
From 0 to 100K in 10 years:
nurturing open-source community

Bob Carpenter
Center for Computational Mathematics

Flatiron Institute

October June 2022 https://mc-stan.org

1

https://mc-stan.org

Taking uncertainty seriously

• Uncertainty permeates science and decision making:

– sampling uncertainty

* data is finite

– measurement uncertainty

* measurements are noisy, biased, and incomplete

– modeling uncertainty

* our models are imperfect reflections of reality

• The alternative to good statistics is not no statistics, but
bad statistics. (Bill James)

2

Probability & Statistics

• Probability theory uses math to quantify uncertainty.

• Bayesian statistics applies probability theory to

– data analysis

– inference (estimation and prediction)

– model evaluation and comparison

– decision theory (given preferences)

• The computational bottlenecks for Bayes are

– model expression

– posterior inference

3

Bayesian probability is epistemic

Every event is in itself certain, not probable; if we knew

all, we should either know positively that it will happen, or

positively that it will not. But its probability to us means

the degree of expectation of its occurrence, which we are

warranted in entertaining by our present evidence.

– John Stuart Mill. 1882. A System of Logic: Ratiocinative and

Inductive. Eighth edition. III:18.

4

Bayesian modeling

• Define a generative model for data y and parameters θ
as a probability density p(y | θ)

– e.g., compose a forward scientific model and a measure-
ment model

• Define our present evidence as a prior density p(θ), e.g.,

– realistic ranges of cancer prevalence,

– possible masses of exoplanets,

– livable metabolic rates for humans,

– concentration of particulates in breathable air,

– realistic major league batting averages,

– and so on

5

Bayesian inference

• Observe actual data y

• Calculate expectations over the posterior

p(θ | y)∝ p(y | θ) ·p(θ)

– parameter estimation θ̂ = E[θ | y]
– forecasting events Pr[E | y] = E[I(θ ∈ E) | y]
– predictions for new data: p(ỹ | y) = E[p(ỹ | θ) | y]

• Estimate with Markov chain Monte Carlo (MCMC) (or ap-
proximations)

6

What is Stan?

• a domain-specific probabilistic programming language

• Stan program defines a differentiable probability model

– declares data and (constrained) parameter variables

– defines log posterior (or penalized likelihood)

– defines predictive quantities

• Stan inference fits model & makes predictions

– MCMC for full Bayesian inference

– variational and Laplace for approximate Bayes

• Carpenter, B., Gelman, A., Hoffman, M. D., Lee, D., Goodrich, B., Betan-
court, M., Marcus Brubaker, Jiqiang Guo, Peter Li, Riddell, A. (2017). Stan:
A probabilistic programming language. J. Stat. Soft. 76(1).

7

e.g., Logistic Regression

data {
int<lower=1> K;
int<lower=0> N;
matrix[N,K] x;
int<lower=0,upper=1> y[N];

}
parameters {
vector[K] beta;

}
model {
beta ~ cauchy(0, 2.5); // prior
y ~ bernoulli_logit(x * beta); // likelihood

}

8

Holographic coherent diffraction imaging

• Brian Ward (CCM) and I reproduced David Barmherzig’s paper to
illustrate Stan’s complex number and FFT capability

• GitHub: bob-carpenter/CDI

9

Holo CDI (1)

• Step 1: direct coherent radiation source (e.g., X-ray) at biomolecule
and target & uniformly redundant array (URA) reference, with
beam stop; (data simulated, but works with real)

10

Holo CDI (2)

• Step 2: observe diffracted photon counts Ỹi,j
– beamstop visible in middle (low frequencies)

11

Holo CDI (3.a)

• Step 3.a: code data format in Stan (simplified)

data {
int<lower=0> N; // image dim
matrix<lower=0, upper=1>[N, N] R; // registration img
int<lower=N> M1; // padded rows
int<lower=3 * N> M2; // padded cols
int<lower=1, upper=M1> r; // beam stop size
real<lower=0> N_p; // avg photons/pixel
array[M1, M2] int<lower=0> Y_tilde; // observed photons

