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FAIR BETS AND INDUCTIVE PROBABILITIES!
JOHN G. KEMENY?

1. Introduction. The question of what constitutes fairness in betting
quotients has been studied by Ramsey, deFinetti, and Shimony.? Thanks
to their combined efforts we now have a satisfactory definition of fairness.

On the other hand, the explication of the concept of degree of confirmation
(inductive probability) has progressed rapidly in recent years, thanks
primarily to Carnap.4 This explication has usually proceeded by laying down
the axioms for frequency-probabilities, and elaborating on these. While
in the case where a frequency interpretation is intended these axioms are
clearly justified, in our case they have been laid down without any justi-
fication. Carnap’s presentation has been criticized for just this reason.®

The purpose of this paper is to show that the probability axioms are
necessary and sufficient conditions to assure that the degrees of con-
firmation form a set of fair betting quotients. In addition it will be shown
that one additional, highly controversial, axiom is precisely the condition
needed to assure that not only deFinetti’s weaker criterion but Shimony’s
criterion of fairness is also satisfied.

2. Definition of fairness. Let us first clarify what constitutes a bet.
Under certain circumstances e, two people wager money on whether a
certain event A will or will not take place. It may be an “‘even money”
bet, but in general ‘“‘odds” may be given. If a person offers to pay a sum
¢S if he is wrong, and is to receive (1—g¢)S if he is right, then he is giving the
odds ¢:(1—q). We will say that g is the betting quotient, and S is the stake.
A bet is determinate if we know: (1) ¢ and k. (2) ¢ and S. (3) whether the
first person is betting on or against 4’s taking place.

We now suppose that we have a method for fixing the betting quotients
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1 A summary of sections 1-5 was presented to the conference on induction, May 1953,
at New York University, sponsored by the Institute for the Unity of Science. Section 6
has been added more recently. It has come to my attention since then that Sherman
Lehman found a similar result independently of me. He will publish this in a forth-
coming paper.

2 The author wishes to thank S. Schanuel for his aid in the preparation of this
manuscript. He is also indebted to Mr. Schanuel for proposing the problem solved
in section 6. .

3 See [2], [3], and [9]. Shimony’s improvement on the previous work was com-
municated to the author orally, and forms part of a paper by Shimony, this JoURNAL,
vol. 20 (1955), pp. 1-28.

4 See [1].

5 A complete justification is given in [10].

¢ See [6)]. '
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for all pairs (e, #). How do we decide whether these are fair quotients? The
idea due to Ramsey and deFinetti is that if the quotients are really fair, we
may allow our opponent to choose everything else about the bets he cares
to make, and he is still unable to guarantee a profit for himself. Let us make
this more precise.

A betting system consists of the following decisions: (1) what circumstances
to bet under, and what hypotheses to bet on in these circumstances, i.c.,
the choice of a set of (¢, 4)-pairs; (2) the choosing of a stake for cach pair:
(3) the decision as to whether the bet is on or against 4, in cach case.

A set of betting quotients (for all (e, 4)-pairs) is fair if there is no betting
system which will guarantee a profit.?

Shimony suggested a most intuitive strengthening of this requirement:
A set of betting quotients is strictly fair if there is no betting system which
will guarantee that there will be no loss and at the same time offer a possible
gain.

The condition of fairness is violated if some betting system assures the
gambler that, no matter what actually happens, he will profit. The condition
of strict fairness is violated by a weaker guarantee, namely that under some
possible outcomes the gambler will win, and under all others he will break
even. Hence strict fairness implies fairness, and it certainly appears to be
a most intuitive extension of it.

3. Relation of fairness to inductive probabilities.8 The degree of
confirmation (inductive probability) of a hypothesis & on evidence e,
¢(k, €), has an important application to bets. If % is the hypothesis that a
certain event will take place, and e describes certain circumstances, then
c(h, e) gives the ‘‘reasonable” betting quotient for a bet on this event
under these circumstances. L.e., ¢(k, ¢) is this so-called reasonable betting
quotient for the pair (e, 4).° Whatever clse rcasonableness may imply, it
certainly implies fairness. And the author strongly believes that it implics
strict fairness.

Hence we have the requirement that the function ¢ thought of as defining
a set of betting quotients should define a (strictly) fair set. We will show
that the probability axioms are necessary conditions for the fulfillment
of fairness.

