
Estimating cetacean bycatch from non-representative
samples (I): a simulation study with regularized multilevel

regression with post-stratification

Matthieu Authier1,2,3, Etienne Rouby4, and Kelly Macleod5

1Observatoire PELAGIS, UMS 3462, CNRS-La Rochelle Université, Pôle
Analytique, allée de l’Océan, 17000 La Rochelle, France

2ADERA,162 avenue Albert Schweitzer CS 60040, 33608 Pessac Cedex, France
3mauthier@univ-lr.fr

4Centre d’Études Biologiques de Chizé, UMR 7372 CNRS-La Rochelle Université,
405 route de Prissé-la-Charrière, 79360, Villiers-en-Bois, France

5Joint Nature Conservation Committee, Inverdee House, baxter Street, Aberdeen,
Scotland

May 28, 2021



Abstract and Aims
Bycatch, the non-intentional capture or killing of non-target species in commercial or recreational
fisheries, is a world wide threat to protected, endangered or threatened species (PETS) of marine
megafauna. Obtaining accurate bycatch estimates of PETS is challenging: the only data available
may come from non-dedicated schemes, and may not be representative of the whole fisheries effort.
We investigated, with simulated data, a model-based approach for estimating PETS bycatch from
non-representative samples. We leveraged recent development in the statistical analysis of surveys,
namely regularized multilevel regression with post-stratification, to infer total bycatch under realistic
scenarios of data sampling such as under-sampling or over-sampling when PETS bycatch risk is high.
Post-stratification is a survey technique to re-align the sample with the population and addresses the
problem of non-representative samples. Post-stratification requires to sub-divide a population of inter-
est into potentially hundreds of cells corresponding to the cross-classification of important attributes.
Multilevel regression accommodate this data structure, and the statistical technique of regularization
can be used to predict for each of these hundreds of cells. We illustrated these statistical ideas by
modelling bycatch risk for each week within a year with as few as a handful of observed PETS by-
catch events. The model-based approach led to improvements, under mild assumptions, both in terms
of accuracy and precision of estimates and was more robust to non-representative samples compared
to more design-based methods currently in use. In our simulations, there was no detrimental effects
of using the model-based even when sampling was representative. Estimating PETS bycatch ideally
requires dedicated observer schemes and adequate coverage of fisheries effort. We showed how a
model-based approach combining sparse data typical of PETS bycatch and recent methodological de-
velopments can help when both dedicated observer schemes and adequate coverage are challenging
to implement.
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Introduction

Bycatch, the non-intentional capture or killing of non-target species in commercial or recreational
fisheries, is a world wide threat to protected, endangered or threatened species (PETS) of marine
megafauna (Gray & Kennelly, 2018), including seabirds (Martin et al., 2019), elasmobranchs (Pa-
coureau et al., 2021) and cetaceans (Avila et al., 2018). Bycatch in fishing gears, such as gill-
nets, is currently driving some small cetacean species to extinction (Jaramillo-Legorreta et al., 2019;
Brownell et al., 2019). The European Commission recently issued infringement procedures against
several Members States for failing to correctly transpose some provisions of European environmental
law (the Habitats Directive, Council Directive 92/43/EEC), in particular the obligations related to the
establishment of a coherent monitoring scheme of cetacean bycatch (https://ec.europa.eu/
info/news/july-infringements-package-commission-moves-against-member-states-not-respecting-eu-energy-rules-2019-jul-26_
en). The Data Collection Framework (DCF) provides a common framework in the European Union
(EU) to collect, manage, and share data within the fisheries sector (Anonymous, 2019a). The Frame-
work indicates that the Commission shall establish a Multi-Annual Union Programme (EU-MAP) for
the collection and mangement of fisheries data which should be inclusive of data that allows the as-
sessment of fisheries’ impact on marine ecosystems. With respect to PETS (including cetaceans), the
collection of high quality data usually requires a dedicated sampling scheme and methodology, and
is generally different from those applied under the DCF (Stransky & Sala, 2019): "EU MAP remains
not well suited for the dedicated monitoring of rare and protected bycatch in high-risk fisheries since
its main focus is the statistically-sound random sampling of all commercial fisheries (Ulrich & Do-
erner, 2021; page 126)". In practice, the introduction of any programme on PETS bycatch under the
DCF may be met with caution because of its perceived potential to disrupt data collection for fisheries
management (Stransky & Sala, 2019). This perception implicitly relegates PETS bycatch as a side
issue for fishery management rather than an integral part of it. It may explain the usually poor quality
of bycatch data on PETS (ICES, 2020a).

Recent EU legislation (Regulation 2019/1241), refered to as the Technical Measures Regulation
(TMR), requires Members States to collect scientific data on cetacean bycatch for the following
métiers: pelagic trawls (single and pair), bottom-set gillnets and entangling nets; and high-opening
trawls (Anonymous, 2019b). Unlike its predecessor (Council Regulation EC No. 812/2004), this
Regulation does not require the establishment of dedicated observer schemes for cetacean bycatch
data collection (Dolman et al., 2020). Furthermore, only vessels of an overall length of 15 metres
or more are to be monitored, but these represent a small fraction of the European fleet (less than
10% in 2019; https://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=
fish_fleet_alt&lang=en). This vessel length criterion introduces bias in the bycatch moni-
toring data as the sample of vessels larger than 15 metres is unlikely to be similar to smaller vessels.
Even within the sample of vessels that are monitored, pragmatic considerations can complicate sam-
pling. For example, in the United States, observer sampling trips are allocated first by region, port
and month, then randomly to vessels of particular categories within those monthly and spatial strata
(ICES, 2009). Random allocation of observers to vessels follows sound statistical methodology and
increases the likelihood of collecting unbiased data. In France, observer days are allocated by port
and by month for each fishery, but the exact vessel allocation is then negotiated and left at the discre-
tion of skippers (ICES, 2009). Allocation is no longer random as skippers may only accept observers
when cetacean bycatch risk is low (Benoît & Allard, 2009). Non-random allocation means potential
bias in the collected data for monitoring bycatch as the sub-sample of skippers accepting an observer
may be very different from skippers refusing to do so.