}

12

Holo CDI (3.b)

• Step 3.b: code transformed data, parameters, and likelihood

transformed data {
matrix[M1, M2] B_stop = pad(M1, M2, r); // beam stop

}
parameters {
matrix<lower=0, upper=1>[N, N] X; // image pixels

}
model {
matrix[M1, M2] X0R_pad = pad(X, R, M1, M2);
matrix[M1, M2] E_Y = B_stop .* abs(fft2(X0R_pad)) .^ 2;
matrix[M1, M2] lambda = N_P / mean(Y) * E_Y;

Y_tilde ~ poisson(lambda); // likelihood
X ~ uniform(0, 1); // prior

}

13

Holo CDI (4)

• Turn Stan’s crank to solve the inverse problem

• using state-of-the-art gradient-based inference:

– maximum likelihood via quasi-Newton optimization (L-BFGS)

– full Bayes via Markov chain Monte Carlo sampling (NUTS)

– approximate Bayes via black-box variational inference (ADVI)

• For the 256× 256 pixel reconstructions in David’s paper,

– optimization solves inverse problem in 2 minutes

– sampling solves inverse problem in 2 hours

• Full study considers L1 & L2 regularizing spatial priors
(penalize diffs in adjacent pixels)

14

Holo CDI (5.a)

• Recovered images X∗ at 256× 256 with
1 photon/pixel (left) vs. 10 photons/pixel (right)

• MLE: X∗ = arg maxX p(X|Ỹ ,N,R, r)

• Bayesian estimate: X̂ = E[X | Ỹ ,N,R, r]

15

Availability & Usage
• Platforms: Linux, Mac OS X, Windows

• Interfaces: R, Python, Julia, MATLAB, Shell, C++

• Developers (academia & industry): 40+ (10+ FTEs)

• Users: hundreds of thousands

• Companies using: hundreds or thousands

• Downloads: millions

• User’s Group: 5000+ registered; 30 posts & 20K views/day

• Books using: 10+

• Courses using: 100+ (5+ on YouTube)

• Case studies about: 100+

• Articles using: 20,000+ (500+ just on Covid!)

• Conferences: 4 (800+ attendance)

16

Some published applications
• Physical sciences: astrophysics, statistical mechanics, particle physics,

(organic) chemistry, geology, oceanography, climatology, biogeochem-

istry, materials science, . . .

• Biological sciences: molecular biology, clinical drug trials, entomol-

ogy, pharmacology, toxicology, opthalmology, neurology, genomics, agri-

culture, botany, fisheries, epidemiology, population ecology, neurology,

psychiatry, . . .

• Social sciences: econometrics (macro and micro), population dynam-

ics, cognitive science, psycholinguistics, social networks, political sci-

ence, survey sampling, anthropology, sociology, social work, . . .

• Other: education, public health, A/B testing, government, finance, ma-

chine learning, logistics, electrical engineering, transportation, actuarial

science, sports, advertising, marketing, . . .

17

Industries using Stan

• marketing attribution: Google, Domino’s Pizza, Legendary Ent.

• demand forecasting: Facebook, Salesforce

• financial modeling: Two Sigma, Point72

• pharmacology & CTs: Novartis, Pfizer, Astra Zeneca

• (e-)sports analytics: Tampa Bay Rays, NBA, Sony Playstation

• survey sampling: YouGov, Catalist

• agronomy: Climate Corp., CiBO Analytics

• real estate pricing models: Reaktor

• industrial process control: Fero Labs

18

Why is Stan so Popular?

• Community: large, friendly, helpful, and sharing

• Documentation: novice to expert; breadth of fields

• Robustness: industrial-strength code; user diagnostics

• Flexibility: highly expressive language; large math lib

• Portability: popular OS, language, and cloud support

• Extensibility: developer friendly; derived packages

• Speed: 2−∞ orders of magnitude faster

• Scalability: orders of magnitude more scalable than previous

• Openness: permissive code and doc licensing

19

Start with a Real Motivation

• a reason for people to use your project (speed, scalability,
ease of use, portability, robustness, functionality, etc.)