? The term ‘coherent’ is used by previous authors for what is here described as
“fair”” or “strictly fair.” The present terminology is preferred because it is more sug-
gestive, and it introduces a distinction between the weak and strong critcria. It must,
of course, be remembered that ‘fair’ is used in a precisely defined, narrow sense.

8 We will allow ourselves to use ‘¢’ and ‘4’ to stand either for events, or for des-
criptions of events. Since nothing depends on the manner in which events arc described,
this ambiguity is permissible.

? More precisely, if we bet on %, we must offer ¢: (1-c) odds. See [1], section 41B.
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First of all, it is assumed in the description of a bet that ¢S and (1—¢)S
are actual sums of money, hence each of them must be non-negative.
Therefore ¢ must be between 0 and 1.

(1) 0<clh o) < 1.

It is usually assumed that S is a positive amount, but this implies no
restriction since only ¢ concerns c¢(h, ¢). Actually, it is very convenient to
include O stakes to cover the case where no bet is made.

Again, the bets become nonsensical if the payments depend on the way
events are described. Hence we have the rather obvious condition that™c
should depend only on the contents of 4, ¢, not their form.

(2) If % and e are equivalent to 4’ and e’, respectively, then
c(h, €) = c(W', ¢'). ‘

So far we have assured only that the bets make sense at all. Now let
us consider the question of fairness.

Suppose that under circumstances e the event 4 is certain to take place.
Then under circumstances ¢ we adopt as a betting system: (1) Bet on A.
(2) Bet a unit. (3) Bet on (rather than against) 4. Then, as 4 is certain to take
place, we are assured of a profit 1—g. This profit must be nil if the bets
are to be fair, hence ¢ must be 1.

(3) If e implies &, then c(k, e) = 1.

Now consider two events 4 and %’ which cannot both occur under cir-
cumstances e. Let the betting quotient of the first event be g;, of the second
¢z, and the quotient of the bet that one or the other takes place be g;. Our
system under these circumstances will be to make the three bets just
described, each with a unit stake. If g, > ¢,+¢,, we bet oz the individual
events, and against their disjunction. Otherwise we make the reversed bets.
Let us suppose the former is the case.

There are three possible outcomes: (1) 4 takes place, but 4’ does not.
We win the first bet gaining 1—g;, and lose the others with losses of g,
and 1—g,. Our net gain is ¢g;—¢,—¢,. (2) 4’ takes place but % does not.
Clearly, our gain is the same as before. (3) Neither event takes place. Then we
suffer losses of ¢, and ¢, in the first two bets, but win g¢; in the third. Our
net gain is again the same. We see that if g; > ¢,4¢, we have a guaranteed
positive gain.

It is easily seen that in the reversed case we guarantee a gain of ¢, +¢,—¢3.
Hence g, cannot be less than ¢,+¢, either. So it must be equal to it.

(4) If e implies that » and A’ cannot both be true, then
chVH,e)=c(h e + cH,e).

This is the law of addition for probabilities.
Consider now two events 4 and 4’ which are supposed to occur in that
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order, if at all. Let ¢; be the quotient of the bet on both events occurring,
g, on the first event alone. And let g, be the quotient on a bet on the second
event which is placed after the first event has already taken place. Suppose
91 > g3 We make all three bets (the third one being conditional on the
occurrence of #), betting a unit agasnst both events taking place, betting
¢s units on the first, and a unit on the second event. We again analyze
the outcome into three possible cases: (1) The first event does not occur.
Then we win bet number one, gaining ¢,; we lose the second bet with a
loss of g,9;; and the third bet is never made. The net profit is g,—g,g,.
(2) The first event takes place, but the second does not. We win the first
two bets, gaining ¢, and (1—g,)g;. But we lose ¢, on the last bet. The net
profit is the same as before. (3) Both 4 and %’ occur. We lose 1—g¢, on the
first bet, and gain (1—g,)g; and 1—g, on the other two. The net profit is
again the same. Hence ¢, cannot be greater than g,g,.

By reversing the bets we see that ¢, cannot be smaller than g,g, either.
Hence they must be equal. And it is important to note that the assumption
about the order in which 4 and 4’ are to occur is irrelevant. By the obvious
alteration in our system we can cover the reverse order as well.

