What do we need from a PPL
to support Bayesian workflow?

Bob Carpenter

Center for Computational Mathematics
Flatiron Institute

October 2021 ProbProg 2021

What is Bayesian workflow?

Bayesian workflow involves
- designing/porting models,
- fitting models to data,
- validating computation,
- evaluating models,
- modifying models,
- addressing computational issues,
- comparing models, and

- using models.

Textbook form of workflow

1. Set up a full probability model: a joint distribution for
observables and unobservables consistent with knowledge
about the scientific problem and data collection.

2. Condition on observed data: calculate and interpret the
posterior distribution.

3. Evaluate: does it fit data, are conclusions reasonable, is it
sensitive to assumptions?
4. Iterate: If model fails evaluation, go back to (1).

e Gelman et al. 2013. Bayesian Data Analysis, 3rd Edition. Chapman &
Hall.

Our actual workflow

Prior predictive check (2.5

Computation is

provisionally accepted

Modify the model (7)

Pick a now staring model
Replace model companant
Envichioxpand the modsl

Prior is provisionally
accopted

Fit the model (3)

Evaluate and use model (6)

Use an approsimation

[roomreaamass_|

veanmen |

Influence o prior

P —

Postsuatfcaton

I
| [mtusnce of indvica cata parts

Model is provisionally
accepted

i Addressing computational issues (5) | | Compare models (8) |
| [smtynemocet | [smcungmamus crans ‘ o ‘ 1 T compmmomienmess | |
| information . |
! Check for mutmodally i Mutierso nalyis |
| [for small number offeraons| | i
[rnonaswserctaaa | | it | [ovewp f—

Bayesian model

- y is observed data, 0 are unknown parameters
- suppress unmodeled predictors/features x

- prior p(0)

- sampling p(y | 0)
- likelihood £(0) = p(y | 0) for fixed y

- joint p(y, 0)

- posterior p(0 | y)

Bayesian inference is expectation

. parameter estimate 0 = E[0 | y]
- event probability Pr[C] = E[I-(0) | ¥]

- posterior predictive p(y | y) = E[p(y | 0) | ¥]

Expectations via Monte Carlo
- calculate asymptotically exact expectations by averaging
E[f(0) | ¥] lof(0)-p(0]y)do
= My 35 Spioy £(O0)

N e (0,

- MCMC central limit theorem says that if draws
0L, ...,0M ~p(o|y)

have effective sample size M., then

posterior standard deviation

VMgt

standard error (of estimate) =

Probabilistic programs typically...

- code Bayesian joint densities
support sampling from the posterior to compute expecta-
tions
- often with approximate variational posteriors

- sometimes with acceleration like control variates

but it turns out that we
need more than posterior sampling for workflow

Prior predictive checks
- prior predictive checks simulate data from the marginal
Y~ p(y)
- often by generating from prior and sampling distributions
0™ ~p(0) Y ~p(y| 6™

- then we compare simulated data y*™ to observed y

e Gabry, Simpson, Vehtari, Betancourt, Gelman. 2019. Visualization in
Bayesian workflow. JRSS A.

Prior predictive example

800 - 800

s
E] < = =
£ 600 e g1 3 600 W
3 g 3 3 f
z i z £ 400 il
2 400 il g g i
@ s @ @ i

200 U 0

5 i :
f i"m‘ X 3 200
1 2 3

L I —
1 2 3 4 5 3 4 5 1 2 3 4 5
Observed log(PM, 5) Observed log(PM, 5) Observed log(PM, 5)

(a) Vague priors (b) Weakly informative priors (¢) Comparison
particulate matter pollution model with prior on log(PM> s)
vague prior generates values as dense as neutron star
weakly informative prior controls scale

subtle with priors on interacting parameters
- why we need a PPL!

How does Stan fare?