• if you alleviate a pain point, your tool will be used

• . . . as long as it doesn’t cause more collateral pain

• January 2010: Andrew Gelman can’t fit the models in his
and Jennifer Hill’s hierarchical regression book in BUGS or
express them in lme4

• so he hires two computer scientists with industrial coding
experience (me & Matt Hoffman) to try to figure it out

• we failed to do that for several reasons . . .

20

Faster Horses

• There’s an apocryphal story that Henry Ford once said that
if he’d asked his customers what they wanted, they’d have
said faster horses.

• the point is not to ignore your customers

• it’s to figure out what they really want (faster, easier
travel)

• After souping up JAGS (C++ version of BUGS), Matt realized
better engineering on JAGS was like breeding faster horses

• After studying lme4, I realized we needed a more expres-
sive language than a generalized lme4

21

Step 1: Ask the Community

• Andrew has a ridiculously popular blog, Statistical Statis-
tical Modeling, Causal Inference, and Social Science

• So I asked for help in terms of where to look for more
scalable samplers

• Word on the street was Hamiltonian Monte Carlo

• but it’s almost impossible to tune

• and it requires gradients

22

Pain Point 2: Tuning HMC

• HMC is really really hard to tune

• this time, nobody had any good ideas

• Andrew formulated the goal as maximizing expected square
jump distance and tuning acceptance

• Matt started thinking about the U-turn idea to avoid waste

• then he worked out how to maintain detailed balance

• and add bias to get draws close to half an orbit

• this was all before we had any users

23

NUTS vs. Gibbs and Metropolis samplersThe No-U-Turn Sampler

Figure 7: Samples generated by random-walk Metropolis, Gibbs sampling, and NUTS. The plots

compare 1,000 independent draws from a highly correlated 250-dimensional distribu-

tion (right) with 1,000,000 samples (thinned to 1,000 samples for display) generated by

random-walk Metropolis (left), 1,000,000 samples (thinned to 1,000 samples for display)

generated by Gibbs sampling (second from left), and 1,000 samples generated by NUTS

(second from right). Only the first two dimensions are shown here.

4.4 Comparing the Efficiency of HMC and NUTS

Figure 6 compares the efficiency of HMC (with various simulation lengths λ ≈ �L) and
NUTS (which chooses simulation lengths automatically). The x-axis in each plot is the
target δ used by the dual averaging algorithm from section 3.2 to automatically tune the step
size �. The y-axis is the effective sample size (ESS) generated by each sampler, normalized by
the number of gradient evaluations used in generating the samples. HMC’s best performance
seems to occur around δ = 0.65, suggesting that this is indeed a reasonable default value
for a variety of problems. NUTS’s best performance seems to occur around δ = 0.6, but
does not seem to depend strongly on δ within the range δ ∈ [0.45, 0.65]. δ = 0.6 therefore
seems like a reasonable default value for NUTS.

On the two logistic regression problems NUTS is able to produce effectively indepen-
dent samples about as efficiently as HMC can. On the multivariate normal and stochastic
volatility problems, NUTS with δ = 0.6 outperforms HMC’s best ESS by about a factor of
three.

As expected, HMC’s performance degrades if an inappropriate simulation length is cho-
sen. Across the four target distributions we tested, the best simulation lengths λ for HMC
varied by about a factor of 100, with the longest optimal λ being 17.62 (for the multivari-
ate normal) and the shortest optimal λ being 0.17 (for the simple logistic regression). In
practice, finding a good simulation length for HMC will usually require some number of
preliminary runs. The results in Figure 6 suggest that NUTS can generate samples at least
as efficiently as HMC, even discounting the cost of any preliminary runs needed to tune
HMC’s simulation length.

