort size (2159–63 619 subjects compared to 6196 subjects in the

master implementation). Not surprisingly, the agreement between

the master cohort and the teams’ implementations also varied

greatly (Figure 4).

Median agreement was 9.4% (interquartile range 15.3–16.2%)

and ranged between 0% in Team 5 and 35.4% in Team 8. Similarly,

Table 1. Criteria used to define master implementation and the number of subjects satisfying each individual criterion in the cohort exe-

cuted against IBMVR MarketScanVR Commercial database

Criteria

Subjects who satisfied

the criteria, n (%)

Cohort entry First glucagon-like peptide 1 receptor agonists (GLP1-RA) exposure in 2005–

2017

570 664 (100)

1 Had no GLP1-RA exposure within 365 days prior to the index date 563 245 (98.7)

2 Had at least 365 days of prior observation 315 616 (55.3)

3 Age >17 569 757 (99.9)

4 Had type 2 diabetes mellitus (T2D) within 365 days prior to the index date 430 080 (75.4)

5 Had chronic lower respiratory disorder (CLRD) within 365 days prior to or on

the index date

44 668 (7.8)

6 Had no type 1 diabetes, cystic fibrosis, lung cancer, pulmonary embolism, pulmo-

nary hypertension, thyroid carcinoma, conditions requiring corticosteroid ther-

apy within 365 days prior to the index date

488 606 (85.7)

7 Was not pregnant on the index date 565 877 (99.2)

8 Had no insulin exposure within 365 days prior to or on the index date 402 407 (70.5)

9 Had no dipeptidyl peptidase-4 (DPP4) inhibitor exposure within 365 days prior

to or on the index date

474 365 (83.2)

10 Had another T2D drug that started before the index date and ended on or after

the index date

320 658 (56.2)

All criteria 6196 (1.1)
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the teams’ implementations differed from each other greatly (median

agreement was 10.0% and interquartile range 0.0–17.5%).

Patient characteristics
The age distribution was similar across all cohorts with 45–64 years

old being the major age group (Supplementary Table S3). The

gender distribution was also similar to the master implementation

except for cohorts of teams 4 and 5 that had a lower proportion of

females (58.3% and 57.4% compared to 66.2% in master).

As shown in Figure 5, the cohort generated from each team’s

implementation differed from the master implementation by at least

2 baseline characteristics with a standardized difference of means

(SDM) >0.1, and the majority of the teams differed by at least 5

Figure 3. Number of deviations per inclusion and exclusion criteria and team.
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baseline characteristics. The difference was especially prominent for

chronic lung disease disorder, asthma, and prior metformin expo-

sure, which corresponded to the largest number of deviations in

implementing those criteria. Cohorts were generally similar in prev-

alence of conditions related to T2D such as glaucoma or

hypoglycemia.

DISCUSSION

This study demonstrates that using natural language to describe

complex study design logic produces high variability in interpreta-

tion. We showed that 9 teams of qualified investigators, given the

exact same task of reproducing a study cohort using consistent

development tools and predefined concept sets, obtained 9 different

cohort definitions with 52 deviations in total across a set of 10 inclu-

sion and exclusion criteria. In this experiment, we sought to repro-

duce demonstrated current best practices in observational studies. It

provided detailed descriptions, including following many of the rec-

ommendations in design reporting13 such as creating an attrition

diagram of sequential inclusion criteria and drawing a figure to

show covariate temporal windows.

Nevertheless, as demonstrated by the examples of T2D and

CLRD, add-on therapy and pregnancy, natural language does not

allow representing such complex logic and co-occurring events in an

unambiguous way. All eligibility criteria should be accompanied by

explicit code sets as the code set construction process itself is a

highly variable process and introduces significant variability.22 Even

if the code sets are provided, some criteria are phenotypes in their

own right and require further detailed specification. For example, as

opposed to chronic conditions like diabetes mellitus that are

believed to be lifelong and therefore could be modeled by looking

for the existence of a diagnosis any time in a patient’s medical his-

tory, pregnancy is a temporal state that has a clear start and end

date which need to be accurately specified to capture a pregnancy

episode and determine where those episode duration occur in rela-

tion to the index date. Given complexity of this task, there are

numerous standalone papers that focus on algorithms for preg-

nancy, varying from simple algorithms to more complex definitions

of separate pregnancy episodes.23–29 Merely providing codes, there-

fore, is not sufficient to fully specify an inclusion or exclusion

criteria.

