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1 Introduction
This is a comment on an article by Yoav Benjamini entitled “Selective Inference: The Silent Killer of
Replicability”, which is available here.

I completely agree with the main point of the article that over-optimism due to selection (a.k.a. the winner’s
curse) is a major problem. One important line of defense is to correct for multiple testing, and this is discussed
in detail.

In my opinion, another important line of defense is shrinkage, and so I was surprised that the Bayesian
approach is dimissed rather quickly. In particular, a blog post by Andrew Gelman is criticized. The post has
the provocative title: “Bayesian inference completely solves the multiple comparisons problem” and can be
found here.

In his post, Gelman samples “effects” from the N(0,0.5) distribution and observes them with standard normal
noise. He demonstrates that the posterior mean and 95% credible intervals continue to perform well under
selection.

In section 5.5 of Benjamini’s paper the N(0,0.5) is slightly perturbed by mixing it with N(0,3) with probability
1/1000. As a result, the majority of the credibility intervals that do not cover zero come from the N(0,3)
component. Under the N(0,0.5) prior, those intervals get shrunken so much that they miss the true parameter.

It should be noted, however, that those effects are so large that they are very unlikely under the N(0,0.5) prior.
Such “data-prior conflict” can be resolved by having a prior with a flat tail. This is a matter of “Bayesian
robustness” and goes back to a paper by Dawid which can be found here.

Importantly, this does not mean that we need to know the true prior. We can mix the N(0,0.5) with almost
any wider normal distribution with almost any probability and then very large effects will hardly be shrunken.
Here, I demonstrate this by usin the mixture 0.99*N(0,0.5)+0.01*N(0,6) as prior. This is quite far from
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the truth, but nevertheless, the posterior inference is quite acceptable. We find that among one million
simulations, there are 741 credible intervals that do not cover zero. Among those, the proportion that do not
cover the parameter is 0.07 (CI: 0.05 to 0.09). See section “Results” below.

The point is that the procedure merely needs to recognize that a particular observation is unlikely to come
from N(0,0.5), and then apply very little shrinkage.

My own views on shrinkage in the context of the winner’s curse are here. In particular, a form of Bayesian
robustness is discussed in section 3.4 of a preprint of myself and Gelman here.

2 Helper functions
2.1 Normal mixture
We define some functions for working with normal mixtures.
dmix = function(x,p,m,s){ # normal mixture density

p %*% sapply(x, function(x) dnorm(x,mean=m,0,sd=s))
}

rmix = function(n,p,m,s){ # sample from a normal mixture
d=rmultinom(n,1,p)
rnorm(n,m%*%d,s%*%d)

}

pmix = function(x,p,m,s){ # cumulative distr
p %*% sapply(x, function(x) pnorm(x,mean=m,sd=s))

}

rmix = function(n,p,m,s){
d=rmultinom(n,1,p)
rnorm(n,m%*%d,s%*%d)

}

qfun = function(q,p,m,s){ # quantile function scalar q
uniroot(function(x) pmix(x,p,m,s)-q, interval=c(-20,20))$root

}

qmix = function(q,p,m,s){ # quantile function vector q
sapply(q, function(q) qfun(q,p=p,m=m,s=s) )

}

2.2 Posterior
We also define a function that computes the posterior distribution of a parameter with a normal mixture
prior which is observed with normal noise.
posterior = function(x,s,p,mu,sd){ # compute conditional distr of theta given (x,s)

# mixture distr of theta given by (p,mu,sd)
s2=s^2
sd2=sd^2
q=p*dnorm(x,mu,sqrt(sd2+s2)) # conditional mixing probs
q=q/sum(q)
pm=(mu*s2 + x*sd2)/(sd2+s2) # conditional means
pv=sd2*s2/(sd2+s2) # conditional variances
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ps=sqrt(pv) # conditional std devs
data.frame(q,pm,ps)

}

3 Data generation
We generate a million theta’s from a normal mixture 0.999 * N(0,0.5) + 0.001 * N(0,3). We add standard
normal noise to these theta’s to get our observations x.
set.seed(1234)
N=10^6
p=c(0.999,0.001)
sd=c(0.5,3)
theta=rmix(N,p,m=c(0,0),sd)
x=theta + rnorm(N,0,1)

4 Inference
We compute the posterior distribution of theta, and the 95% credible interval. As our prior, we use the
mixture 0.99 * N(0,0.5) + 0.01 * N(0,6)
ci=matrix(NA,N,2)
for (i in 1:N){

post=posterior(x=x[i],s=1,p=c(0.99,0.01),mu=c(0,0),sd=c(0.5,6))
ci[i,]=qmix(c(0.025,0.975),p=post$q,m=post$pm,s=post$ps)

}

boole1=(ci[,1]>0 | ci[,2]<0) # do not cover zero
boole2=(ci[,1]>theta | ci[,2]<theta) # do not cover parameter
test=binom.test(x=sum(boole2[boole1]),n=sum(boole1))
ci=test$conf.int

5 Results
We have the following results:

• The proportion of intervals that do not cover zero is 0.001.

• The proportion of intervals that do not cover the parameter is 0.049.

• There are 741 intervals that do not cover zero. Among those, the proportion that do not cover the
parameter is 0.067 (CI: 0.05 to 0.088).
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