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What is Bayesian workflow?

• Bayesian workflow involves

– designing/porting models,

– fitting models to data,

– validating computation,

– evaluating models,

– modifying models,

– addressing computational issues,

– comparing models, and

– using models.
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Textbook form of workflow

1. Set up a full probability model: a joint distribution for
observables and unobservables consistent with knowledge
about the scientific problem and data collection.

2. Condition on observed data: calculate and interpret the
posterior distribution.

3. Evaluate: does it fit data, are conclusions reasonable, is it
sensitive to assumptions?

4. Iterate: If model fails evaluation, go back to (1).

• Gelman et al. 2013. Bayesian Data Analysis, 3rd Edition. Chapman &

Hall.
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Our actual workflow

Figure 1: Overview of the steps we currently consider in Bayesian workflow. Numbers in brackets
refer to sections of this paper where the steps are discussed. The chart aims to show possible
steps and paths an individual analysis may go through, with the understanding that any particular
analysis will most likely not involve all of these steps. One of our goals in studying workflow is to
understand how these ideas fit together so they can be applied more systematically.
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Bayesian model

• y is observed data, θ are unknown parameters

– suppress unmodeled predictors/features x

• prior p(θ)

• sampling p(y | θ)
– likelihood L(θ) = p(y | θ) for fixed y

• joint p(y, θ)

• posterior p(θ | y)
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Bayesian inference is expectation

• parameter estimate θ̂ = E[θ | y]

• event probability Pr[C] = E[IC(θ) | y]

• posterior predictive p(ỹ | y) = E[p(ỹ | θ) | y]
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Expectations via Monte Carlo
• calculate asymptotically exact expectations by averaging

E[f (θ) | y] =
∫
Θ f (θ) · p(θ | y)dθ

= limM→∞
1
M
∑M
m=1 f (θ(m))

≈ 1
M
∑M
m=1(θ(m)),

• MCMC central limit theorem says that if draws

θ(1), . . . , θ(M) ∼ p(θ | y)

have effective sample size Meff, then

standard error (of estimate) = posterior standard deviation√
Meff
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Probabilistic programs typically. . .
• code Bayesian joint densities

• support sampling from the posterior to compute expecta-
tions

– often with approximate variational posteriors

– sometimes with acceleration like control variates

• but it turns out that we
need more than posterior sampling for workflow

8



Prior predictive checks

• prior predictive checks simulate data from the marginal

ysim ∼ p(y)

• often by generating from prior and sampling distributions

θsim ∼ p(θ) ysim ∼ p(y | θsim)

• then we compare simulated data ysim to observed y

• Gabry, Simpson, Vehtari, Betancourt, Gelman. 2019. Visualization in

Bayesian workflow. JRSS A.
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Prior predictive exampleVisualization in Bayesian workflow 5

(a) Vague priors (b) Weakly informative priors (c) Comparison

Fig. 4: Visualizing the prior predictive distribution. Panels (a) and (b) show realizations
from the prior predictive distribution using priors for the �’s and ⌧ ’s that are vague and
weakly informative, respectively. The same N+(0, 1) prior is used for � in both cases.
Simulated data are plotted on the y-axis and observed data on the x-axis. Because the
simulations under the vague and weakly informative priors are so di↵erent, the y-axis
scales used in panels (a) and (b) also di↵er dramatically. Panel (c) emphasizes the
di↵erence in the simulations by showing the red points from (a) and the black points
from (b) plotted using the same y-axis.

3. Fake data can be almost as valuable as real data for building your model

The exploratory data analysis resulted in a network of three models: one linear regression
model and two di↵erent linear multilevel models. In order to fully specify these models,
we need to specify prior distributions on all of the parameters. If we specify proper
priors for all parameters in the model, a Bayesian model yields a joint prior distribution
on parameters and data, and hence a prior marginal distribution for the data. That is,
Bayesian models with proper priors are generative models. The main idea in this section
is that we can visualize simulations from the prior marginal distribution of the data to
assess the consistency of the chosen priors with domain knowledge.