One pragmatic solution bypassing observers is to mandate skippers to self-declare the non-intentional
capture or killing of any PETS, as already required under the DCF (Anonymous, 2019a). In France, a
national law from 2011 mandate fisheries to declare (without fear of prosecution) the bycatch of any
cetacean species, but this law remained largely unknown to French fishermen until late 2019 (Cloâtre,
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2020). In general, self-reported PETS bycatch data are sub-optimal as they may be heavily biased,
non-representative (ICES, 2009) and typically provide poor information on which to base manage-
ment decisions (National Marine Fisheries Service, 2004). Once again, the set of skippers who choose
to declare bycatch may differ markedly from those who do not: for example the former take the extra
time required to fill logbooks and thus provide accurate data while the latter do not. If this behaviour
is correlated to other attributes, e.g. a more acute awareness of threats to PETS resulting in practices
that tend to minimize impact on PETS, data collected from skippers reporting bycatch may not be
representative. There may also be an element of skippers simply "forgetting" to log "PETS" bycatch
in the bustle of the fishing operation but this is random and unlikely to introduce bias. In addition,
ground-truthing, for example with remote-electronic monitoring (REM; Course et al., 2020), would
be required in order to ensure data quality before their statistical analyses.

Another hurdle, of the statistical kind, with cetacean bycatch is the low frequency of these events.
Assuming that implementing a representative sampling program were feasible, if bycatch is a rare
event (Komoroske & Lewison, 2015), then few events would be observed for realistic sampling ef-
fort (ICES, 2009). This paucity of observed event means a large uncertainty in statistical estimates:
with a bycatch rate of the order of 0.01 event per fishing operation, a sample size of 1, 000 bycatch
events would be required to obtain, for example, the US recommended coefficient of variation of
30% (National Marine Fisheries Service, 2005; ICES, 2009; Carretta & Moore, 2014; National Ma-
rine Fisheries Service, 2016). This is in the best case scenario (no bias, statistical independence etc.)
since, in practice, the sampling error depends on the overall design of the survey, of which the sample
size is only one factor (e.g. in pratice the sample size needed would be larger as the same vessels
would contribute fishing operations, and these would not be statistically independent). With a small
sample size, uncertainty may be so large as to prevent using estimates altogether, even if one were
to assume no bias in the data. Given this challenge and the lack of uptake of dedicated monitor-
ing programmes of cetacean bycatch in Europe over the last decade or more (Sala et al., 2019), it
would appear prudent to seek methods of analysis that can handle the few and non-representative data
available to robustly estimate bycatch rates.

The problem of having non-representative samples to carry out statistical analyses is ancient
(Hansen & Hurwitz, 1946) and widespread: it pops up in many applied disciplines, including election
forecasting (Wang et al., 2015; Kiewiet De Jonge et al., 2018), political sciences (Lax & Phillips,
2009; Zahorski, 2020), social sciences (Halsny, 2020), addiction studies (Rhem et al., 2020) or epi-
demiology (Zhang et al., 2014; Downes et al., 2018). In these disciplines, there are also intrinsic
limits on improving the representativeness of sampling. For example, in polling, non-response rates
can be above 90% (Forsberg, 2020). In other cases, some populations of interest may be hard to reach
(Rhem et al., 2020), or answers may not be honest (St. John et al., 2014). Challenges lie in the
accurate estimation of quantities of scientific interest (e.g. the true magnitude of bycatch in a fishery)
with the construction of statistical weights that can calibrate a non-representative survey sample to
the population targets. Such weights are implicit with simple random sampling where each unit in a
population has the same, non-nil, probability of being included in the sample. When inclusion prob-
abilities differ between units, weights inversely proportional to the former can be used to adjust the
sample. However, constructing survey weights is in general more elaborate than using inverse proba-
bilities of selection in the sample (Gelman, 2007). Model-based approaches, and multilevel regression
modelling with post-stratification in particular, has become an attractive alternative to weighting to
adjust non-representative samples (Gelman, 2007).

Multilevel regression modelling allows to summarize how predictions of an outcome of scientific
interest vary across statistical units defined by a set of attributes or covariates (Gelman et al., 2021
page 4): for example bycatch events are a binary outcome at the fishing operation level (a unit) asso-
ciated with attributes, such as date-time, location, gears and vessels (e.g. Palka & Rossman, 2001).
Post-stratification is a standard technique to generalize inferences from a sample to the population by
adjusting for known discrepancies between the former and the latter. The key insight of combining
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multilevel regression modelling with post-stratification is that, even if observations are not a repre-
sentative sample of the population of interest, it may be possible to construct a regression model to
first predict unobserved cases, and then post-stratify to average the fitted regression model’s predic-
tions over the population of interest (Gelman et al., 2021, page 313). Lennert et al. (1994) provided
an early example of model-based estimates of bycatch with post-stratification. Their model however
was not a multilevel regression, a technique which can handle complex data structure for better in-
ferences or predictions (Bolker et al., 2009). In particular, adequate post-stratification may require
to handle hundreds of cells (the crossing of several attributes; e.g. week by statistical area by gears).
Some predictions for each cell may be too noisy, especially if there are sparse or no data for that par-
ticular combination of attributes. Multilevel regression allows to borrow strength from similar units
to improve and stabilize (i.e. regularize) these predictions (Cam, 2012). In other words, multilevel
regression allows an efficient use of the sample to estimate the outcome of interest within each cell,
even if these cells are very numerous (e.g. several hundreds).

