
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Lambdas, tuples, ragged arrays, and complex numbers in
Stan

BOB CARPENTER, Flatiron Institute, New York City

We are introducing four new language features for Stan: complex numbers, ragged arrays, tuples, and lambdas.
There will be basic types for complex scalars, vectors, and matrices, backed by arithmetic and special-function
support in the Stan math library. Ragged arrays will be homogeneous containers like Stan’s existing arrays.
Tuples provide a heterogeneous container type; adding names gives us structs. Simple function types enable
us to deal with type inference for functions. We will provide lambdas with implicit binding by value, which
can be directly implemented via closures.

1 STAN, A LANGUAGE FOR STATISTICAL MODELS
Stan was designed with the goal of making it easy for applied statisticians to express statistical
models [Carpenter et al. 2017; Stan Development Team 2021b,c]. From an evolutionary perspective,
Stan was derived by generalizing the syntax of the first probabilistic programming language, the
Bayesian Inference Using Gibbs Sampling (BUGS) system, to allow for type declarations, local
variables, and declarations of variable intent (data vs. parameter vs. derived quantity) [Gilks et al.
1994; Lunn et al. 2012]. In its compilation to a differentiable log density function, it is more like the
other first-generation probabilistic programming language, the Automatic Differentiation Model
Builder (ADMB) [Fournier et al. 2012].

Another primary design goal is to have programs be readable. In Stan, a simple linear regression
can be coded as follows.

data { int<lower = 0> N; int<lower = 1> K; matrix[N, K] x; vector[N] y; }
parameters { vector[K] beta; real<lower = 0> sigma; }
model { beta ~ normal(0, 1); sigma ~ lognormal(0, 1); y ~ normal(x * beta, sigma); }

Like MATLAB [Higham and Higham 2016], Stan is designed around standard mathematical
types, operators, and functions, with the addition of sampling notation for concisely expressing
log density contributions to the target density. Unlike other PPLs and scripting languages, Stan is
strongly statically typed as seen in the declarations for the variables above.
Semantically, a Stan program defines a function from data to a differentiable function from

parameters to a log density. The regression program above denotes the curried log density function
f defined by

f (N ,K, x,y)(β,σ ) = logp(β,σ | y, x,N ,K) + const,

where the constant does not depend on the parameters β and σ . It does not matter how the log
posterior is coded; usually the joint log density is implemented, as in this program, which codes
logp(β,σ ,y | x,N ,K). Bayes’s rule tells us that p(β,σ | y, x,N ,K) ∝ p(β,σ ,y | x,N ,K).
The data block defines the signature of the first argument, the parameters block defines the

signature of the second argument, and the model block defines the value of the program by
incrementing a target log density. The result f (N ,K, x,y) represents the posterior log density
function up to an additive constant.

To support state-of-the-art inference algorithms such as the no-U-turn form of adaptive Hamil-
tonian Monte Carlo sampling [Hoffman and Gelman 2014], automatic differentiation variational
inference [Kucukelbir et al. 2017], and quasi-Newton optimization [Liu and Nocedal 1989], Stan

Author’s address: Bob Carpenter, Flatiron Institute, New York City, bcarpenter@flatironinstitute.org.



50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

2 Carpenter, B.

implements gradients of the posterior log density function, ∇f (N ,K, x,y) using automatic differen-
tiation [Carpenter et al. 2015].1 Although the basis of Stan is differentiability, its variables behave
like random variables under Bayesian inference. Most importantly, expectations

E[f (β) | y, x,N ,K] ≈
1
M

M∑
m=1

f (β (m),σ (m)),

have plug-in estimates using Markov chain Monte Carlo draws, where each

β (m),σ (m) ∼ p(β,σ | y, x,N ,K)

is a (not necessarily independent) draw from the posterior [Roberts and Rosenthal 1998]. Expec-
tations are used for Bayesian parameter and variance estimates, event probability estimates, and
posterior predictive inference [Gelman et al. 2013]. Quantiles are similarly preserved.