The main advantage to assessing priors based on the prior marginal distribution for
the data is that it reflects the interplay between the prior distribution on the parameters
and the likelihood. This is a vital component of understanding how prior distributions
actually work for a given problem (Gelman et al., 2017). It also explicitly reflects the idea
that we can’t fully understand the prior by fixing all but one parameter and assessing
the e↵ect of the unidimensional marginal prior. Instead, we need to assess the e↵ect of
the prior as a multivariate distribution.

The prior distribution over the data allows us to extend the concept of a weakly
informative prior (Gelman et al., 2008) to be more aware of the role of the likelihood. In
particular, we say that a prior leads to a weakly informative joint prior data generating
process if draws from the prior data generating distribution p(y) could represent any data
set that could plausibly be observed. As with the standard concept of weakly informative
priors, it is important that this prior predictive distribution for the data has at least some
mass around extreme but plausible data sets. On the other hand, there should be no
mass on completely implausible data sets. We recommend assessing how informative the
prior distribution on the data is by generating a “flip book” of simulated datasets that

• particulate matter pollution model with prior on log(PM2.5)

• vague prior generates values as dense as neutron star

• weakly informative prior controls scale

• subtle with priors on interacting parameters

– why we need a PPL!
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How does Stan fare?
• Stan model for posterior inference

data { int<lower=0> N; int<lower=0, upper=1> y[N]; }
parameters { real<lower=0, upper=1> theta; }
model { theta ~ beta(2, 10); y ~ binomial(theta); }

• Simulate θsim ∼ p(θ) with N = 0, but can’t simulate y

• Stan model for prior predictive checks

data { int N; }
parameters { real<lower=0, upper=1> theta; }
model { theta ~ beta(2, 10); }
generated quantities {

int y_sim[N] = bernoulli_rng(N, theta);
}
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How do other PPLs fare?
• PyMC3 also declares data with observed=

y_obs = pm.Normal("y_obs", mu=X @ weights,
sigma=noise, observed=y)

• ADMB declares data in a DATA SECTION

• Pyro uses effect handler condition() for data, e.g.,

poutine.condition(model, data={"z": 1.0})

• Turing.jl assigns data variables before just-in-time compi-
lation; values may be specified missing

• BUGS sets data at run time w.r.t. its neutral graphical model

theta ~ dbeta(2, 10); for (n in 1:N) y[n] ~ dbern(theta);
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Simulation-based Calibration

• to validate inference w.r.t. well-specified data

– approximate inference like VI will fail

• draw θsim ∼ p(θ) from the prior

• draw ysim ∼ p(y | θsim) from the sampling distribution

• draw θ(1), . . . , θ(M) ∼ p(θ | ysim) from algorithm to test

• because (ysim, θsim) ∼ p(y, θ) and (ysim, θ(m)) ∼ p(y, θ),
θsim should have uniform rank among the θ(m)

• Cook, Gelman, Rubin. 2006. Validation of software for Bayesian models using posterior quantiles. JCGS.

• Talts, Betancourt, Simpson, Vehtari, Gelman. 2018. Validating Bayesian inference algorithms with simulation-based

calibration. arXiv
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SBC diagnoses

• over-dispersed:

SIMULATION-BASED CALIBRATION 7
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FIG 3. Uniformly distributed rank statistics are
consistent with the ranks being computed from in-
dependent samples from the exact posterior of a
correctly specified model.
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FIG 4. The spikes at the boundaries of the SBC
histogram indicate that posterior samples possess
non-negligible autocorrelation.
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FIG 5. A symmetric, \-shaped distribution indicates that the computed data-averaged posterior distribution (dark
red) is overdispersed relative to the prior distribution (light red). This implies that on average the computed
posterior will be wider than the true posterior.

Next, consider a computational algorithm that produces, on average, posteriors that are
overdispersed relative to the true posterior. When averaged over the Bayesian joint distribu-
tion this results in a data-averaged posterior distribution (1) that is overdispersed relative to the
prior distribution (Figure 5a), and hence rank statistics that are biased towards the extremes
that manifests as a characteristic \-shaped histogram (Figure 5b).

Conversely, an algorithm that computes posteriors that are, on average, under-dispersed
relative to the true posterior produces a histogram of rank statistics with a characteristic [
shape (Figure 6).

