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EDITORIAL

The statistics wars and intellectual conflicts of interest

How should journal editors react to heated disagreements about
statistical significance tests in applied fields, such as conserva-
tion science, where statistical inferences often are the basis for
controversial policy decisions? They should avoid taking sides.
They should also avoid obeisance to calls for author guidelines
to reflect a particular statistical philosophy or standpoint. The
question is how to prevent the misuse of statistical methods
without selectively favoring one side.

The statistical-significance-test controversies are well known
in conservation science. In a forum revolving around
Murtaugh’s (2014) “In Defense of P values,” Murtaugh argues,
correctly, that most criticisms of statistical significance tests
“stem from misunderstandings or incorrect interpretations,
rather than from intrinsic shortcomings of the P value” (p. 611).
However, underlying those criticisms, and especially proposed
reforms, are often controversial philosophical presuppositions
about the proper uses of probability in uncertain inference.
Should probability be used to assess a method’s probability of
avoiding erroneous interpretations of data (i.e., error probabil-
ities) or to measure comparative degrees of belief or support?
Wars between frequentists and Bayesians continue to simmer in
calls for reform.

Consider how, in commenting on Murtaugh (2014), Burnham
and Anderson (2014 : 627) aver that “P-values are not proper
evidence as they violate the likelihood principle (Royall, 1997).”
This presupposes that statistical methods ought to obey the like-
lihood principle (LP), a long-standing point of controversy in
the statistics wars. The LP says that all the evidence is contained
in a ratio of likelihoods (Berger & Wolpert, 1988). Because this
is to condition on the particular sample data, there is no con-
sideration of outcomes other than those observed and thus no
consideration of error probabilities. One should not write this
off because it seems technical: methods that obey the LP fail
to directly register gambits that alter their capability to probe
error. Whatever one’s view, a criticism based on presupposing
the irrelevance of error probabilities is radically different from
one that points to misuses of tests for their intended purpose—
to assess and control error probabilities.

Error control is nullified by biasing selection effects: cherry-
picking, multiple testing, data dredging, and flexible stopping
rules. The resulting (nominal) p values are not legitimate p values.
In conservation science and elsewhere, such misuses can result
from a publish-or-perish mentality and experimenter’s flexibil-
ity (Fidler et al., 2017). These led to calls for preregistration of
hypotheses and stopping rules–one of the most effective ways
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to promote replication (Simmons et al., 2012). However, data
dredging can also occur with likelihood ratios, Bayes factors,
and Bayesian updating, but the direct grounds to criticize infer-
ences as flouting error probability control is lost. This conflicts
with a central motivation for using p values as a “first line of
defense against being fooled by randomness” (Benjamini, 2016).
The introduction of prior probabilities (subjective, default, or
empirical)–which may also be data dependent–offers further
flexibility.

Signs that one is going beyond merely enforcing proper use
of statistical significance tests are that the proposed reform is
either the subject of heated controversy or is based on presup-
posing a philosophy at odds with that of statistical significance
testing. It is easy to miss or downplay philosophical presuppo-
sitions, especially if one has a strong interest in endorsing the
policy upshot: to abandon statistical significance. Having the
power to enforce such a policy, however, can create a conflict
of interest (COI). Unlike a typical COI, this one is intellectual
and could threaten the intended goals of integrity, reproducibil-
ity, and transparency in science.

If the reward structure is seducing even researchers who are
aware of the pitfalls of capitalizing on selection biases, then one
is dealing with a highly susceptible group. For a journal or orga-
nization to take sides in these long-standing controversies—or
even to appear to do so—encourages groupthink and discour-
ages practitioners from arriving at their own reflective conclu-
sions about methods.

The American Statistical Association (ASA) Board appointed
a President’s Task Force on Statistical Significance and Repli-
cability in 2019 that was put in the odd position of needing to
“address concerns that a 2019 editorial [by the ASA’s executive
director (Wasserstein et al., 2019)] might be mistakenly inter-
preted as official ASA policy” (Benjamini et al., 2021)—as if
the editorial continues the 2016 ASA Statement on p-values
(Wasserstein & Lazar, 2016). That policy statement merely
warns against well-known fallacies in using p values. But Wasser-
stein et al. (2019) claim it “stopped just short of recommending
that declarations of ‘statistical significance’ be abandoned” and
announce taking that step. They call on practitioners not to use
the phrase statistical significance and to avoid p value thresholds.
Call this the no-threshold view. The 2016 statement was largely
uncontroversial; the 2019 editorial was anything but. The
President’s Task Force should be commended for working to
resolve the confusion (Kafadar, 2019). Their report concludes:
“P-values are valid statistical measures that provide convenient
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conventions for communicating the uncertainty inherent in
quantitative results” (Benjamini et al., 2021). A disclaimer that
Wasserstein et al., 2019 was not ASA policy would have avoided
both the confusion and the slight to opposing views within the
Association.

The no-threshold view has consequences (likely unintended).
Statistical significance tests arise “to test the conformity of the
particular data under analysis with [a statistical hypothesis] H0
in some respect to be specified” (Mayo & Cox, 2006: 81). There
is a function D of the data, the test statistic, such that the larger
its value (d), the more inconsistent are the data with H0. The p

value is the probability the test would have given rise to a result
more discordant from H0 than d is were the results due to back-
ground or chance variability (as described in H0). In computing
p, hypothesis H0 is assumed merely for drawing out its prob-
abilistic implications. If even larger differences than d are fre-
quently brought about by chance alone (p is not small), the data
are not evidence of inconsistency with H0. Requiring a low p

value before inferring inconsistency with H0 controls the proba-
bility of a type I error (i.e., erroneously finding evidence against
H0).