2 TUPLES
Tuples provide a syntactic representation of product types. They provide heterogeneous containers
of fixed size and fixed element type [Pierce 2002]. Tuple type notation and construction are
exemplified in

(int, array[2] real) y = (3, {1.2, -5.3});

where {1.2, -5.3} is the constructor for a real array of sized type array[2] real. Note that we are
introducing a new type language for arrays. The current syntax for an array declaration, real a[2];

is going to be replaced with array[2] real a;. This makes the type syntax for arrays contiguous,
rather than split as it is in our current array declarations. The verbose form array[2] real was
chosen over the more compact real[2] in a community vote2 because of the possible confusion
with using vector[3][2] for a 2-element array of 3-vectors; the notation array[2] vector[3] is
much less ambiguous to the casual reader.

Like all Stan type declarations other than function arguments, sizes are required. Sizes are omitted
in function type declarations, where a 1-dimensional array of real numbers will be declared as
array[] real.

Following C++ syntax, we used fixed numerical accessors for tuple elements because we do not
want to have to perform run-time bounds checking. After the example statement above is run, we
can access elements of a tuple, or even assign them.

int a = y.1; array[2] real b = y.2; y.1 = 42; b.2[1] = 0.3;

Unlike C++, Stan indexes starting from 1, not 0. Assigning to a tuple type is elementwise.
It is not part of the required specification, but we would like to be able to support Python-style

tuple assignment [VanRossum and Drake 2010], such as
int a; array[2] real b; (a, b) = foo(...);

where foo is a function returning a tuple of the same type as y.
For R dump I/O, we can use the built-in R dump format for lists to store tuples [?]. For JSON

I/O, we can code a tuple as a simple array because the reading routines all know the size and
type of elements they are reading in Stan. For instance, the value of y above would be encoded as
[3, [1.2, -5.3]].
Structs of the form used in the C language are nothing more than tuples with named elements

[Ritchie et al. 1988]. Although we will not be implementing structs in the first version of tuples,

1Stan also supports gradient-vector products, Hessians, Hessian-vector products, and arbitrary higher-order derivatives in
the usual way [Griewank 1989].
2The discussion and vote took place on the Stan Forums, in the post https://discourse.mc-stan.org/t/new-array-
declaration-syntax/16011

https://discourse.mc-stan.org/t/new-array-declaration-syntax/16011
https://discourse.mc-stan.org/t/new-array-declaration-syntax/16011


99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

Lambdas, tuples, ragged arrays, and complex numbers in Stan 3

they involve nothing more than adding named keys to tuples in both the type declaration and in
the constructors and accessors.

(a = int, b = array[2] real) y = (a = 3, b = {1.2, -5.3});
int u = y.a; array[2] real v = y.b;

I/O could be used as-is for tuples if the structs maintain their declared order, or they could be
handled with dictionaries in I/O.

3 COMPLEX NUMBERS
A complex number x + yi consists of a real component x ∈ R and imaginary component y ∈ R. So
we adopt a tuple-like representation that follows the C++ standard library [Josuttis 2012]. Type
notation, construction, and access can be understood with a simple example.

real x; real y; complex z = complex(x, y); z.real = 2.9; y.imag = -1.3;

The accessors z.real and z.imag produce lvalues as indicated by the assignment.
Currently, Stan handles assignment and function arguments in the same way—if an expression

can be assigned to to a variable of a given type, then it can be passed to a function argument of the
that type. The only promotion that is globally supported is of integer types (int) to real types (real).
These can both now be promoted to complex, as well. Stan does not fully support covariance of
container types, so that int[] is not yet assignable to real[], but that feature is also in the works.
In addition to scalars, we introduce types for matrices, complex_vector, complex_row_vector,