Technically, when data arise as signal plus noise, overfitting occurs when a regression model
captures too much of the noise compared to the signal; that is in using an ill-conditioned (unstable)
model that will provide an excellent in-sample fit but make poor out-of-sample predictions (George &
Ročková, 2021; Authier et al., 2017). Overfitting may result when using richly parametrized models
without using adequate estimation methods such as regularization to stabilize parameter estimates
and buffer them against noise (Gelman et al., 2021, pages 459-460). Weakly-informative priors in a
Bayesian framework regularize the estimation of the large number of parameters that may be present
in a multilevel model. Multilevel modelling allows to take into account complex data structures
with structured prior models for batches of parameters; the simplest example are so-called ’random
effects’ whereby a common (Gaussian) distribution centered on zero and with an unknown variance
to be estimated for data is assumed for a group of parameters; for example years or sites (Cam, 2012).
This common distribution for the parameters is a prior model, and this model for parameters means
that the latter are not independently estimated but in tandem according to the postulated prior model.
For example, Sims et al. (2008) used a model-based approach to obtain spatially smoothed estimates
of bycatch in a gillnet fishery. Spatial-smoothing (also known as ’small-area estimation’; Fay &
Herriot, 1979) was used to stabilize estimated bycatch rates by using a Conditional Autoregressive
prior model that leverages information from spatial neighbours to improve the prediction at a specific
location. Prior models add some soft constraints to the overall model and these constraints are very
useful in data sparse settings to mitigate variance and bias in predictions. In other words, these
prior models represent additional assumptions about the data, assumptions, which if approximatively
correct, add information in the analyses and increase the precision and stability of predictions at the
cost of a usually small estimation bias. Introducing bias to reduce variance is a common statistical
technique known as shrinkage or regularization (George & Ročková, 2021).

Regularized multilevel regression with post-stratification is thus the combination of several im-
portant ideas to obtain accurate predictions (Gao et al., 2019). First, post-stratification is a survey
technique to re-align the sample with the population and addresses the problem of non-representative
samples. In practice, post-stratification requires to sub-divide the population of interest into many
cells corresponding to the combination of important attributes. Multilevel regression can be used to
accommodate all these cells in a single model, but the problem has now moved to how to obtain use-
ful estimates for all these cells, which can number in the several hundreds. Regularization solves this
estimation problem: it introduces model-driven bias in statistical estimates in order to stabilize them.
These new developments in the statistical analysis of non-representative samples may help in obtain-
ing a better quantification of bycatch rates and numbers. Our aim is to assess with simulations, the
potential of regularized multilevel regression with post-stratification for analyzing already collected
bycatch data, with the full knowledge that these data are non-representative and biased in several
respects. These bias in sampling are manifold (see above): bias may be due to regulation exempting
certain vessels (e.g. no monitoring for vessels smaller than 15 metres); to non-dedicated observers
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or because sampling is driven for other purposes than bycatch monitoring of PETS (commercial dis-
cards, stock assessment); or in the case of dedicated schemes, to over-sampling a few "cooperative"
skippers or focussing sampling in métiers with the highest or lowest bycatch risk. Our focus will
be narrower, honing in on specific sampling scenarios whereby observer coverage is correlated to
bycatch risk. In other words, we will assess the potential of regularized multilevel regression with
post-stratification to estimate accurately bycatch numbers with samples preferentially collected either
during low- or high-bycatch risk periods. Our investigation is largely framed from our knowledge
on small cetacean bycatch in European waters, such as short-beaked common dolphin (Delphinus
delphis) in the Bay of Biscay (Peltier et al., 2021) or harbour porpoises (Phocoena phocoena) in the
Celtic Seas (Tregenza et al., 1997). In the remainder, we first introduce methods and notations to
detail the proposed model to perform multilevel regression with post-stratification with bycatch data.
Next, we explain our data simulation scenarios and how we emulate non-representative sampling.
We then compare the results (i.e. estimates of bycatch) from the proposed modelling approach with
those from the method currently used by the working group on bycatch of protected species from
the International Council for the Exploration of the Sea (ICES WGBYC) before concluding on some
recommendations for future investigations.
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Material and Methods
We carried out Monte Carlo simulations to assess the ability of regularized multilevel regression with
post-stratification to estimate bycatch risk and bycatch rates from representative and non-representative
samples. ICES WGBYC collate data through an annual call from dedicated and DCF surveys collect-
ing data on the bycatch of PETS through onboard observers or REM. These surveys may be qualified
as "design-based" in the sense that, ideally, a representative coverage of fisheries would be sought
in order to scale up the observed sample to the whole population using ratio-estimators. There are
many caveats around the use of these ratio-estimators as EU MAP is not well suited for monitoring
PETS bycatch (Ulrich & Doerner, 2021). Given these shortcomings in the collection of bycatch data
under EU MAP, the data available to ICES WGBYC are unlikely to be representative of fisheries
of interest but nevertheless, ratio-estimators are used as part of a Bycatch Risk Approach (BRA) to
identify relative risk of bycatch across species and metiers. Cetacean bycatch observer programmes
may aim at achieving a pre-specified precision for bycatch rates (with a coefficient of variations less
than 30%; National Marine Fisheries Service, 2005; ICES, 2009; Carretta & Moore, 2014; National
Marine Fisheries Service, 2016). Achieving this is very difficult in practice, and a given coverage
of effort deployed by the total fleet is, instead, aimed at: for example 10% (5%) for pair-trawlers
(level-3 métier PTM) larger (smaller) than 15 metres in France. Data from onboard observer pro-
grammes are then used to estimate total bycatch using ratio estimators (Lennert et al., 1994; Julian &
Beeson, 1998; Amandè et al., 2012) and the bootstrap or a classical approach (Clopper-Pearson) for
uncertainty quantification (ICES, 2018, page 57). We used an approach similar to that of WGBYC
(hereafter refered to as a "design-based" approach) as a benchmark to compare against results from
regularized multilevel regression with post-stratification. We honed in on the accurate estimation of
the number of bycatch events for a complete fleet. We assume that information on the total effort
deployed by a fleet operating in a spatial domain are available and measured without error. This as-
sumption is necessary to scale estimates from the sample to the population. We also assumed that
there are no false-negatives in the sample, that is no bycatch event went unrecorded by onboard ob-
servers (assuming thereby a dedicated observer programme). These two assumptions are customary
with ratio estimators, whether design- or model-based, and do not deviate from current norms. We
assume however that these population data on total effort can be disaggregated at a finer temporal
scale in order to post-stratify on calendar weeks. This assumption of accurate measurement of effort
at the week-level is crucial for post-stratification.

