You like scikit-learn? You like Stan? You love scikit-stan!

Alexey Izmailov1,2

Mentored by Brian Ward2

Affiliation 1: Department of Applied Mathematics, Brown University, Providence RI

Affiliation 2: Center for Computational Mathematics, Flatiron Institute, New York NY

Abstract

scikit-stan is a Python library of pre-compiled Bayesian models that adheres to the scikit-learn model philosophy and workflow. As such, this package provides a familiar API for fitting models, generating predictions, and scoring outcomes via a robust Stan backend. These design choices ensure that efficient probabilistic models are seamlessly integrated with the vast scikit-learn ecosystem while improving Stan’s accessibility and outreach.

Introduction

- Since its 2012 release, Stan has demonstrated novel state-of-the-art algorithms with top, cutting-edge performance for Bayesian methods and garnered over 100k users as of June 2022
- Wrappers \texttt{RStan}, \texttt{CudaStan}, and \texttt{CmdStanPy} have introduced Bayesian methods to programming communities alongside libraries of models such as \texttt{rstanarm}, \texttt{brms} and industrial packages like Facebook’s \texttt{Prophet}
- scikit-learn is a classic Python library with an elegant API and off-the-shelf models embedded in a mature ecosystem of modular operations and natural compositions
- This promising project improves Stan’s accessibility via a familiar Python style and reduces required devtime by many provided true pre-compiled Stan models as a component crucial for the Bayesian workflow

scikit-learn API Matching

- Stan is versatile and supports several inference algorithms:
 - NUTS-HMC for sampling the posterior
 - \texttt{L-BFGS} for performing an MLE (point estimate) of model parameters
 - ADVI for variational inference of the posterior
- scikit-stan models can perform any of the above inference methods to perform the role of a scikit-learn Estimator:
 - Estimator initialization and learning are separated \cite{1} between object instantiation and \texttt{fit(Xtrain, ytrain)}
 - Extend to a predictor with \texttt{predict(Xtest)}
 - Introspect performance with \texttt{score(Xtest, ytest)}
- One-to-one matching of scikit-learn class methods and functionality - models satisfy their respective validation suites

Example Applications

- Fits results of package Gamma GLM on 9 data points from blood clotting data \cite{4}
- Integrates with scikit-learn optimization, such as GridSearchCV
 - Performs hyperprior optimization out of the box:
 - GridSearch on \(\alpha_1 \), the intercept prior’s error scale in
 \(y = \alpha_1 + \beta x, \alpha_j \sim N(\mu_j, \sigma_j^2), \ j = 1, 2, \ldots, 8 \)
 Score with Gridsearch on Prior Intercept \(\alpha_1 \) Parameter
- Optimize over Radon household data from \cite{5} to brute force \(\mu_0 \in [0.21, 0.38] \)

Acknowledgements

The package was only possible with Brian Ward’s fantastic mentoring and patience. Thank you for all the good you’ve taught me!

Gratitude to Bob Carpenter for his astute insights and memorable mentorship.

References

\[1\] API design for machine learning software: experiences from the scikit-learn project, L Buitinck et al., 2013
\[2\] Bayesian workflow, Gelman et al., 2020
\[3\] Stan: A Probabilistic Programming Language, Carpenter et al., 2017
\[4\] Generalized Linear Models - McCullagh & Nelder, 1989
\[5\] A Primer on Bayesian Multilevel Modeling using PyStan - Fonnesbeck

Affiliation 1: Department of Applied Mathematics, Brown University, Providence RI

Affiliation 2: Center for Computational Mathematics, Flatiron Institute, New York NY