Finally, we might have an algorithm that produces posteriors that are biased above or below
the true posterior. This bias results in a data-averaged posterior distribution biased in the same
direction relative to the prior distribution (Figure 7a) and rank statistics that are biased in the
opposite direction (Figure 7b). For example, posterior samples biased to smaller values results
in higher rank statistics, where as posterior samples biased to larger values results in lower
rank statistics.

A misbehaving analysis can in general manifest many of these deviations at once. Because
each deviation is relatively distinct from the others, however, in practice the systematic devi-
ations are readily separated into the different behaviors if they are large enough.

4.3 Simulation-Based Calibration Plays a Vital Role in a Robust Bayesian Workflow

SBC is one of the few tools for evaluating the critical but frequently unexamined choice of
computational method made in any Bayesian analysis. We have already argued that perfor-
mance on a single simulated observation is, at best, a blunt instrument. Moreover, while most

• under-dispersed:
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FIG 6. A symmetric [ shape indicates that the computed data-averaged posterior distribution (dark red) is under-
dispersed relative to the prior distribution (light red). This implies that on average the computed posterior will be
narrower than the true posterior.
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FIG 7. Asymmetry in the rank histogram indicates that the computed data-averaged posterior distribution (dark
red) will be biased in the opposite direction relative to the prior distribution (light red). This implies that on
average the computed posterior will be biased in the same opposite direction.

theoretical results only provide asymptotic comfort, SBC adapts to the specific model design
under consideration.

Furthermore, because SBC validates accuracy through one-dimensional random variables
we can use carefully chosen random variables to make targeted assessments of an analysis
based on our inferential needs and priorities. As these needs and priorities change we can run
SBC again to verify the analysis anew.

The downside of using SBC in practice is that it is expensive; instead of fitting a single
observation we have to fit N simulated observations before even considering the measured
data. These fits, however, are embarrassingly parallel, which makes it possible to leverage
access to computational resources through multicore personal computers, computing clusters,
and cloud computing. For example, all of the examples in Section 6 were run on clusters and
took, at most, a few hours.

The procedure can be sped up further by reducing the number of independent draws needed
from the posterior at the cost of losing some sensitivity. Even a few simulations are useful to
catch gross problems in an analysis.

5. EXTENDING SIMULATION-BASED CALIBRATION

SBC provides a straightforward procedure for validating simulation-based algorithms ap-
plied to Bayesian analyses, but the procedure can be limited in a few circumstances. In this
section we discuss some small modifications that allow SBC to remain useful in some com-
mon practical circumstances.

• skewed:
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FIG 7. Asymmetry in the rank histogram indicates that the computed data-averaged posterior distribution (dark
red) will be biased in the opposite direction relative to the prior distribution (light red). This implies that on
average the computed posterior will be biased in the same opposite direction.

theoretical results only provide asymptotic comfort, SBC adapts to the specific model design
under consideration.

Furthermore, because SBC validates accuracy through one-dimensional random variables
we can use carefully chosen random variables to make targeted assessments of an analysis
based on our inferential needs and priorities. As these needs and priorities change we can run
SBC again to verify the analysis anew.

The downside of using SBC in practice is that it is expensive; instead of fitting a single
observation we have to fit N simulated observations before even considering the measured
data. These fits, however, are embarrassingly parallel, which makes it possible to leverage
access to computational resources through multicore personal computers, computing clusters,
and cloud computing. For example, all of the examples in Section 6 were run on clusters and
took, at most, a few hours.

The procedure can be sped up further by reducing the number of independent draws needed
from the posterior at the cost of losing some sensitivity. Even a few simulations are useful to
catch gross problems in an analysis.

5. EXTENDING SIMULATION-BASED CALIBRATION

SBC provides a straightforward procedure for validating simulation-based algorithms ap-
plied to Bayesian analyses, but the procedure can be limited in a few circumstances. In this
section we discuss some small modifications that allow SBC to remain useful in some com-
mon practical circumstances.
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How do PPLs fare on SBC?