Stan model for posterior inference

data { int<lower=0> N; int<lower=0, upper=1> y[N]; }
parameters { real<lower=0, upper=1> theta; }
model { theta ~ beta(2, 10); y ~ binomial(theta); }

Simulate 5™ ~ p(0) with N = 0, but can’t simulate y

Stan model for prior predictive checks

data { int N; }
parameters { real<lower=0, upper=1> theta; }
model { theta ~ beta(2, 10); }
generated quantities {
int y_sim[N] = bernoulli_rng(N, theta);
}

How do other PPLs fare?

- PyMC3 also declares data with observed=

y_obs = pm.Normal("y_obs", mu=X @ weights,
sigma=noise, observed=y)

- ADMB declares data in a DATA SECTION

- Pyro uses effect handler condition() for data, e.g.,

poutine.condition(model, data={"z": 1.0})

- Turing.jl assigns data variables before just-in-time compi-
lation; values may be specified missing

- BUGS sets data at run time w.r.t. its neutral graphical model

theta ~ dbeta(2, 10); for (n in 1:N) y[n] ~ dbern(theta);

Simulation-based Calibration
to validate inference w.r.t. well-specified data
- approximate inference like VI will fail
draw 05 ~ p(0) from the prior
draw ySI™ ~ p(y | 05™) from the sampling distribution
draw 0, ..., 0™ ~ p(0 | y*™) from algorithm to test

because (y*™, 05™) ~ p(y,0) and (y5™,00™) ~ p(y,0),
0% should have uniform rank among the 6™
« Cook, Gelman, Rubin. 2006. Validation of software for Bayesian models using posterior quantiles. JCGS.

« Talts, Betancourt, Simpson, Vehtari, Gelman. 2018. Validating Bayesian inference algorithms with simulation-based

calibration. arXiv

SBC diagnoses

- over-dispersed:

under-dispersed:

skewed:

0 4 6 810
®) Rank Statistic
Data- or I I
o 2 4 6 8 10
) Rank Statistic
Data-Av terior P I
0 2 4 6 810
Rank Statistic

How do PPLs fare on SBC?

- simulation-based calibration requires simulating from prior
and sampling distribution

- presents same problem with data specification as prior
predictive checks

Posterior predictive checks

- Simulate new data from posterior for draws m € 1:M,

0 ~ pOly)

ysmm- o~ p(y |)

- Compare statistics s(y) on observed data to those of pos-
terior simulations s(y$™mm) e g.,

- $() can be anything, e.g., mean, max, sd, quantiles, ranks,
skew, etc.

- Plot, or compute two-sided posterior p-values to automate,
p-value = min(Pr[s(y) < s(y*™)],
1 -Prls(y) <s(ysm)])

Posterior predictive example

Posterior p-values

mean sd

jood sipiduioa

R NS |

6 o 20 3 0 1 20 3 0 f 2 3 0 10 20 30
value in replicated data set

- model of repeated binary trials (baseball batting avg.)

- vertical line is s(y), histogram is s(ysm(m))

jood ou

- max() and sd() statistics “reject” the no-pooling model

PPL support for PPCs

- requires extracting posterior draws and simulating data
from them

- still the same problem of flexibly specifying data vs. pa-
rameters (i.e., knowns vs. unknowns)

Cross-validation

- divide data into train/test split (say y and y)
- fit model on training set

- evaluate predictive log density on test set,

Q

1 M
& sim(m)
log i > p(y 10)

m=1

logp(y | y)

log-sum-exppi_; log p(y | 0m™) — log(M)

PPL support for X-val

- fit with one data set y and evaluate with another y

BUGS almost succeeds

for (n in 1:N) y[n] ~ dnorm(alpha + x[n] * beta, tau)
tau ~ gamma(l, 1); alpha ~ normal(0, 2); beta ~ normal(0, 2)

by letting y = y™in st ha partially missing
- but doesn’t let you retrieve the log density values for ytest

- this also seamlessly handles missing data (that’s modeled)
- Turing.jl allows the same thing (values?)