Notations
Let yijkl denotes the ith fishing operation of vessel j in week k of year l, with yijkl = 1 if a bycatch
event occurs and 0 otherwise:

yijkl ∼ Bernoulli (pijkl = logit (µ+ βkl + αj)) (1)

where pijkl is the product of the probability of a bycatch event occurring and the probability of dolphin
presence. This unconditional probability is denoted ’bycatch risk’ hereafter. Once estimated, bycatch
risk may be multiplied by the average number of animals involved in a bycatch event to recover a
bycatch rate. Bycatch risk is a function of several parameters (on a logit scale): µ is the intercept
(overall risk), αj ∼ N (0, σvessel) are (unstructured, normal random effects) vessel-effects accounting
for heterogeneity (e.g. ’fishing style’ of skippers); and βkl are cyclical time effects, modelled with a
Gaussian Process (GP()):

βl ∼ GP (ε,Ω) (2)

where ε is a mean vector of week effects and Ω = Ω (tk, tk′ ) is the covariance between week tk
and week tk′ within a year l. A Matérn covariance function of order 3

2
and range parameter fixed to 3

2
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was assumed: Ω (tk, tk′ ) = σ2
year ×

(
1 +

2
√
3×|tk−tk′ |

3

)
× exp−2

√
3×|tk−tk′ |

2
. This choice corresponds

to a temporal correlation of 0.05 after 4 weeks (i.e. temporal independence after a month). The
choice of the covariance function also translate an assumption of smoothness in the temporal profile
of bycatch risk: bycatch risk is assumed to change gradually across weeks, with no abrupt increase
or decrease. The vector ε of mean weekly effects (on a logit scale) was modelled with a first order
random walk: {

εt ∼ N (0, σweek) t = 1

εt+1 ∼ N (εt, σweek) t > 1
(3)

The model in equation 1 is a decomposition of bycatch risk into a time-varying component (at the
week-scale, equation 3; and with an interaction with year, equation 2) and time-invariant component
which can be interpreted as fishing-style effects whereby some skippers may have consistent practices
that increase or decrease bycatch risk. The time-varying component is assumed to be cyclical to
reflect, for example, a year-round pattern in the distribution of dolphins and fisheries. Importantly,
bycatch risk is modelled here with no attempt to model dolphin presence directly as relevant data to
do so may be missing in the general case. Bycatch risk is thus to be estimated for each week of a
year, and each of these weeks represent de facto a stratum. In any applied case, additional factors,
such as statistical area, may need to be included in Eq.1 for improved realism. For simplicity, we did
not consider space in simulations, and solely focussed on time.

Data Simulation
To test the ability of model 1 to estimate bycatch risk, data were simulated thusly (Figure 1):

1. bycatch probability conditional on dolphin presence was constant and set to 0.3, that is roughly
one fishing operation out of 3 generates a bycatch event when dolphins are present;

2. dolphin presence is seasonal: it peaks at the beginning and end of the year, but quickly drops to
0 for roughly 2 thirds of a year; and

3. a fishery of 20 vessels is operating all year round, with an overall activity rate of 80% each
week (that is, for any week, 20 × 80

100
= 16 vessels are fishing). Each fishing day (5 days per

week), on average 2.3 fishing operations are carried out. The expected total number of fishing
operations for a year is 5×52×2.3×16 ≈ 10, 000. During each of these operations, a bycatch
event may occur depending on dolphin presence at the time.

4. Observers are accepted onboard vessels either with a constant probability of 0.05 corresponding
to a coverage of 5% of all fishing operations (unbiased sampling scenario) or with a probability
that covaries with dolphin presence (biased sampling scenarios). In the latter case, realized
coverage is a random variable. With under-sampling, the bulk of the observer data is collected
when bycatch risk (the product of dolphin presence and bycatch probability) is nil (Figure 1).
With over-sampling, the bulk of the observer data is collected when bycatch risk is high but no
data are collected when the risk is nil (Figure 1).

5. In a year, the number of fishing operations is ≈ 10, 000, and the number of bycatch events
≈ 300, which yields a rate of ≈ 3%. This rate is not large, but is not extremely rare either.

Bycatch events were simulated for each fishing operations during a day when an observer was
present from a Bernoulli distribution according to the product of bycatch probability given dolphin
presence and dolphin presence probability for that day. If no observer was present, no data were
recorded. For each sampling scenario, 100 datasets were generated for 1, 5, 10 or 15 years. All data
simulations were carried out in R v.4.0.1 (R Core Team, 2020). When simulating only one year of
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Figure 1: Inputs for data simulation. Top row: bycatch probability if dolphins are present during a
fishing operation. Middle row: dolphin presence during a year. Bottom row: Probability for a skipper
to accept an observer onboard. Left column: sampling is unbiased; Middle colum: sampling is biased
downwards (under-sampling). Right column: sampling is biased upwards (over-sampling). Each line
corresponds to one of the 100 data simulations that were carried out. The y-axis is on a square-root
scale to better visualize small values.

data, equation 2 is not necessary as there is no between-year variation to estimate. Our Monte Carlo
study had a comprehensive factorial design crossing (a) sampling regime (either unbiased or not)
and (b) sample size as controlled with the number of years for which the observer programme was
assumed to have been in operation.

Estimation

Estimation of the parameters of model 1 from simulated data was carried out in a Bayesian frame-
work using programming language Stan (Carpenter et al., 2017) called from R v.4.0.1 (R Core Team,
2020) with library Rstan (Stan Development Team, 2020). Weakly-informative priors were used for
regularization:
µ ∼ N (0,

3

2
)

prop ∼ D(1, 1, 1)

σtotal ∼ GG(
1

2
,
1

2
,
log 2

10
)

where D() denotes the Dirichlet distribution for modelling proportions (such that
∑3

i=1 propi = 1)
and GG() the Gamma-Gamma distribution for scale parameters (Griffin & Brown, 2017; Pérez et al.,
2017). With this parametrization, the several variance components of the model were:
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σ2
vessel = σ2

total × prop1

σ2
week = σ2

total × prop2

σ2
year = σ2

total × prop3

These priors are weakly-informative (Gabry et al., 2019): the prior for the intercept allows to
cover the whole interval between 0 and 1 on the probability but is informative on the logit scale.
The prior for the scale (square-root of the variance) is heavy tailed and has a median set to log 10

2

(Griffin & Brown, 2017; Pérez et al., 2017), which translate an assumption about the plausible range
of variations in bycatch risk spanning a priori two full order of magnitude from one tenth to a ten-fold
increase compared to the mean bycatch rate. Thirty random realisations from our choice of priors are
depicted on Figure 2: the whole interval between 0 and 1 is covered, and between-week variations
can be large or small.