5) (k&' €) = c(h, &) x c(i', h&e).

This is the law of multiplication of probabilities.

(1)-(5), the usual laws of probability, have been shown to be necessary
to assure that ¢ defines fair bets.l® If we require strict fairness, we can
strengthen (3).

Suppose that % is not certain to take place under circumstances e, but
c(h, €) is nevertheless 1. We bet against h with a unit stake. If 4 does occur,
our loss is 1—¢ = O. If 4 does not occur we gain ¢ = 1. Hence we are
assured of not losing, and we may win. This violates strict fairness. [Note
that it does not violate fairness.] Hence for strict fairness the converse of
(3) is also necessary.

(3) c(k, e) = 1 if and only if e implies .

We have now shown that (1)-(5) are necessary for fairness, and the
stronger set is necessary for strict fairness. We will also show that these
conditions suffice.

4. Betting systems. We will show that if ¢ satisfies conditions (1)-(5),
then it defines fair betting quotients. So far we have only made use of a
few special betting systems. But now we must show that %o betting system
can guarantee a profit, and hence we need a general characterization of
betting systems.

10 Essentially this result (in a different formulation of the problem) was first found
by deFinetti.
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Let us suppose that the system is to go into effect when a certain initial
information ¢° is available, and that the bets concern the outcome of N
future events. Without loss of generality we may assume that there is a
time-order for these events. A bet may concern the outcome of any hy-
pothesis dependent on the N events, and we may either decide to place the
bet initially or to wait for the outcome of the first # events and make our
bet dependent on these. It will be convenient to think of the bets as all
initially made. Some bets will be outright and some will be conditional
on the outcome of 7 events.

Let ¢} be a report of the outcome of the first » events added to ¢°, where
7 can take as many values as there are possible outcomes. Let 4 be some
hypothesis concerning the remaining N—n events. (There are only a
finite number of such hypotheses, at least if equivalent hypotheses are
not to be counted as distinct.) So a bet may concern the pair (e7, 4;). The
odds are fixed by c; if we wish to bet on the hypothesis we must give
c(h}, ef) 1 1—c(h}, e}) odds, while if we bet against it we receive the same
odds. Our choice concerns the pairs, the stakes, and whether to bet on or
against the hypothesis.

A very convenient standard form is found by choosing all pairs, and
always betting both on and against the hypothesis — with stakes S7} and S}7,
respectively. If both stakes are O, the bet is in effect not made. If the first
stake is positive and the second O, we are betting on the hypothesis, while
in the reverse case we are betting against it. The only novel feature of this
characterization is that we are allowed to bet both on and against the
hypothesis. But the more freedom we allow ourselves in laying bets, the
stronger our theorem becomes. So our standard betting system is determined
by the non-negative numbers S7} and S7.

What will the payoff be? For any one bet we must consider three cases:
(1) ef does not take place, i.e., the first » events have some other outcome.
Then the bet does not take effect. (2) ¢f and A} both take place. We win
the bet on the hypothesis gaining [1—c(k}, ]')]S7}, and lose the bet against
it with a loss of [1—c(h}, €f)]Si:. (Remember that in one case we gave
the odds, and in the other we received them!) Our net profit is [1—c(4},
e})J[Si —S22). (3) ef takes place, but &7 does not. Then we win the second
bet and lose the first one. Our net profit is c(k}, e]')[SiF—S7].

We note that the result depends in each case only on the difference

% = St — S7?, which is highly intuitive. A positive difference corresponds
to betting on, a negative one against the hypothesis, while a O difference
means that no bet was placed. So we see that the most genéral betting
system is determined by the choice of the single set of numbers S

So far we have only considered the outcome of a single bet. But from
the previous discussion it is immediately seen what the total net profit
resulting from a betting system is. Of course this profit will depend on
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the outcome of the N events, but if this outcome is %4Y, the profit is
6) prithy) = Zy [1—c(h], e)1SH + Xy [—c(h], €)1S5

where the first sum is over all those bets for which 43 implies that both
their e and their %2 took place, while the second sum is over bets where e
did take place but % did not—according to 4Y. These correspond to the
last two cases discussed above. The first case contributes nothing to prf.