and complex_matrix. Scalar and matrix arithmetic extends fully to complex numbers, including
mixed operations involving complex and real matrices. This is supported through the Eigen C++
template library scalar traits [Guennebaud et al. 2021]. Stan fully supports all functions in the C++
header <complex>, which we extend to mixed real/complex types without promotion for efficiency.
The C++ complex library includes standard mathematic functions such as power, exponent, log,
trigonometric, absolute value (modulus), etc. In addition, Stan supports matrix functions like
discrete Fourier transforms, asymmetric eigendecomposition, and Schur decomposition, also based
on the underlying Eigen implementations.
The remaining design issue is around I/O, where we can code random numbers using x + yi

notation in our R dump format (following R) and as an array [x, y] in JSON. We can get away
without decorating the fact that the pair of values denotes a complex number because Stan pulls
data of known type and size based on its declarations. So if the variable a is declared complex, then
the I/O routines will attempt to read a two-valued array for a as data or initialization.

4 RAGGED ARRAYS
Stan currently supports dense arrays of arbitrary dimension. Other than in function arguments, all
arrays are declared with their size and that size may not change after declaration. For example,
real a[2, 3] declares a 2 × 3 array to which a differently sized array may not be assigned. In
many problems, data is ragged. For example, we may have records of student testing, where each
student takes a different number of tests, a corpus of documents where each document is of a
different length in tokens, or a population ecology study of animals first tagged at different times.
The current approach we use is to encode this data in long form, database style. Ragged arrays
make more efficient wide data structures straightforward. To declare a variable a as a ragged array
of size M, we use an array N of sizes.

int<lower = 0> M; int<lower = 0> N[M]; int a[N];

Here, a[m, n] is valid if m is in 1:M and n is in 1:N[m]. Similarly, size(a) = M and size(a[m]) = N[m].
While this design is relatively simple for two-dimensional ragged arrays, things get hairy quickly

in higher dimensions. The obvious reflexive solution is to use ragged arrays to declare the sizes of



148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

4 Carpenter, B.

ragged arrays. Thus, when declaring a ragged array, the indexes may themselves be a ragged array
of integers. Thus we allow ragged arrays of integers to specify the valid indices of a ragged array.
For example, a ragged three-dimensional array might be declared as real[{{2, 3}, {4, 5, 6}}] a;

with type of a[1] being int[{2, 3}], and the type of a[1, 2] being int[3]. This also highlights
brace-constructors for standard and ragged arrays.
The specification also supports raggedness in containers that aren’t exclusively arrays. For

example, we will support a ragged array of vectors, say vector[{2, 3}] for the array containing a
2-vector and 3-vector. Ragged arrays may have constraints (implemented as bijections with Jacobian
adjustments) in the same way as dense arrays or scalars.

At the level of implementation, Stan arrays are coded as C++ vector<T> types, where T is the type
of the elements of the array (see [Josuttis 2012] for an overview of C++ templating and the vector

type). Ragged arrays are implemented the same way, which is what allows the same constructors,
etc. to be used. Existing functions that assume dense arrays must all be updated to check their
arguments if density is required. Assignment is legal when the sizes conform.
For R dump I/O, ragged arrays will be stored as lists. For JSON, they can simply be stored as

nested arrays of values [ECMA International 2017].

5 LAMBDAS AND SIMPLE FUNCTIONAL TYPES
Stan’s language of types will be closed under functional type construction, allowing a functional
typeT1 → T2 for any existing typesT1,T2. Multivariate arguments are coded with tuples. Subtyping
of functions respects the integer to real to complex type promotion hierarchy of basic types; if
elements of functional type T → U can be assigned to variables or function arguments of type
T ′ → U ′ if elements of T ′ can be assigned to T and elements ofU can be assigned toU ′ (argument
is positive polarity, result negative).
We follow the syntax of C++ for functions [Järvi and Freeman 2008, 2010], using, for example,

real(real) for a univariate function over reals and real(real, real) for function from pairs of
reals (a tuple type of two real elements) to reals. This notation extends to higher order functions. For
example, univariate function composition would have type real(real)(real(real), real(real)),
which takes two real-valued functions and returns a real-valued function. The type to curry real-
valued functions is real(real)(real)(real(real, real)), which takes a bivariate real function and
returns a function from reals into a univariate function.

