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What is Bayesian workflow?

Bayesian workflow involves
- designing/porting models,
- fitting models to data,
- validating computation,
- evaluating models,
- modifying models,
- addressing computational issues,
- comparing models, and

- using models.



Textbook form of workflow

1. Set up a full probability model: a joint distribution for
observables and unobservables consistent with knowledge
about the scientific problem and data collection.

2. Condition on observed data: calculate and interpret the
posterior distribution.

3. Evaluate: does it fit data, are conclusions reasonable, is it
sensitive to assumptions?
4. Iterate: If model fails evaluation, go back to (1).

e Gelman et al. 2013. Bayesian Data Analysis, 3rd Edition. Chapman &
Hall.



Our actual workflow
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Bayesian model

- y is observed data, 0 are unknown parameters
- suppress unmodeled predictors/features x

- prior p(0)

- sampling p(y | 0)
- likelihood £(0) = p(y | 0) for fixed y

- joint p(y, 0)

- posterior p(0 | y)



Bayesian inference is expectation

. parameter estimate 0 = E[0 | y]
- event probability Pr[C] = E[I-(0) | ¥]

- posterior predictive p(y | y) = E[p(y | 0) | ¥]



Expectations via Monte Carlo
- calculate asymptotically exact expectations by averaging
E[f(0) | ¥] lof(0)-p(0]y)do
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- MCMC central limit theorem says that if draws
0L, ...,0M ~p(o|y)

have effective sample size M., then

posterior standard deviation
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Probabilistic programs typically...

- code Bayesian joint densities
support sampling from the posterior to compute expecta-
tions
- often with approximate variational posteriors

- sometimes with acceleration like control variates

but it turns out that we
need more than posterior sampling for workflow



Prior predictive checks
- prior predictive checks simulate data from the marginal
Y~ p(y)
- often by generating from prior and sampling distributions
0™ ~p(0) Y ~p(y| 6™

- then we compare simulated data y*™ to observed y

e Gabry, Simpson, Vehtari, Betancourt, Gelman. 2019. Visualization in
Bayesian workflow. JRSS A.



Prior predictive example
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(a) Vague priors (b) Weakly informative priors (¢) Comparison
particulate matter pollution model with prior on log(PM> s)
vague prior generates values as dense as neutron star
weakly informative prior controls scale

subtle with priors on interacting parameters
- why we need a PPL!



How does Stan fare?

Stan model for posterior inference

data { int<lower=0> N; int<lower=0, upper=1> y[N]; }
parameters { real<lower=0, upper=1> theta; }
model { theta ~ beta(2, 10); y ~ binomial(theta); }

Simulate 5™ ~ p(0) with N = 0, but can’t simulate y

Stan model for prior predictive checks

data { int N; }
parameters { real<lower=0, upper=1> theta; }
model { theta ~ beta(2, 10); }
generated quantities {
int y_sim[N] = bernoulli_rng(N, theta);
}



How do other PPLs fare?

- PyMC3 also declares data with observed=

y_obs = pm.Normal("y_obs", mu=X @ weights,
sigma=noise, observed=y)

- ADMB declares data in a DATA SECTION

- Pyro uses effect handler condition() for data, e.g.,

poutine.condition(model, data={"z": 1.0})

- Turing.jl assigns data variables before just-in-time compi-
lation; values may be specified missing

- BUGS sets data at run time w.r.t. its neutral graphical model

theta ~ dbeta(2, 10); for (n in 1:N) y[n] ~ dbern(theta);



Simulation-based Calibration
to validate inference w.r.t. well-specified data
- approximate inference like VI will fail
draw 05 ~ p(0) from the prior
draw ySI™ ~ p(y | 05™) from the sampling distribution
draw 0, ..., 0™ ~ p(0 | y*™) from algorithm to test

because (y*™, 05™) ~ p(y,0) and (y5™,00™) ~ p(y,0),
0% should have uniform rank among the 6™
« Cook, Gelman, Rubin. 2006. Validation of software for Bayesian models using posterior quantiles. JCGS.

« Talts, Betancourt, Simpson, Vehtari, Gelman. 2018. Validating Bayesian inference algorithms with simulation-based

calibration. arXiv



SBC diagnoses

- over-dispersed:

under-dispersed:

skewed:
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How do PPLs fare on SBC?

- simulation-based calibration requires simulating from prior
and sampling distribution

- presents same problem with data specification as prior
predictive checks



Posterior predictive checks

- Simulate new data from posterior for draws m € 1:M,

0  ~ pOly)

ysmm- o~ p(y | )

- Compare statistics s(y) on observed data to those of pos-
terior simulations s(y$™mm) e g.,

- $() can be anything, e.g., mean, max, sd, quantiles, ranks,
skew, etc.