5. The converse theorems. It is now our task to show that the profit
in (6) cannot always be positive, if ¢ satisfies (1)—(5). Let us first define the
c-mean estimate of profit, in accordance with the usual terminology:

(7) Prf=Zchy, e X prfhy),

where the sum is taken over all possible valucs of %, i.e., all possible outcomes
of the N events.

Lemma. If ¢ satisfies (1)—(5), then Prf = O.

Proof. From (6) and (7) we sec that Prf is a linear function of the S7j,
hence we may write it in the form

8) ZalSy

Let us find a}; in terms of the c-values. The first sum in (6) will contribute
c(hY, e[1—c(h?, ef)] for all & such that A3 implics the occurrence of both
e and A7. The second sum will contribute c(A}, e®)[—c(h}, ¢f): for all £ such
that AY implies the occurrence of ¢} and the non-occurrence of 4}. Therefore,

9) af = [1—c(h}, )} Zy o(hY, &) — c(h], €F) E (i, ),

where the first sum is over outcomes that imply ef&A} while the sccond is
over outcomes implying e;&~h;.

The possible outcomes arc mutually exclusive, and hence (4) may be
applied to any pair of them. By repeated application cach sum may be
changed into a single c-value c(hy V ...V Ay, %) where the new hy-
pothesis is the disjunction of the hypotheses occurring in the sum. Since
the outcomes are exhaustive, the disjunction of all those implying a ccrtain
partial result is equivalent to the assertion of this partial result. Hence,
by (2), the first sum may be replaced by c(ef&A7, ¢°), and the second sum by
c(ef&~h7). Putting these values into (9) and collecting terms we obtain

(10) aj; = c(e::‘&h,’.’, &%) — c(h}, ef)[c(ef&h], ) + c(ej&~hj, €%)).

i
We can apfnly (4) to the sum in brackets. By (2), the result may be replaced
by c(e?, ¢°). We also note that since e} implies ¢, it is equivalent to ej'&e®.

(11) af = c(ef&h}, e%) — c(h], e;&e) X c(ef, €°).

(4
But by (5) this must be 0. Since each coefficient in (8) is O, the sum is 0.
Hence Prf is 0. Q.E.D.
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THEOREM 1. If ¢ satisfies (1)-(5), then it defines fair betting quotients.

Proof. Suppose the set of quotients is not fair. Then for some betting
system prf(hY) > O for all possible outcomes. Consider the.c(h¥, ¢9). Their
sum may, by repeated uses of (4), be replaced by a single c-calue. In this
the new hypothesis is a disjunction of all possible outcomes, and hence
analytically true. Hence ¢° implies it. Therefore (3) tells us that the sum of
the c(hY, €% is 1. By (1) we infer that all of them are non-negative and at
least one is positive. But then Prf > 0, contrary to our lemma. Q.E.D.

THEOREM 2. If ¢ satisfies (1), (2), (3'), (4), and (5), then it defines strictly
fair betting quotients.

Proof. Suppose the set of quotients is not strictly fair. Then for some
betting system all the prf(hY) are non-negative, and at least one is positive.
c(hY, ) +c(~hY, €9 = c(hYV~hY, %) = 1 by (4) and (3’). Since the out-
come %Y is one of many possibilities according to €9, its negation cannot be a
consequence of ¢°. Hence by (3') c(~AY, €°) # 1. Hence by (1) it is less than
1. Hence c¢(hY) > 0O for each outcome. Hence Prf > 0, contrary to our
lemma. Q.E.D.

We have now shown that (1)-(5) are necessary and sufficient conditions
for c to define fair betting quotients, and the stronger set of conditions is
necessary and sufficient for strict fairness.

6. The choice of a c-function. In choosing a precise definition of
inductive probabilities many factors enter besides considerations of fairness,
factors that are far beyond the scope of this paper. But we can at least
ask how much freedom of choice is left after we have assured that the
betting quotients defined are fair. The answer is entirely different for
fairness and for strict fairness.

To simplify the following discussion we will assume that there is a finite
set of mutually exclusive and exhaustive strongest statements in our
language.’* (A statement is a strongest statement if it is self-consistent
and there is no self-consistent statement which implies it and is not equiva-
lent to it.) These are called the state-descriptions (sds) of the language. A sd
has the property that for any statement it either implies the statement or
its negation. And an exhaustive set enables us to write any statement as the
disjunction of all those sds that imply it (rather than its negation). This
is a convenient normal form for statements.1?