Lambda notation also follows C++ for its basic design [Järvi and Freeman 2010]. For example, a
simple function to raise a value to the third power might look like

real(real) f = (real x) { return x^3; }

The notation (real x) is the declaration of the variable being abstracted and x^3 is the body of the
function. The idea is that this defines the same function f as if we had written

real f(real x) { return x^3; }

Because function arguments do not require sizes, there is no complication from size declarations
for lambdas.

Stan lambdas may capture variables that are in static lexical scope using closures. Closures can
capture local variables, block variables in the current block, or block variables in former blocks. For
example, we could have written the above function as

real a = 3; real(real) f = (real x) { return x^a; }

if a is a transformed data or transformed parameter variable. C++ allows variables to be captured
by reference or by value, but in Stan, all variables are captured implicitly by value. This decision
was made to prevent users from capturing variables that later go out of scope or are modified



197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

Lambdas, tuples, ragged arrays, and complex numbers in Stan 5

after the function definition. We felt both would be confusing to applied statisticians using these
techniques, despite being the default behavior in R. With automatic differentiation, copies still
propgate derivative information through the chain rule back to their source variables. They just
don’t track any changes to their source variables. So if we add a statement a = 2.5 after the
definition of f, it will not change f’s behavior. The upside of pass-by-value is that variables may
be captured at the C++ level using constant references if program analysis shows they are not
modified later.

Stan goes beyond C++’s syntax and allows R-like expression lambdas as well as program lambdas.
This will allow us to write the inverse logit function as

real(real) ilogit = (real u) 1 / (1 + exp(-u));

instead of requiring the more verbose form (real u) { return 1 / (1 + exp(-u)); }. Unlike R,
but like Python, Stan uses static lexical scoping for determining which variables can be captured
and has standard scoping for conditionals, etc..

With closures, we are also dropping the restriction that all functions are defined before any other
code in a special functions block. Functions can now be defined via lambdas anywhere assignment
statements may be used.
The main use of lambdas will be in things like differential and algebraic equation solvers or in

parallel map functions. Anonymous lambdas that capture data and parameter values eliminate the
need for the packing and unpacking of array arguments.

6 CONCLUSION
All four of these features will extend the ease with which users can encode statistical models using
Stan. It’s well known that automatic differentiation has no problem with complex numbers or
closures—it’s just a matter of sitting down and doing the engineering to make it work. Ryan Bern-
stein has coded prototype implementation of tuples, Steve Bronder has a complete language-level
(not I/O level) implementation of complex numbers, and Niko Huurre has a complete implementa-
tion of closures. Of all of these proposals, ragged arrays are actually the simplest to add. Hopefully,
all of these features will see releases in 2021. The full design specifications are available in our
design documents repository [Stan Development Team 2021a].

ACKNOWLEDGMENTS
I’d like to thank the Stan development team for extensive feedback on the design documents and
for building prototype implementations, specifically Ben Bales, Ryan Bernstein, Steve Bronder, Rok
Češnovar, Jonah Gabry, Niko Huurre, Daniel Lee, Mitzi Morris, Sean Talts, Matthijs Vákár, and
Sebastian Weber.

REFERENCES
Bob Carpenter, Andrew Gelman, Matthew D Hoffman, Daniel Lee, Ben Goodrich, Michael Betancourt, Marcus A Brubaker,

Jiqiang Guo, Peter Li, and Allen Riddell. 2017. Stan: a probabilistic programming language. Journal of Statistical Software
76, 1 (2017), 1–32.

Bob Carpenter, Matthew D Hoffman, Marcus Brubaker, Daniel Lee, Peter Li, and Michael Betancourt. 2015. The Stan math
library: Reverse-mode automatic differentiation in C++. arXiv 1509.07164 (2015).