• simulation-based calibration requires simulating from prior
and sampling distribution

• presents same problem with data specification as prior
predictive checks
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Posterior predictive checks
• Simulate new data from posterior for draws m ∈ 1:M,

θ(m) ∼ p(θ | y)
ysim(m) ∼ p(y | θ(m))

• Compare statistics s(y) on observed data to those of pos-
terior simulations s(ysim(m)), e.g.,

– s() can be anything, e.g., mean, max, sd, quantiles, ranks,
skew, etc.

• Plot, or compute two-sided posterior p-values to automate,

p-value =min( Pr[s(y) < s(ysim)],

1− Pr[s(y) < s(ysim)] )
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Posterior predictive example

• model of repeated binary trials (baseball batting avg.)

– vertical line is s(y), histogram is s(ysim(m))

– max() and sd() statistics “reject” the no-pooling model
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PPL support for PPCs

• requires extracting posterior draws and simulating data
from them

• still the same problem of flexibly specifying data vs. pa-
rameters (i.e., knowns vs. unknowns)
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Cross-validation

• divide data into train/test split (say y and ỹ)

• fit model on training set

• evaluate predictive log density on test set,

logp(ỹ | y) ≈ log
1
M

M∑
m=1

p(ỹ | θsim(m))

= log-sum-expMm=1 logp(ỹ | θsim(m))− log(M)
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PPL support for X-val

• fit with one data set y and evaluate with another ỹ

• BUGS almost succeeds

for (n in 1:N) y[n] ~ dnorm(alpha + x[n] * beta, tau)
tau ~ gamma(1, 1); alpha ~ normal(0, 2); beta ~ normal(0, 2)

by letting y = y train, y test be partially missing

– but doesn’t let you retrieve the log density values for y test

– this also seamlessly handles missing data (that’s modeled)

• Turing.jl allows the same thing (values?)

• other PPLs require additional sampling statements for the
test data
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Stan for X-val
• Stan codes leave-one-out X-val by specifying test point

data {
int N; int[N] y; int nt;

}
parameters {
real mu; real<lower=0> sigma;

}
model {
append_row(y[:nt-1], y[nt+1:]) ~ normal(mu, sigma);
mu ~ normal(0, 1); sigma ~ lognormal(0, 1);

}
generated quantities {
real lp = normal_lpdf(y[nt] | mu, sigma);

}

• but it’s a totally different model
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Sensitivity analysis

• we’d like to understand how changes in our model affect
posterior inference

• e.g., vary priors and see how posterior expectations changes

• all PPLs let you evaluate alternative constants easily

• derivative-based sensitivity w.r.t. const. c is trickier

∂
∂c
E[f (θ) | y, c]

Ryan Giordano modified Stan’s C++ to compute this for his
(Berkeley) Ph.D. thesis, but it’s not exposed
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Sensitivity exampleTests with Unknown Specificity and Sensitivity 1275
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Fig. 2. Plots of the posterior median and central 90% posterior interval of the prevalence π as a function of
τγ and τδ , the prior scales for the specificity and sensitivity hyperparameters σγ and σδ (the posterior median
of prevalence is not sensitive to τγ and τδ , but the end points of the 90% interval show some sensitivity;
it is possible to use a weak hyperprior on the scale of the specificity distribution, σγ , which makes sense
given that there are 13 prior specificity studies in the data; for the scale of the sensitivity distribution, σδ , it is
necessary to use a prior scale of 0.5 or less to rule out effectively the possibility of extremely high prevalence
corresponding to an unrealistic sensitivity parameter γ; the noise in (e) represents Monte Carlo error that is
a consequence of the weakly specified model): (a) sensitivity hyperprior 0.01; (b) sensitivity hyperprior 0.25;
(c) sensitivity hyperprior 0.5; (d) sensitivity hyperprior 0.75; (e) sensitivity hyperprior 1

and dominate the data, leading to inflated uncertainty. Around the middle of these ranges, the
posterior intervals are not as sensitive to variation in the hyperpriors. We would consider values
τγ = τδ =0:5 to be weakly informative for this example, in that they are roughly consistent with
intersite variation in specificity in the range 73–99.3% and of specificity in the range 88–99.75%.