11 These results can be extended by employing the concept of a model in place of sds.
This is described in [7]), and developed in [8].

12 A sd may be thought of as describing a possible state of the world. Every factual
statement we make narrows down the possibilities. In its normal form we identify a
statement with the assertion that one of the possible worlds in which it is true must be
the real world. :
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Suppose we require strict fairness. Let ¢ be an analytically true statement.
From (5) we see that '

(12) c(h&e, t) = c(e, t) X c(h, e&t).
The numbers c(w, t) are the so-called a prior: probabilities of statements,
and the usual notation is

(13) m(w) = c(w, ).

Using this in (12), and remembering that e&? is equivalent to e:

(14) m(h&e) = m(e) X c(h, ).

Strict fairness helps us in assuring that if ¢ is sclf-consistent (which has

been taken for granted), then c(e, {) = m(f) > 0. We see this as in the proof
of theorem 2. Hence we may write
(15) c(h, ) = m(h&e)[m(e).
And we see that the m-function determines the c-function. If we write w
as a disjunction of sds, 2,V ... Vz,, we have from (2) by repeated applications
of (4):
(16) m(w) = c(z;V ... Vz,,8) = c(z, )+ ... +c(z,, 8) =

= m(z)+ ... +m(z).
Hence the choice of the m(z) for the sds determines the m-function. These
are known as the weights of the sds. By (1) the weights are non-negative,
and by strict fairness they must be positive. Furthermore the analytically
true statement is equivalent to a disjunction of all the sds, and since by
(2) m(t) = 1, the sum of all the weights is 1.

We have shown that our only choice for a strictly fair ¢ is the assignment
of positive weights to the sds, whose sum is 1. It is a routinc matter to
check that any such assignment will define a strictly fair ¢c-function.!3

If we require only fairness, the situation is less simple. We still have (14);
but if m(e) = O, then ¢(h, €) is not determined by this equation. We will
introduce an iterative procedure, showing at each step what the maximum
number of choices is. At the end we will prove that all these choices were
actually available to us, by showing that any c-function determined by such
choices is fair.

We already know that originally we may choose no more than the weights
of the sds, which have to be non-negative and add up to 1. These define an
m-function, call it my(w), according to (16). That no more is open is seen by
the fact that if all the weights are positive, then ¢ is completely determined.
Let us call this the Oth step. In the Ist step we are confronted with a

13 In accordance with the intuitive description of sds, given in footnote 11, we see
that all that we are allowed to do is to assign a prior: probabilities to the possible
worlds. No possible world may receive O probability, and the sum of the probabilities
must be 1. The a priori probability of a statement is the sum of the probabilities of
those worlds in which it would be true.
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function m,(w), which defines c(k, ) according to (15), whenever my(e) > 0.
Let Z, be the disjunction of all sds having received O weight.

(17) If e implies Z,, c(h&e, Z,) = c(e, Z,) X c(h, €).
And, clearly, the ¢’s that imply Z, are precisely those which have mg(e) = 0.

So the doubtful c-values may all be determined by the ¢(w, Z,), where w
implies Z;.

(18) If w implies Z,, m,(w) = c(w, Z,).

At most the m,-function is open in step 1, since choosing all positive values
for the function fixes all the remaining c-values by (17). Since w can be
written as a disjunction of sds forming part of Z,, by (2) and (4) it suffices
to fix the m,-weights of these sds. By (1) these weights must be non-negative,
and since by (3) m,(Z;) = 1, the sum of the weights must be 1. Hence
in step 1 our task is the choosing of m,-weights for all those sds having
received O my-weights, where the weights are again non-negative and have
sum 1.

We iterate. In the nth step we are confronted with an m,_,-function.
We can show, as we did above, that all that is open is the assignment of
weights to those sds having received O m,.;-weights. The new weights
define the m -function for all statements which can be written as a dis-
junction of these sds. They in turn determine the c-values of some previously
doubtful cases. Since the weights are non-negative and have sum 1, at
least one sd receives a positive weight in each step, and the number of
permissible choices decreases. Since there are only a finite number of sds,
the process must terminate.