Figure 2: Prior predictive checks sensu (Gabry et al., 2019). Bycatch risk (pijkl in Eq. 1) is depicted:
30 random realizations from the priors are depicted.

For each simulated dataset, four chains were initialized and run for a total of 1, 000 iterations, dis-
carding the first 500 as warm-up. Parameter convergence was assessed using the R̂ statistics (Vehtari
et al., 2019) and assumed if R̂ < 1.025.

Using the posterior distribution, bycatch risk p̂j∗kl for a randomly chosen vessel j∗ operating in

week k of year l was computed as: p̂j∗kl = logit
(
µ̂+ β̂kl + α̂∗j

)
with α̂∗j ∼ N (0, σ̂vessel). This quan-

tity incorporates between-vessel variability, that is it takes into account the fishing style of skippers.
The total number of bycatch events, Nbycatch was estimated as:

N̂model−based
bycatch =

nyear∑
l=1

nweek∑
k=1

p̂j∗kl ×Nkl (4)

where Nkl is the total number of fishing operations that took place is week k of year l. Highest
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Posterior Density credibility intervals at the 80% level were computed with package coda (Plummer
et al., 2006) for uncertainty evaluation. Equation 4 is an instance of a ratio-estimator with post-
stratification, except that it uses model-based estimates of bycatch risk. This model-based approach
allows to regularize estimates with partial pooling (Gelman & Shalizi, 2013): the variance of estimates
is greatly reduced by introducing some bias with structured priors (Gao et al., 2019). Our results were
benchmarked against an approach similar to that of ICES WGBYC whereby total number of bycatch
events was estimated as:

N̂designed−based
bycatch =

nyear∑
l=1

p̄l ×
nweek∑
k=1

Nkl (5)

where p̄l is the average bycatch risk estimated as the mean from the sample of observed bycatch
events in year l. Confidence intervals at the 95% level were computed using either the bootstrap or the
Clopper-Pearson approach as customary in ICES WGBYC. In practice, ICES WGBYC often pooled
several years to stabilize the estimate of p̄ (e.g. ICES 2018 pages 57-58; Carretta & Moore, 2014):
equation 5 translate an ideal case that is rarely met. The total number of strata for post-stratification
was nyear×nweek, with a maximum of 15× 52 = 780 cells. ICES WGBYC usually works on bycatch
rates (in number of PETS per unit effort), not bycatch risk. We focused on risk for simplicity, but
scaling bycatch risk to a rate is straightforward by multiplying with the average number of PETS
bycaught in a bycatch event.

Reproducibility
R codes to reproduce the results are available at https://gitlab.univ-lr.fr/mauthier/
regularized_bycatch.
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Results

Design- vs model-based approach
Comparing the design- and model-based approach was done with simulating one year of data. When
data sampling was unbiased, both the design- and model-based approach were able to recover the true
number of bycatch events (Figure 3, Table 1). Estimates of bycatch events were statistically unbiased
but their precision low with a (frequentist 95%) confidence or (Bayesian 80%) credibility interval
(CI) as large as 100% of the point estimate (Table 1). This was unsurprising as only 15 bycatch
events were recorded on average by onboard observers (Table 1). With under-sampling, design-based
estimates were negatively biased (that is, they were under-estimates) whereas model-based estimates
were still unbiased on average (Figure 3, Table 1). With over-sampling, design-based estimates were
positively biased (that is, they were over-estimates) but so were model-based estimates, although bias
was 5 times smaller (Figure 3, Table 1). In all cases, coverage was 100% but largely as a result of low
precision: precision was very low with CI spanning some 200% of the point estimate for the unbiased
and under-sampling scenarios. This low precision was the result of having to work with as few as 5
observed bycatch events on average (Table 1). Precision improved with over-sampling, but was still
as high as 50% of the point (over-)estimate. The model-based approach was well calibrated in both
the unbiased and under-sampling scenarios (Figure 4): model-based estimates were on average equal
to the truth whereas this was only the case with design-based estimates when sampling was unbiased.
In addition, the model-based approach was able to recover the temporal profile of bycatch risk (Figure
5) in these two scenarios, but with an increased accuracy and precision if sampling was unbiased. In
the over-sampling scenario, both the design- and model-based approaches were not well calibrated
(Figure 4) and the model-based approach over-estimated bycatch risk when no data were collected
(Figures 1 and 5).

Method Uncertainty Data nyears bias coverage Width of CI nobs

sampling (%) (%) (%)
Design-based Bootstrap unbiased 1 3.5 100.0 102.5 15
Design-based Clopper-Pearson unbiased 1 3.5 100.0 115.0 15
Model-based Bayesian unbiased 1 3.6 100.0 120.4 15
Design-based Bootstrap under- 1 -83.5 100.0 195.0 5
Design-based Clopper-Pearson under- 1 -83.5 100.0 259.6 5
Model-based Bayesian under- 1 3.0 100.0 204.3 5
Design-based Bootstrap over- 1 121.0 100.0 46.1 63
Design-based Clopper-Pearson over- 1 121.0 100.0 50.1 63
Model-based Bayesian over- 1 22.1 100.0 78.6 63

Table 1: Statistical properties of estimates from the design- and model-based approach. One year of
data was simulated a 100 times. Bias of point estimate, coverage of (frequentist 95%) confidence or
(Bayesian 80%) credibility interval (CI) and precision (as CI width relative to the point estimate) are
reported. The last column indicates the average number of bycatch events (nobs = E

[∑
ijk yijk

]
) that

were recorded by onboard observers during data sampling.