Even simple concepts like age can be applied at different points

in the algorithm and can be represented as age �18 years or age

>17 years. While in these cases variations do not lead to changes in

the patient cohort, more complex criteria influence patient selection

to a great extent.

While adding graphs and figures facilitates interpretation of the

criteria, the heterogeneity in implementation by our teams suggests

Figure 4. Cohort overlap for each team’s cohort and the master implementation, number of subjects, and agreement (Jaccard index).
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that the problem rests not with the skill of the investigators but with

the process for generating and disseminating evidence itself. We

were able to compare the implementations to the master implemen-

tation due to the data source availability. Nevertheless, we still

observed differences between the patient characteristics in the mas-

ter cohort compared to the patient characteristics in the Albogami

paper, which may partly be due to the differences in the cut of

CCAE supplied to different institutions. It highlights the fact that

reproducing phenotyping logic requires knowing the underlying

data schema so the logic can be applied to the proper tables, col-

umns, and data elements. Otherwise, the step of inferring logic must

be accompanied by inferring how logic is imposed on the data ele-

ments. Having a common data model removes this inference step

and directly reproduces the logic on data that have been standar-

dized to a common format.

In the OHDSI community, analysis packages are developed to

have a consistently defined input of an observational database for-

matted into the OMOP CDM. In this exercise, by using the OHDSI

ATLAS tool, the analysis was fully specified as a cohort definition

with a defined output: a cohort table populated with all persons satis-

fying criteria for a duration of time, and summary results about the

cohort, including cohort count and attrition from each inclusion cri-

teria. The cohort definitions can be exported as analytical code,

which can be directly implemented on any data source that is mapped

to OMOP CDM without the need to interpret it and without the risk

of introducing bias while implementing the interpretation.

Figure 5. Difference in patient characteristics between the master implementation and teams’ implementations colored based on the absolute standardized differ-

ence of means (SDM). White indicates SDM<0.1.
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Free text study description can serve as a helpful guide to gain an

understanding of conceptual study design, but the analysis source

code should be considered the referent “gold standard” of truth of

what was computed.30,31 Natural language description can be gener-

ated from the code in an automated fashion. On the other hand,

code cannot be generated reliably based on the description, which

may be inconsistent, ambiguous, or missing sufficient detail in the

paper, diagrams, templates, and Supplementary Materials. Extensive

and detailed specification of study design and all parameters and ele-

ments may not be possible due to editorial constraints and word

limit or may be overwhelming for a reader. Other solutions to

improve reproducibility (such as using pseudocode or filling prespe-

cified templates and checklists) can be placed as Supplementary

Materials thus avoiding word limit and improving paper readability,

but, as demonstrated before, lack traction in the broader scientific

community.15,32

In this regard, if we truly aspire to reproducible science, we

should not hope that good documentation is sufficient and tolerate

optional sharing of code, but rather make code sharing a hard

requirement that can be complemented by free text

descriptions.33,34

There were limitations to the experiment. While the teams were

introduced to the study before the workshop and found a full day to

be sufficient to discuss and reproduce the cohorts, the activity was

limited to 8 h. Therefore, it is possible that time constraints influ-

enced study findings. To improve the generalizability and robustness

of these results, future work may involve repeating this style of

experiment with a larger number of studies over a prolonged period

of time. We ensured that all teams had at least one clinician, bioin-

formatician, and a team member who was familiar with the data

and tools, but individual level of expertise may have varied. We

selected one study as it was not feasible to have multiple teams per-

form multiple studies, but it is possible that the experience with this

study may not be generalizable to other studies.

CONCLUSIONS

Reproducibility of observational studies is currently limited by lack

of sharing of data and analysis code. Independent research teams

attempting to reproduce the same study based on its free-text

description alone may produce a range of different implementations

that deviate from the original study, and these deviations can have

material impact on the size and composition of the study popula-

tion. Sharing analytical code supported by a common data model

allows for the reproduction of a study in an unambiguous way

thereby preserving initial logic and study design choices. As reprodu-

cibility increasingly becomes an expectation for observational

research, standardized open-source tools and practices that enable

transparency and consistency should facilitate reproducible research

and build trust in the real-world evidence generation process.
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