25

• Two dimensions of highly correlated 250-dim normal

• 1,000,000 draws from Metropolis and Gibbs (thin to 1000)

• 1000 draws from NUTS; 1000 independent draws

• HMC is O(N5/4) in dimension vs. Gibbs/Metropolis O(N2)

24

Pain Point 3: Derivatives

• I blegged again for help in computing gradients

• Word on the street was automatic differentiation

– we thought they meant finite differences

– but did a Wikipedia search and learned it was generalized
backpropagation

25

Autodiff engineering

• this was before TensorFlow, PyTorch, or JAX

• existing tools in 2011 were not well engineered

• for either dynamic gradient performance or extension

• Matt and I put our industry background to use and engi-
neered a better C++ version

• using a modern lazy adjoint-Jacobian design

• I named the first repo agrad

26

Horses for courses

• after TensorFlow and PyTorch hit the scene, we started
planning for being overtaken

• . . . but it still hasn’t happened

• big neural networks can exploit SIMD instructions, typical
statistical models cannot

• that gives us very different optimization goals

• they’re much faster on GPU and we’re much faster on CPU
(as reported by Google’s TensorFlow team)

• still improving (most recently, matrix memory locality)

27

Identify a point of entry

• You need to solve at least one problem well

• For us, it was hierarchical generalized linear models.

• Just better solvers for those would be a big win

• Work very hard and focus on an early win

– for Stan, it was a PK/PD non-linear mixed effects model for
a Phase I clinical trial with Novartis

• Daniel and I spent 6 months optimizing C++ (template
traits, vectorizing, expression templates, checkpointing,
analytic gradient unfolding) until Stan was faster than JAGS
on its own example models (all small scale)

28

It can be incremental

• Most projects are not very innovative

• Our autodiff is a better engineered version of Trilinos Sacado

• Our language is a generalized, typed version of BUGS

• Our sampler is an adaptive form of HMC (OK, that’s inno-
vative)

29

Your grain of salt

• We did a lot of this consciously, but this report is pure
hindsight

• If you haven’t taken your grain of salt yet, please do

• It’s hard to admit, but ventures like this require a lot of
luck, especially good timing

30

Marketing and sales

• Your project won’t sell itself any more than your paper will

• We have Andrew Gelman’s bully pulpit—the blog

– daily blog posts get 10K+ views including top statisticians

– Andrew also wrote the standard textbook and updated it to
Stan

• When Gelman puts you in his textbooks and blogs about
you non-stop, people in the Bayes comp stats world listen

• We also did lots of meetups, lectures, hackathons, etc. to
get the word out

31

Why hadn’t it been done before?

• HMC is hard to tune

• Hand-derived gradients are too big an ask

• Autodiff at the time was primitive

• Language and compiler design is hard

• Constrained parameters are painful for HMC

– Stan automates changes of variables

– gradients of log absoute Jacobian determinants

– working with Meenal Jhajaria (CCM intern) this summer com-
paring transform statistical & computational efficiency

32

Assemble the right team

• Previous efforts used statisticians exploring limited appli-
cations and with no CS experience

– epidemiologists built BUGS and JAGS

– the BUGS devs said on record that if they could code C++,
they’d have gone into finance

– R was a terrible role model as language & community

• Our project started day one with two crack statisticians
(Gelman and Ben Goodrich),

• plus three industrially trained computer scientists (me
and Matt plus Daniel Lee)

• and two years of financial runway in the form of grants

33

Reassemble the team

• Grad students and postdocs come and go

• So do software engineers once trained (industry pays bet-
ter)

• Need to keep recruiting devs to ensure project continuity

• Pair programming is great for bringing up to speed

• Tutorial onboarding docs are also critical

• As is being welcoming and prioritizing new contributions

34

Support individual users

• Documentation is necessary, but not sufficient

• Need to help individuals on message boards, at meetups,
. . .