- Plot, or compute two-sided posterior p-values to automate,
p-value = min( Pr[s(y) < s(y*™)],
1 -Prls(y) <s(ysm)])



Posterior predictive example

Posterior p-values
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- model of repeated binary trials (baseball batting avg.)

- vertical line is s(y), histogram is s(ysm(m))
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- max() and sd() statistics “reject” the no-pooling model



PPL support for PPCs

- requires extracting posterior draws and simulating data
from them

- still the same problem of flexibly specifying data vs. pa-
rameters (i.e., knowns vs. unknowns)



Cross-validation

- divide data into train/test split (say y and y)
- fit model on training set

- evaluate predictive log density on test set,
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logp(y | y)

log-sum-exppi_; log p(y | 0m™) — log(M)



PPL support for X-val

- fit with one data set y and evaluate with another y

BUGS almost succeeds

for (n in 1:N) y[n] ~ dnorm(alpha + x[n] * beta, tau)
tau ~ gamma(l, 1); alpha ~ normal(0, 2); beta ~ normal(0, 2)

by letting y = y™in st ha partially missing
- but doesn’t let you retrieve the log density values for ytest

- this also seamlessly handles missing data (that’s modeled)
- Turing.jl allows the same thing (values?)

- other PPLs require additional sampling statements for the
test data



Stan for X-val

Stan codes leave-one-out X-val by specifying test point

data {
int N; int[N] y; 1int nt;
}
parameters {
real mu; real<lower=0> sigma;
}
modeT {
append_row(y[:nt-1], y[nt+1l:]) ~ normal(mu, sigma);
mu ~ normal(0, 1); sigma ~ lognormal(0, 1);
}
generated quantities {
real Tp = normal_Tpdf(y[nt] | mu, sigma);
}

but it’s a totally different model



Sensitivity analysis

- we’d like to understand how changes in our model affect
posterior inference

- e.g., vary priors and see how posterior expectations changes
- all PPLs let you evaluate alternative constants easily
- derivative-based sensitivity w.r.t. const. c is trickier

0
&[E[f((?) ly,c]

Ryan Giordano modified Stan’s C++ to compute this for his
(Berkeley) Ph.D. thesis, but it’s not exposed



Sensitivity example
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Estimated Covid seroprevalence (y axis) as a function of
- the hyperprior for specificity (x-axis)

- the hyperprior for sensitivity (facets with values from left-
to-right 0.01, 0.25, 0.5, 0.75, 1.0)

e Gelman, Carpenter. 2020. Bayesian analysis of tests with unknown
specificity and sensitivity. JRSS C.



Workflow goes beyond inference

- clamp/pin parameters to fixed values?
- Stan requires moving the variable from the parameter to
the data block
- working with multiple (related) models?
- model comparison
- model reparameterization

- model averaging/mixing/stacking

- autogenerating concurrent or GPU code?

- Stan requires using parallel map functions in the program



Naming and persistence is hard

how to name and store multiple model variants?

- uk-covid-icar, uk-covid-rwl,
uk-covid-rw2, uk-covid-rw2-icar,
uk-covid-rw2-bym2, uk-covid-rw2-bym2pc,
uk-covid-rw2-bym2pc-no-socio, ad infinitum ...

- plus multiple versions of the same model (over time)
how to name and store output?

how to work with distributed teams?
- e.g., how to share results given that samples can be large?

- or that they run on clusters in pieces



Other workflow issues

- data may be tied up with privacy and/or intellectual prop-
erty concerns

- e.d., medical records, search logs, street views, etc.

- end application may require deployment in production
- bundle with Docker, or otherwise deploy
- robustness is a key issue

- update as new data comes in

- What are we missing?



Democratization of modeling

- expression-based iterfaces use PPLs under the hood, but
give users simpler specification sublanguages
- brms: expression interface in R
- a Poisson GLM with log link is a one-liner

y ~ age + base * treatment + (1 | patient)

- fully encapsulated interfaces use PPLs under the hood
but give users a menu of model choices
- Prophet (time-series with trends and cycles)
- Torsten (PK/PD compartment models)

- these systems involve lots of defaults
- evaluation crosses application boundaries



Elephant in the room: Modularity

- how to modularize model components like hierarchical
priors or GP priors?

- Stan lets users define functions

- e.g., arandom-walk or ICAR prior’s density function

- but they can’t cross block boundaries, e.g., data, param-
eter, model, generated quantities

- what about other PPLs?

- aresidual problem: density is modular, behavior isn’t

- a prior can only be understood in the context of a likeli-
hood and a data set
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