If p is low, then there is a high probability, 1 – p, that the test
would have produced a result that accords better with H0, if one
were dealing with chance variability alone. So, a low p value indi-
cates inconsistency with H0. The H0 may be seen as statistically
falsified (at the indicated level) if the low p value is not merely
an “isolated result” but is brought about reliably (Fisher, 1947).

Such an indication is not automatically evidence of a hypoth-
esis that explains the effect. Neyman–Pearson (N-P) tests are
explicit that rejecting H0 only indicates the alternative statistical
hypothesis H1, where H0 and H1 together exhaust the possibil-
ities for the test. The simple (Fisherian) statistical significance
test, with a single null hypothesis, has important uses in test-
ing model assumptions; and both Bayesians and frequentists use
them to this end (Gelman and Shalizi, 2013). However, a fair
comparison of tests and confidence intervals must look to N-P
tests, there being a duality between the two. Tests can be speci-
fied to control the probability of both type I and type II errors
(i.e., erroneously failing to find evidence against the null hypoth-
esis). Setting a low type II error probability against alternatives
of interest ensures high power to detect them. Power turns on
there being a threshold value for D beyond which data are taken
as evidence against H0.

Whether interpreting a simple Fisherian or an N-P test,
avoiding fallacies calls for considering one or more discrepan-
cies from the null hypothesis under test. Consider testing a nor-
mal mean H0: μ ≤ μ0 versus H1: μ > μ0. If the test would fairly
probably have resulted in a smaller p value than observed, if μ
= μ1 were true (where μ1 = μ0 + γ, for γ > 0), then the data
provide poor evidence that μ exceeds μ1. It would be unwar-
ranted to infer evidence of μ > μ1. Tests do not need to be
abandoned when the fallacy is easily avoided by computing p

values for one or two additional benchmarks (Burgman, 2005;
Hand, 2021; Mayo, 2018; Mayo & Spanos, 2006).

The same is true for avoiding fallacious interpretations of
nonsignificant results. These are often of concern in conserva-
tion, especially when interpreted as no risks exist. In fact, the

test may have had a low probability to detect risks. But non-
significant results are not uninformative. If the test very proba-
bly would have resulted in a more statistically significant result
were there a meaningful effect, say μ > μ1 (where μ1 = μ0 +

γ, for γ > 0), then the data are evidence that μ < μ1. (This is
not to infer μ ≤ μ0.) “Such an assessment is more relevant to
specific data than is the notion of power” (Mayo & Cox, 2006:
89). This also matches inferring that μ is less than the upper
bound of the corresponding confidence interval (at the asso-
ciated confidence level) or a severity assessment (Mayo, 2018).
Others advance equivalence tests (Lakens, 2017; Wellek, 2017).
An N-P test tells one to specify H0 so that the type I error is the
more serious (considering costs); that alone can alleviate prob-
lems in the examples critics adduce (H0 would be that the risk
exists).

Many think the no-threshold view merely insists that the
attained p value be reported. But leading N-P theorists already
recommend reporting p, which “gives an idea of how strongly
the data contradict the hypothesis…[and] enables others to
reach a verdict based on the significance level of their choice”
(Lehmann & Romano, 2005: 63−64). What the no-threshold
view does, if taken strictly, is preclude testing. If one cannot say
ahead of time about any result that it will not be allowed to count
in favor of a claim, then one does not test that claim. There is
no test or falsification, even of the statistical variety. What is the
point of insisting on replication if at no stage can one say the
effect failed to replicate? One may argue for approaches other
than tests, but it is unwarranted to claim by fiat that tests do not
provide evidence. (For a discussion of rival views of evidence in
ecology, see Taper & Lele, 2004.)

Many sign on to the no-threshold view thinking it blocks per-
verse incentives to data dredge, multiple test, and p hack when
confronted with a large, statistically nonsignificant p value. Care-
fully considered, the reverse seems true. Even without the word
significance, researchers could not present a large (nonsignificant)
p value as indicating a genuine effect. It would be nonsensical
to say that even though more extreme results would frequently
occur by random variability alone that their data are evidence
of a genuine effect. The researcher would still need a small p

value, which is to operate with a threshold. However, it would
be harder to hold data dredgers culpable for reporting a nom-
inally small p value obtained through data dredging. What dis-
tinguishes nominal p values from actual ones is that they fail to
meet a prespecified error probability threshold.

The no-threshold view is in tension with the U.S. Food and
Drug Association’s “long established drug review procedures
that involve comparing p-values to significance thresholds for
Phase III drug trials” (Wasserstein et al., 2019: 10). In response
to a request by ASA officials to revise their author guidelines,
The New England Journal of Medicine (2019) refuses to relinquish
their requirement that the use of statistics in “claiming an effect
or association should be limited to analyses for which the analy-
sis plan outlined a method for controlling Type I error…” (Har-
rington et al., 2019: 286).

While it is well known that stopping when the data look
good inflates the type I error probability, a strict Bayesian is not
required to adjust for interim checking because the posterior
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probability is unaltered. Advocates of Bayesian clinical trials are
in a quandary because “The [regulatory] requirement of Type
I error control for Bayesian [trials] causes them to lose many
of their philosophical advantages, such as compliance with the
likelihood principle” (Ryan et al., 2020: 7).

It may be retorted that implausible inferences will indirectly
be blocked by appropriate prior degrees of belief (informative
priors), but this misses the crucial point. The key function of
statistical tests is to constrain the human tendency to selectively
favor views they believe in. There are ample forums for debating
statistical methodologies. There is no call for executive direc-
tors or journal editors to place a thumb on the scale. Whether
in dealing with environmental policy advocates, drug lobbyists,
or avid calls to expel statistical significance tests, a strong belief
in the efficacy of an intervention is distinct from its having been
well tested. Applied science will be well served by editorial poli-
cies that uphold that distinction.
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