Model-based approach with several years of data
With several years of data, the model-based approach was able to yield nearly unbiased estimates: the
bias was smaller than 3 bycatch events when sampling was unbiased, but as large as 10 (on average)
with biased sampling and three years of data. The precision of estimates improved with several years
of data, as expected with larger sample size. Precision of model-based estimates with over-sampling
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Figure 3: Violin plot of point estimates of total bycatch events. Left column: data sampling was
unbiased and all methods yielded statistically unbiased estimates. Middle column: Under-sampling
scenario: only the model-based approach was accurate. Right column: Over-sampling scenario:
both the design- and model-based approaches were biased upwards. Violin plots are based on 100
simulations.

were already acceptable with 3 years of data: an 80% credibility interval width of 50% corresponds

to a coefficient of variation of
50

2.5
≈ 20% assuming a normal distribution for the posterior. The

model-based approach allowed to obtain estimates at the weekly scale (Figure 6): these estimates
were approximately unbiased in the unbiased and over-sampling scenarios, but were biased for the
under-sampling scenario. In that latter case, the bias was correlated with the temporal pattern used to
simulate dolphin presence (Figure 1): it was the largest when dolphin presence was at its highest but
positive at the beginning of a year and negative at the end of the same year. Both biases were greatly
attenuated with increased sample size.
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Figure 4: Regression lines of point estimates against the true number of bycatch events, showing
the calibration of the design- and model-based approach. The x-axis shows the true number of by-
catch events across 100 simulations, spanning between 150 and 400 events. Left: data sampling was
unbiased and all methods yielded statistically unbiased estimates. Middle column: Under-sampling
scenario: only the model-based approach was well calibrated. Right column: Over-sampling sce-
nario: both the design- and model-based approaches were not calibrated to the truth.

Method Uncertainty Data nyears bias coverage Width of CI nobs

sampling (bycatch events) (%) (%)
Model-based Bayesian unbiased 3 3.0 100.0 91.1 45
Model-based Bayesian unbiased 5 2.1 100.0 76.3 75
Model-based Bayesian unbiased 10 1.1 100.0 59.1 150
Model-based Bayesian unbiased 15 1.9 100.0 50.9 225
Model-based Bayesian under- 3 10.0 100.0 164.6 15
Model-based Bayesian under- 5 6.4 100.0 142.0 25
Model-based Bayesian under- 10 8.3 100.0 112.9 50
Model-based Bayesian under- 15 5.3 100.0 97.8 75
Model-based Bayesian over- 3 7.4 100.0 53.2 63
Model-based Bayesian over- 5 4.8 100.0 42.6 126
Model-based Bayesian over- 10 3.5 100.0 32.6 630
Model-based Bayesian over- 15 3.3 100.0 27.7 756

Table 2: Statistical properties of estimates from the model-based approach. Several years of data were
simulated a 100 times. Bias of point estimate (in number of bycatch events), coverage of (Bayesian
80%) credibility interval (CI) and precision (as CI width relative to the point estimate) are reported.
The last column indicates the average number of bycatch events (nobs = E

[∑
ijkl yijkl

]
) that were

recorded by onboard observers during data sampling.

14



Figure 5: Estimated temporal pattern in mean bycatch risk from the model-based approach. Left col-
umn: data sampling was unbiased. Middle column: Under-sampling. Right column: Over-sampling.
The model-based approach recovered the correct pattern overall, but overestimated risk in the over-
sampling scenarios when risk was, in fact, nil but no data were collected.

15



Figure 6: Box plots of bias (in number of estimated bycatch events compared to the truth) in the
weekly model-based estimates of bycatch events. Left column: data sampling was unbiased. Middle
column: Under-sampling. Right column: Over-sampling. Each row corresponds to data simulated
for a different number of years.
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Discussion

Using Monte-Carlo simulations, we investigated the statistical properties of a model-based approach,
regularized multilevel regression with post-stratification, to estimate the total number of bycatch
events in a fishery operating year-round. Simulations were broadly informed from the case of com-
mon dolphins and pair-trawlers in the Bay of Biscay and from harbour porpoises and set-gillnets in
Celtic Seas. A salient feature of simulations was biased sampling with observers being preferentially
accepted onboard when bycatch risk was either high or low. Data simulations in that latter case,
which is the most realistic one in the Bay of Biscay (Peltier et al., 2016), resulted in as few as 5
observed bycatch events per year on average (Tables 1, 2). This aligns with the ubiquitous descrip-
tion of small cetacean bycatch being a rarely observed event. It was nevertheless possible to fit a
regularized multilevel regression model on these data. Importantly, estimates from this model-based
approach were statistically less biased than the design-based estimates when sampling was biased.
Model-based estimates were, however, imprecise but this is largely to be expected (Amandè et al.,
2012), especially with as few as 5 observed bycatch events per year. The design-based approach was
also imprecise, even in the unbiased data sampling scenario of 5% coverage of the fleet, which is not
reached in practice (Anonymous, 2016; ICES, 2020b). The design-based approach was very sensitive
to how data were collected: this approach severely under- or over-estimated bycatch when sampling
was biased, whereas the model-based approach was still well calibrated with under-sampling, but not
with over-sampling (Figure 4).

Biases in onboard observer data are pervasive and widely acknowledged (Benoît & Allard, 2009;
Peltier et al., 2016). Enforcing coverage as required to achieve a pre-specified precision in estimates
can be challenging in practice. For example, in 2016, France only achieved a coverage rate less
than 2% for most métiers and concluded on the impossibility of scaling-up observed bycatch rates
to the whole fleet (Anonymous, 2016; page 24). There were, however, 9 bycatch events of common
dolphins in pair-trawlers targeting European hake (Merluccius merluccius). From these numbers,
bycatch was described a ’rare’ event (Anonymous 2016, page 23). Such a conclusion would be
warranted if sampling were representative, in which case the design-based estimate could be used,
even though its precision would still be very low. On the other hand, with under-sampling, this
conclusion is misleading as our simulations further illustrated: although only 5 bycatch events were
observed on average (Table 1), the true number of bycatch events was on average 60 times larger
(Figure 4). In our simulations, the true bycatch rate was on average ≈ 3% over a year, which is not
rare, but not frequent either. Moreover, interviews with French skippers deploying trawls or gillnets
in the Bay of Biscay revealed that more than 80% of respondents declared to having experienced at
least one small cetacean bycatch event in a year (Cloâtre, 2020). Such a large proportion contradicts
the idea of common dolphin bycatch being a rare event in the Bay of Biscay, but rather suggest severe
biases in onboard observer data that result in the rare reporting of bycatch events, rather than a rarity
of events per se. The common dolphin in the Bay of Biscay illustrates how under-sampling may
distort the perception of bycatch as a very rare event when it can, in fact, be widespread. This is a
catch-22 situation whereby cetacean bycatch is described as a rare event because it is rarely reported,
and this perceived rarity may serve to argue against ambitious dedicated monitoring programmes out
of cost-effective considerations, thereby preventing to dispel the initial misconception.