The complexity of this sensitivity analysis might seem intimidating: if Bayesian inference is
this difficult and thus dependent on priors, is it maybe not a good idea?

We would argue that the problem is not as difficult as it might look. The steps that were taken
in Sections 2 and 3 show the basic workflow: we start with a simple model; then add hierarchical
structure. For the hierarchical model we started with weak priors on the hyperparameters and
examined the inferences, which made us realize that we had prior information (that specificities
and sensitivities of the tests should not be so variable), which we then incorporated in the next
iteration of the model. Performing the sensitivity analysis was fine—it helped us to understand
the inferences better—but it was not necessary for us to obtain reasonable inferences.

Conversely, non-Bayesian analyses would not be immune from this sensitivity to model
choices, as is illustrated by the mistakes that were made by Bendavid et al. (2020b) to treat
specificity and sensitivity as not varying at all, to set σγ =σδ =0 in our notation. An alternative
could be to use the calibration studies to obtain point estimates of σγ and σδ, but then there
would still be the problem of accounting for uncertainty in these estimates, which would return
the researchers to the need for some sort of external constraint or bound on the distribution
of the sensitivity parameters δj, given that only three calibration studies are available here to
estimate these. This in turn suggests the need for more data or modelling of the factors that influ-
ence the test’s specificity and sensitivity. In short, the analysis that is shown in Fig. 2 formalizes
a dependence on prior information that would arise, explicitly or implicitly, in any reasonable
analysis of these data.

5. Extensions of the model

5.1. Multilevel regression and post-stratification to adjust for differences between
sample and population
Bendavid et al. (2020a, b) compared demographics on 3330 people whom they tested, and they
found differences in the distributions of sex, age, ethnicity and zip code of residence compared

• Estimated Covid seroprevalence (y axis) as a function of

– the hyperprior for specificity (x-axis)

– the hyperprior for sensitivity (facets with values from left-
to-right 0.01, 0.25, 0.5, 0.75, 1.0)

• Gelman, Carpenter. 2020. Bayesian analysis of tests with unknown

specificity and sensitivity. JRSS C.
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Workflow goes beyond inference

• clamp/pin parameters to fixed values?

– Stan requires moving the variable from the parameter to
the data block

• working with multiple (related) models?

– model comparison

– model reparameterization

– model averaging/mixing/stacking

• autogenerating concurrent or GPU code?

– Stan requires using parallel map functions in the program

‘
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Naming and persistence is hard

• how to name and store multiple model variants?

– uk-covid-icar, uk-covid-rw1,
uk-covid-rw2, uk-covid-rw2-icar,
uk-covid-rw2-bym2, uk-covid-rw2-bym2pc,
uk-covid-rw2-bym2pc-no-socio, ad infinitum . . .

– plus multiple versions of the same model (over time)

• how to name and store output?

• how to work with distributed teams?

– e.g., how to share results given that samples can be large?

– or that they run on clusters in pieces
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Other workflow issues

• data may be tied up with privacy and/or intellectual prop-
erty concerns

– e.g., medical records, search logs, street views, etc.

• end application may require deployment in production

– bundle with Docker, or otherwise deploy

– robustness is a key issue

– update as new data comes in

• What are we missing?
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Democratization of modeling
• expression-based iterfaces use PPLs under the hood, but

give users simpler specification sublanguages

– brms: expression interface in R

– a Poisson GLM with log link is a one-liner

y ~ age + base * treatment + (1 | patient)

• fully encapsulated interfaces use PPLs under the hood
but give users a menu of model choices

– Prophet (time-series with trends and cycles)

– Torsten (PK/PD compartment models)

• these systems involve lots of defaults

– evaluation crosses application boundaries
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Elephant in the room: Modularity

• how to modularize model components like hierarchical
priors or GP priors?

• Stan lets users define functions

– e.g., a random-walk or ICAR prior’s density function

• but they can’t cross block boundaries, e.g., data, param-
eter, model, generated quantities

• what about other PPLs?

• a residual problem: density is modular, behavior isn’t

– a prior can only be understood in the context of a likeli-
hood and a data set
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