For any e there is a unique m-function such that m,(e) = 0. This is the
function constructed in the step in which for the first time one of the sds
in e receives a positive weight.1¢ In all earlier steps m(e) = O, and in later
steps m is not defined for e. Let us denote this m-function by ‘m®. It is
clear that each c-value is uniquely determined by the iterative process, and
(19) c(h, €) = m*(h&e)/m*(e).

We have shown that we have at most the following choices: We may
choose weights for all the sds, and then in each iterative step we may choose
a weight for each sd having received O weight previously. The weights are

always non-negative, and all those chosen in a given step add up to 1.
The process is finite, having no more steps than there are sds.1%

14 By a sd ‘in @’ we mean a sd occurring in the normal form of w.

15 We might give an intuitive interpretation of this result as follows (cf. footnote 13):
We are allowed to label as “‘impossible” some of the logically permissible worlds. In
each iterative step we are asked: ‘‘Suppose you know that what you have previously
labeled as impossible did as a matter of fact take place, how would you modify your
probabilities?”” And in each step we may label some possibilities as still impossible.
Hence we get a hierarchy of of ‘‘more and more impossible worlds.”
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To show that all these choices are actually iree, we will show that any
c-function defined by (19) is fair. For this we must show that all five con-
ditions are satisfied.

(1) is given by the facts that m*(¢) > 0, that the weights are non-negative,
and that h&e consists of some of the sds of e. (2) is trivial. If ¢ implies &,
h&e is equivalent to e, and hence (19) gives 1 — in accordance ‘with (3).
For (4) it suffices to show that if e implies that 4 and A’ cannot both be
true, then m*([AVh'1&e} = m*(h&e) + m*(h'&e). From the hypothesis we
see that [AVA]&e is equivalent to the statement (h&e]V[h'&e]. And since
the two alternatives are exclusive, their normal forms have no sd in common,
and hence the m-value of the disjunction is the sum of the m-values. For
(5) we have to show that

(20) me(h&h'&e)/me(e) = [me(h&e)/me(e)] X [m &(h&h'&e)jm e(h&e)].

Distinguish two cases. If m°(h&e) > O, then some sd in h&e has positive
me-weight, and hence m*® is the same as m*®. (20) is then an identity.
If m*(h&e) = O, then m*(h&h'&e) must also be 0, hence both sides of (20)
are 0. This shows that (19) defines a fair c-function, and that we rcally
have all the described choices.

Let us conclude this section by constructing a c-function that is fair
but not strictly fair. We know that it suffices to choose a single 0 weight.
But to make the example as extreme as possible, we will choose — in cach
step — all but one of the weights as 0. Let us number the sds: z,, ... , z,.
At the beginning we choose weight 1 for z, O for the others. And in cach
iterative step we assign 1 to the first open sd, and O to the rest. Let z, be
the first sd in the normal form of e. Then m* is m;. m*(h&e) is 1 if z, occurs
in the normal form of 4, O otherwise. From (19) we see:

(21) c¢(h, €) is 1 if the first sd in e is also in 4, O otherwise. .

From our previous results we know that this c-function is fair but not
strictly fair. It is certainly a most peculiar way of fixing betting quotients.16

7. Conclusion. By establishing the equivalence of (1)-(5) and the
requirement of fairness we hope to have justified these five conditions
as conditions of adequacy for a definition of inductive probability.

In addition we have shown that the requirement of strict fairness is
equivalent to the stronger set gotten by replacing (3) by (3'). Strict fairness
seems like a most intuitive requirement, and it serves to exclude such pe-

1¢ This is a good example of the hierarchy of impossibles mentioned in foot note 15.
Each sd is “‘more impossible’’ than the previous — i.e., even if we are forced to admit
the first ¢ sds as possible, we still refuse the remainder. But it must not be supposed that
all definitions violating strict fairness, or even fairness, are so obviously unreasonable.
For a definition which violates both (5) and (3’), and yet has considerable intuitive
appeal, see [4] and [5].
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culiar c-functions as (21). Hence, it seems to the author, we are justified in
also requiring (3') of a definition of inductive probability.

In addition we have shown what choice is left after fulfilling the re-
quirement of fairness or strict fairness for a c-function. This serves as a
guide in searching for additional requirements.
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