Finding an optimal sampling plan for fisheries with rare bycatch events is long standing problem
(ICES, 2009). Several strategies have been attempted: for example in the United States, one strategy
is ’pulsed sampling’ whereby a particular fishery or métier is very heavily sampled for a short period
of time in order to maximize the chance for observers to record any bycatch that might occur (ICES,
2009). This pulsed sampling strategy corresponds to our over-sampling scenario wherein monitoring
effort is positively correlated with bycatch risk. Under this scenario, the absence of any sampling at
all when bycatch risk was low was detrimental to the accurate estimation of bycatch events with our
model. Model-based estimates were, however, less biased than design-based estimates. Arguably,
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this comparison is somewhat artificial as a correct comparison would use all the available informa-
tion and exclude the period when bycatch risk is low if such a period is known to the investigator.
Notwithstanding this shortcoming, model-based estimates represented an improvement and allowed
to infer the bycatch risk profile accurately, especially with several years of data.

We showed with our Monte-Carlo simulations that regularized multilevel regression with post-
stratification can nevertheless be used to analyze bycatch data despite concerns about non-representative
sampling. Model-based approaches (Palka & Rossman, 2001), with post-stratification (Lennert et al.,
1994), or machine learning (Carretta et al., 2017), or multilevel regression (Sims et al., 2008; Martin
et al., 2015) have previously been used to estimate bycatch rates. Traditional, design-based, ratio
estimates are biased if sampling is biased; imprecise if observer coverage is low (as is the usual case
in the North East Atlantic; see for example Figure 14 page 114 in ICES, 2020b); and volatile if by-
catch events are only observed occasionally (Carretta et al., 2017). The traditional remedy to stabilize
estimates and improve precision is to bypass year-specific estimation and pool several years together
(ICES, 2018; Carretta & Moore, 2014). This pragmatic solution improves precision but does not ad-
dress the problem of biased sampling. It also introduces estimation bias for any year-specific estimates
by pooling completely several years in order to stabilize the variance of estimates (ICES, 2009; page
36): any between-year differences are thus ignored in order to obtain a better precision of estimates.
It is a reasonable approach in practice, but one that can be improved. Model-based approaches offer
a trade-off between no-pooling (keeping all years separate) and complete-pooling with a third option:
partial pooling or regularization (Gelman & Shalizi, 2013). Regularization is a general term for statis-
tical procedures that give more stable estimates. Our model-based approach achieves regularization
by leveraging, via a structured prior model (equations 2 and 3, see Methods), the within-year infor-
mation at the weekly scale. The result were more stable and accurate annual bycatch estimates at the
cost of some modelling assumptions and weakly-informative priors. Importantly, weekly estimates
could also be obtained with our model-based approach.

Our model-based approach is semi-parametric as it uses a random walk prior to learn from the data
the weekly pattern in bycatch risk. This prior is also ensuring some smoothness in the temporal risk
profile as it translates an assumption on the correlation between two consecutive weeks. This random
walk model remains simple as the correlation is fixed to 1 and not estimated. We further complexified
this model to allow for between-years variation in the weekly risk profile with a Gaussian Process
prior (Neal, 1998; Goldin & Purse, 2016). Importantly, these two prior choices (a random walk and
a Gaussian Process prior) add structure to the model and help in leveraging the information present
in the sparse data typical of onboard observer programmes. Even when with over-sampling, these
choices were not detrimental as model-based estimates were statistically unbiased and precise with 3
years of data (Table 2). The explicit consideration of time effects is key to mitigate bias in sampling.
In our simulations, dolphin presence was caricaturally seasonal, and observers could be preferentially
allowed on fishing vessels when dolphins were less or more likely to be present (Figure 1). Our model
was still able to provide statistically unbiased estimates of bycatch in those scenarios, although these
estimates were very imprecise with under-sampling. However, they were not more imprecise than
the traditional (but biased) design-based estimates (Table 1) if 80% credibility interval were used. In
addition to being unbiased, these estimates could also reveal with accuracy the temporal risk profile
(Figure 5). It is important to keep in mind here that our model is different from the data-generating
model used in simulating data: our results were not simply an instance of using a true model, which is
impossible in practice as a model is by definition a simplification used to capture the salient features
of a phenomenon. Our model had some shortcomings: for example, bias increased with 3 years of
data compared to 1 year for the under-sampling scenario (contrast Tables 1 & 2). This increased
bias was the result of partial pooling but came with a gain in precision as evidenced in the width of
credibility intervals. The bias progressively wore off with more years of data, illustrating thereby
the attractiviness of partial pooling and structured priors to regularize estimates (Gelman & Shalizi,
2013; Gao et al., 2019). The gain in reducing bias in estimates and increasing their precision was
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most evident with over-sampling (Table 1 & 2).
Our model could also provide weekly bycatch estimates which were largely unbiased except in

the under-sampling scenario where a positive and negative bias remained at the beginning and end
of a year respectively, even with 15 years of data (Figure 6). With under-sampling, few observed
bycatch events can be collected by design because observers are very unlikely to be accepted on
board by skippers. Weekly estimates were too high at the beginning of a year but too low at the
end, but this somewhat cancelled out at the year-level. There was still a slight overestimation bias
resulting from our choice of a non-symmetric pattern for dolphin presence and a symmetric pattern
for biased coverage: observing bycatch events at the end of a year was comparatively more difficult
than at the beginning of a end because overlap between a non-nil coverage and dolphin presence was
smaller at the end of year (Figure 1). These shortcomings illustrate that a model-based approach
should be tailored to the context of the study, and we designed our simulations largely from our
knowledge on the common dolphin in the Bay of Biscay. However, the framework of regularized
multilevel regression with post-stratification is very flexible and we believe our proposed model has
large potential for generality as it simply translates a decomposition of bycatch risk into a smooth
time-varying and (unstructured) time-invariant effects. The model can easily be made more complex,
data permitting, to accommodate spatial effects with, for example, a Besag-type prior (Sims et al.,
2008; Morris et al., 2019).