ECMA International. 2017. The JSON data interchange syntax, 2nd Edition. Standard ECMA-404 (2017).
David A Fournier, Hans J Skaug, Johnoel Ancheta, James Ianelli, Arni Magnusson, Mark N Maunder, Anders Nielsen, and

John Sibert. 2012. AD Model Builder: using automatic differentiation for statistical inference of highly parameterized
complex nonlinear models. Optimization Methods and Software 27, 2 (2012), 233–249.

Andrew Gelman, John B Carlin, Hal S Stern, David B Dunson, Aki Vehtari, and Donald B Rubin. 2013. Bayesian Data
Analysis (third edition ed.). Chapman & Hall/CRC press.

Wally R Gilks, Andrew Thomas, and David J Spiegelhalter. 1994. A language and program for complex Bayesian modelling.
Journal of the Royal Statistical Society: Series D (The Statistician) 43, 1 (1994), 169–177.



246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

6 Carpenter, B.

Andreas Griewank. 1989. On automatic differentiation. Technical Report ANL/MCS-P10-1088. Mathematics and Computer
Science Division, Argonne National Laboratory.

Gaël Guennebaud, Benoît Jacob, et al. 2021. Eigen. http://eigen.tuxfamily.org.
Desmond J Higham and Nicholas J Higham. 2016. MATLAB Guide. SIAM.
Matthew D Hoffman and Andrew Gelman. 2014. The No-U-Turn sampler: adaptively setting path lengths in Hamiltonian

Monte Carlo. J. Mach. Learn. Res. 15, 1 (2014), 1593–1623.
Jaakko Järvi and John Freeman. 2008. Lambda functions for C++ 0x. In Proceedings of the 2008 ACM symposium on Applied

computing. 178–183.
Jaakko Järvi and John Freeman. 2010. C++ lambda expressions and closures. Science of Computer Programming 75, 9 (2010),

762–772.
Nicolai M Josuttis. 2012. The C++ standard library: a tutorial and reference. (2012).
Alp Kucukelbir, Dustin Tran, Rajesh Ranganath, Andrew Gelman, and David M Blei. 2017. Automatic differentiation

variational inference. The Journal of Machine Learning Research 18, 1 (2017), 430–474.
Dong C Liu and Jorge Nocedal. 1989. On the limited memory BFGS method for large scale optimization. Mathematical

programming 45, 1 (1989), 503–528.
David Lunn, Chris Jackson, Nicky Best, Andrew Thomas, and David Spiegelhalter. 2012. The BUGS book: A practical

introduction to Bayesian analysis. CRC press.
Benjamin C Pierce. 2002. Types and programming languages. MIT Press.
Dennis M Ritchie, Brian W Kernighan, and Michael E Lesk. 1988. The C programming language. Prentice Hall Englewood

Cliffs.
Gareth O Roberts and Jeffrey S Rosenthal. 1998. Markov-chain Monte Carlo: some practical implications of theoretical

results. The Canadian Journal of Statistics/La Revue Canadienne de Statistique (1998), 5–20.
Stan Development Team. 2021a. Stan Design Documents Repository. https://github.com/stan-dev/design-docs
Stan Development Team. 2021b. Stan Reference Manual. https://mc-stan.org/documentation
Stan Development Team. 2021c. Stan User’s Guide. https://mc-stan.org/documentation
Guido VanRossum and Fred L Drake. 2010. The python language reference. Python Software Foundation Amsterdam,

Netherlands.

https://github.com/stan-dev/design-docs
https://mc-stan.org/documentation
https://mc-stan.org/documentation

	Abstract
	1 Stan, a language for statistical models
	2 Tuples
	3 Complex numbers
	4 Ragged arrays
	5 Lambdas and simple functional types
	6 Conclusion
	Acknowledgments
	References