– make sure user queries messages get answered in a timely
fashion

– if they can’t install your software or figure out how to use
it, they will go away

• Helping on message boards is rewarding (also learn a lot)

• But it’s very draining until it bootstraps to self-sustaining
(thousands of visitors)

35

Go with an open license

• This used to be more contentious

• MIT- and BSD-like licenses seem to have won over copyleft
licenses like GPL

• Everyone asks why we give it away free to industry

– they give back in cash and in kind

– and your devs may wind up there soon and still want to use
the system they built

– cool open source spinoffs like Prophet

36

Code Review

• A tech manager friend of mine asked how we did code
review.

• I admitted we didn’t.

• Adding that was the single biggest quality boost we made

• Two eyes are way better than one at spotting flaws

• With review, at least two people understand each piece of
code

• It also keeps you honest knowing there will be a review

37

Earn trust through openness

• Transparency and open discussion leads to trust (GitHub,
forums, blog posts, etc.)

• Find a way to be responsive

• Underpromise and overdeliver

• Admit errors, advertise and take responsibility (and patch!)
bugs ASAP

• Similar projects are your allies, not your enemies

• If people understand your problems, they’ll cut you slack

– but things can be hard to explain to non-specialists (stats
or CS)

38

Be very careful with comparisons

• If your project has advantages, you won’t need detailed
comparisons

• Comparing adaptive stochastic systems is a Very Hard
Thing

• Be gracious to your competitors and they’ll be gracious to
you

39

Your project depends on evangelists

• You need to help the early adopters and they’ll help others

• Early adopters often become evangelists or devs

• Don’t be surprised when the evangelists oversell your project

• User tutorials at conferences are good venues

• Longer hands-on tutorials and multi-session classes are
even better

40

Grow your process with your project

• Move from Daniel and me back to back in an office

• to dozens of devs communicating through forum posts,
Slack, GitHub and small Zoom or in-person meetings

• Need to keep continuous integration testing up to date

• We grew into all this organically as the project grew.

• We now have fancy things like syntax highlighting in mark-
down and Git and are even a language reported by GitHub

41

Support others building on your tooling

• Hundreds of other packages built on Stan in R and Python

• Derived projects are used more than Stan itself

• It’ll make your software better and expand your user base

• Support other groups trying to build a better mousetrap

– learn from them, or plan your project’s retirement

– either way, it’s good

42

High-level interfaces

• To my surprise, some people find Stan challenging

• For them, we have high-level interfaces

• Most interfaces encapsulate whole models and data inges-
tion formats

– Facebook built Prophet, a demand forecasting system

– Metrum built Torsten, a pharmacology modeling system

– others have distributed models (like Google’s ad attribu-
tion)

• Others encapsulate whole classes of models (rstanarm) or
introduce sublanguages (brms)

43

Governance

• Politics (group decision making) is hard

• Want zone before techie zeal and academic reticence

• I resisted being made benevolent dictator for life

• But wrongly instituted module decision makers and a tech
director

• No siree, Bob. You really want to follow Apache and go
with voting

• which pushes politics to who votes on what

44

Scaling Out

• Scaling up (at one institution) only goes so far

• Embrace scaling out

• We have “centers” in Helsinki, Ljubljana, and now two in
NYC with Flatiron and Columbia

• Support fully remote workers (we got used to online meets
before Covid)

45

Measuring community is hard

• Too many distribution channels

• Too many bots and multiple downloads

• What’s a user?

– current or one-time use? classroom use?

– do you have to write the code or just run it?

– what about embedded uses?

• Proxies include citations, books, classes, videos, stars on
GitHub, contributing devs, user group clicks, etc.

• or mentions in the mainstream media

46

Naming

• I named the initial repo agrad

• Andrew really settled on Stan (for Stanislaw Ulam [and the
Eminem song])

• Hadley Wickham and I tried to convince him we wanted

– zero hits on Google

– not spell corrected

• The name “Stan” is unsearchable

• but it’s growing on me

47

Questions?

• To learn more, see: https://mc-stan.org

48

Music and Cocktails?
• I hear Alex has assembled a band

• and Jonathan is making Stanleys on the roof

49