An important limitation of our model is that it is phenomenological, i.e. it is agnostic of the
causes behind the temporal variations in bycatch risk. Bycatch risk is the product of dolphin presence
and bycatch probability given presence (the latter was constant in our simulations). The model only
estimates this product of two probabilities and thus cannot distentangle them without other sources
of data. This limitation is inconsequential for the aim of accurate estimation of the total number
of bycatch events as interest lies in the effects of causes (how much bycatch?) rather than in the
causes of effects (why bycatch occurred?). An important assumption underlying accurate estimation
is that the information on the total effort must also be accurate and available at the scale of weeks
for post-stratification. This assumption is crucial to scale-up estimates from the (potentially biased)
sample to the population, but it does not necessarily hold with fisheries effort as the latter is more
often estimated rather than measured directly (Julian & Beeson, 1998; ICES, 2018, 2020b). Here we
assumed that the total number of fishing operations (e.g. number of tows for trawls; Tremblay-Boyer
& Berkenbusch, 2020) are available as auxiliary information for post-stratification. This assumption
about the availability of disaggregated data stems from the explicit consideration of time as an impor-
tant predictor of variations in bycatch risk. This assumption is necessary for using post-stratification
to align the sample with the population targets.

This assumption on the availability of accurate effort data at fine temporal scale may be difficult to
meet in pratice. Currently, ICES WGBYC uses in its BRA a coarse, but admittedly comparable proxy
across fisheries and countries to quantify fishing effort, namely days at sea (ICES, 2019). A day at sea
is any continuous period of 24 hours (or part thereof) during which a vessel is present within an area
and absent from port (Anonymous, 2019a). Importantly, this definition is not at the level of a fishing
operation, and effort thus quantified is already aggregated at a level above that at which bycatch data
are collected. This coarsening of fisheries effort data is fundamentally a measurement problem, and
one that modelling should not be expected to remedy easily. BRA uses an estimate of total fishing
effort for the fisheries of concern in a specific region, together with some estimate of likely or possible
bycatch rates that might apply for the species of concern, in order to evaluate whether or not the total
bycatch in that area might be a conservation issue. A regularized multilevel regression model could be
used to obtain estimates of bycatch rates to be used in BRA. Post-stratification could also be attempted
using the coarse days at sea proxy for effort, and thus our framework could well be adapted to match
the requirements of ICES WGBYC.

19



Conclusion
We investigated with simulations the ability of multilevel regularized regression with post-stratification
to estimate cetacean bycatch under various sampling scenarios. These scenarios were all caricatural
in some respect. The unbiased sampling case appears unrealistic in practice: biased sampling, either
under-sampling or over-sampling (ICES, 2009), may be the general case. We considered both cases,
under quite extreme scenarios whereby data collection was highly correlated with bycatch risk, result-
ing in either very few observed events with under-sampling, and a large number of observed events
with over-sampling. In both cases, multilevel regularized regression with post-stratification was able
to produce nearly unbiased bycatch estimates with as few as 5 observed events data. With only one
year of data, precision was low, especially with under-sampling, and there was some estimation bias
with over-sampling one. These results stemmed from the extreme scenarios we considered but illus-
trate nevertheless that a model cannot be expected to solve all the deficiencies of data collection and
measurement. Good measurement is key for accurate estimation and our results actually re-emphasize
the importance of design. However, they also show that a good data collection design and an adequate
modelling framework are synergistic and allow to extract a lot of information for sparse data. Assum-
ing a normal distribution for the bycatch estimates, a 80% Bayesian CI width divided by 2.5 gives
an idea of the associated coefficient of variation: the model-based approach can yield a coefficient of
variation of 50% with as few as 15 observed events if sampling is unbiased. With under-sampling,
one would need 10 years of data (under our data simulation schemes) to obtain the same precision.
This re-iterates the need to (i) have dedicated observer schemes, (ii) ensure adequate coverage and
(iii) use a model-based approach tailored to extract as much information as possible from sparse data,
as the first two points are very difficult to live up to in practice.

The key assumptions behind regularized multilevel regression with post-stratification in our sim-
ulations are that bycatch risk changes smoothly through time and that accurate data on the number of
fishing operations at the same temporal scale are available (e.g. number of tows for trawls; Tremblay-
Boyer & Berkenbusch, 2020). When both assumptions can be reasonably entertained, we showed
how a model-based approach using recent methodological developments is efficient, irrespective of
how data were collected. A further asset of the explicit consideration of a temporal scale is that it may
help in pinpointing more precisely windows of heightened risk in order to target adequate mitigation
measures (e.g. spatio-temporal closures). The framework of multilevel modelling is very flexible
and can accommodate spatial effects and other complexifications, data permitting. Regularization
will, in general, be needed to mitigate data sparsity and leverage partial pooling in order to obtain
stable estimates of bycatch. Given the satisfactory performance of regularized multilevel regression
with post-stratification in our simulations, we recommend further investigations using this technique
to estimate bycatch rate and numbers from both representative or non-representative samples. A re-
analysis of > 15 years of observer data on common dolphin bycatch in pair trawlers flying a French
flag is currently underway (Rouby et al. in preparation) in order to obtain better bycatch estimates
that could be further used to estimate conservation reference points in order to better manage this
fishery (Cooke, 1999; Punt et al., 2021).
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