- other PPLs require additional sampling statements for the
test data

Stan for X-val

Stan codes leave-one-out X-val by specifying test point

data {
int N; int[N] y; 1int nt;
}
parameters {
real mu; real<lower=0> sigma;
}
modeT {
append_row(y[:nt-1], y[nt+1l:]) ~ normal(mu, sigma);
mu ~ normal(0, 1); sigma ~ lognormal(0, 1);
}
generated quantities {
real Tp = normal_Tpdf(y[nt] | mu, sigma);
}

but it’s a totally different model

Sensitivity analysis

- we’d like to understand how changes in our model affect
posterior inference

- e.g., vary priors and see how posterior expectations changes
- all PPLs let you evaluate alternative constants easily
- derivative-based sensitivity w.r.t. const. c is trickier

0
&[E[f((?) ly,c]

Ryan Giordano modified Stan’s C++ to compute this for his
(Berkeley) Ph.D. thesis, but it’s not exposed

Sensitivity example

1.000

0.100

prevalence

0010

0.001

01 03 05 07 08 01 03 05 07 09 01 03 05 07 09 01 03 05 07 08 01 03 05 07 09
specificity hyperprior

Estimated Covid seroprevalence (y axis) as a function of
- the hyperprior for specificity (x-axis)

- the hyperprior for sensitivity (facets with values from left-
to-right 0.01, 0.25, 0.5, 0.75, 1.0)

e Gelman, Carpenter. 2020. Bayesian analysis of tests with unknown
specificity and sensitivity. JRSS C.

Workflow goes beyond inference

- clamp/pin parameters to fixed values?
- Stan requires moving the variable from the parameter to
the data block
- working with multiple (related) models?
- model comparison
- model reparameterization

- model averaging/mixing/stacking

- autogenerating concurrent or GPU code?

- Stan requires using parallel map functions in the program

Naming and persistence is hard

how to name and store multiple model variants?

- uk-covid-icar, uk-covid-rwl,
uk-covid-rw2, uk-covid-rw2-icar,
uk-covid-rw2-bym2, uk-covid-rw2-bym2pc,
uk-covid-rw2-bym2pc-no-socio, ad infinitum ...

- plus multiple versions of the same model (over time)
how to name and store output?

how to work with distributed teams?
- e.g., how to share results given that samples can be large?

- or that they run on clusters in pieces

Other workflow issues

- data may be tied up with privacy and/or intellectual prop-
erty concerns

- e.d., medical records, search logs, street views, etc.

- end application may require deployment in production
- bundle with Docker, or otherwise deploy
- robustness is a key issue

- update as new data comes in

- What are we missing?

Democratization of modeling

- expression-based iterfaces use PPLs under the hood, but
give users simpler specification sublanguages
- brms: expression interface in R
- a Poisson GLM with log link is a one-liner

y ~ age + base * treatment + (1 | patient)

- fully encapsulated interfaces use PPLs under the hood
but give users a menu of model choices
- Prophet (time-series with trends and cycles)
- Torsten (PK/PD compartment models)

- these systems involve lots of defaults
- evaluation crosses application boundaries

Elephant in the room: Modularity

- how to modularize model components like hierarchical
priors or GP priors?

- Stan lets users define functions

- e.g., arandom-walk or ICAR prior’s density function

- but they can’t cross block boundaries, e.g., data, param-
eter, model, generated quantities

- what about other PPLs?

- aresidual problem: density is modular, behavior isn’t

- a prior can only be understood in the context of a likeli-
hood and a data set

References

- workflow paper
- Gelman, Vehtari, Simpson, Margossian, Carpenter, Yao, Kennedy,
Gabry, Birkner, Modrak. 2020. Bayesian workflow. arXiv.

- open-access workflow book
- Above authors++. 2022? Bayesian Workflow. Chapman &
Hall/CRC.

- GitHub repo:
https://github.com/jgabry/bayes-workflow-book

https://github.com/jgabry/bayes-workflow-book

