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Unit Simplex

We look at surjective constraining transforms
  from an unconstrained space  onto a 
constrained space .  Along with each transform, 
we have an additional (perhaps improper) density
function  defined over  such that if ,
then   

f : Y → X Y = ℝ𝕄

X ⊂ ℝℕ

h(y) y ∈ Y y ∼ h( ⋅ )
f(x) ∼ uniform(X) .

Hamiltonian Monte Carlo, binned among the most effective
MCMC methods[1] in statistical computing, struggles with
sampling parameters with a constrained support. It is
standard to create mappings from a constrained to
unconstrained space for these parameters[3], instead of
modifying the sampler. For composed transforms such as
correlation matrices (positive definite and unit diagonal) or
simplexes etc.., adjusting the sampler is relatively challenging. 
Although, the latter is feasible for rudimentary constraints,
such as unit vector or bound ranges based on scalars. We look
for a bijective, smooth function (with simpler Jacobian
computations, in a relative sense) for these transformations.
In this paper, we attempt to evaluate the computational and
statistical efficiency of such commonplace transforms in
statistical modeling.

A unit N-simplex is an N+1-dimensional vector of 
non-negative values that sums to one. Simplexes 
are useful for representations of multinomial probabilities
(e.g., probabilities of categories in a classification
problem). We evaluate four transforms on the simplex-
Additive log ratio transform(softmax with first value
pinned to 0), augmented-softmax
parametrization and the Stick-Breaking process as a Stan[2]

program along with the actual Stan implementation.

Discussion

We are trying to evaluate transforms in the head, body, and tail
distributions in terms of computational efficiency of both the
transform, its Jacobian determinant and associated gradients, the
geometry induced in the unconstrained space (e.g., log convexity
and conditioning), as well as Hamiltonian Monte Carlo sampling
efficiency. 

Considering a symmetric Dirichlet in the model likelihood, we
evaluate RMSE for the four simplex transforms. In this case, the
Stick-breaking transform in Stan seems to be working better. Also,
note the odd behavior of the augmented-softmax transform, this
is caused by a scaling parameter p for the log-likelihood term.

Similar trends can be seen in the Probability Density Function plot 

Now, we are evaluating Jacobians of the inverse
transforms  for other constrained parameter types like
vectors with sum-to-zero or unit length constraints, and
matrices (or their Cholesky factors) constrained to be
positive definite (e.g., covariance matrices), positive
definite with unit diagonal (e.g., correlation matrices), or
orthonormal.  To be followed by analyzing efficiency and
stability of these transforms. A strong motivation behind
this project is to help Probabilistic Programming
language users choose suitable transforms depending
on their model and use case.
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