
LambertW × FX transforms in Stan

In this blog post, I discuss and show how to use LambertW ×FX [2] transforms
for modeling skewed and asymmetric heavy tailed data. One advantage of using
LambertW × FX transforms over skewed and heavy tailed distributions is that
we can continue to use methods that are based on simpler distributions while still
accounting for skew and kurtosis. For example, the distributions for individuals
in a group may appear mostly normal while some appear to be have heavy tails.
Instead of using a student-t for all groups they could all be modeled using a
LambertW timesNormal with a kurtosis parameters for each.

Over the past two months as Stan’s Google Summer of Code (GSOC) intern I’ve
studied LambertW × FX random variables [2]. My goal is to implement them
as distributions in Stan to benefit workflows where the underlying distribution
are distorted with excess-skew and heavy-tails. As a first step, we wrote Stan
functions that carry out the LambertW × FX transform. We used these Stan-
language functions to verify parameter recovery and to prototype skewed and
heavy-tailed model workflows.

This blog-post illustrates both aspects: it highlights the parameter recovery of
LambertW × FX random variables and also demonstrates how to add them to
your workflow. At the end of our summer project, we aim to provide these
transforms as Stan built-in functions.

Contents

1 LambertW transforms reintroduced 1

2 Simulation study 2

3 How to go the LambertW way 5

1 LambertW transforms reintroduced

There are three-types of LambertW transforms. Start with a random variable
X (taken to be Gaussian in this blog post). Center and rescale it, to obtain
U = X−µ

σ . Then the three categories of LambertW transform are -

Skewed Y = U exp{γU} γ ∈ R
Symmetric Heavy-Tailed Y = U exp{ δ2U

2} δ ≥ 0

Asymmetric Heavy-Tailed Y =

{
U exp{ δl2 U

2} U ≤ 0

U exp{ δr2 U
2} U > 0

δl, δr ≥ 0

1

Each random variable Y is LambertW × FX distributed [2], also known as
LambertW ×N (µ, σ).

Where does the LambertW or product-logarithm function factor in? Just
as the logarithm log(x) inverts the exponential exp(y), as x = exp(log(x)),
the product-logarithm W (z) inverts the product-exponential u exp(u), as z =
W (z) exp(W (z)). With this, we can express Y ’s density in terms of X’s.

2 Simulation study

LambertW transforms can be used in a flexible variety of situations, which we
highlight with a regression model. In this section, we fit the Asymmetric Heavy-
Tailed transform to Normal-distributed data with either one-sided or two-sided
heavy-tails.

For ease of exposition, we simulate data for a pair of variables (X,Y) where X
is the feature and Y is the response. We define the true relationship between X
and Y as

Y ∼ α+ βX + ε

In our setup X ∼ N (µX = 1, 1), ε ∼ N (0, σ = 3/2) and thus E[Y] = α+ βX.

• For the data-generating process, we have unknown parameters (α, β, σ) =
(1, 1, 3/2) for intercept, slope and error standard-deviation respectively.

• And, for the Asymmetric Heavy-Tailed LambertW × FX transform, we
have two unknown parameters (δl, δr), whose values depend on the two
cases we consider

1. Normal-distributed data with one-sided heavy-tails (δl, δr) = (0, 1/3)

2. Normal-distributed data with two-sided heavy-tails (δl, δr) = (2/3, 1/3)

To summarize, we want to recover (α, β, σ, δl, δr) with data generated as follows.

epsilon <- function(N, sigma, delta_left, delta_right) {
u <- rnorm(N)

ifelse(u <= 0, u*exp(delta_left/2*u^2)*sigma,

u*exp(delta_right/2*u^2)*sigma)

}

N <- 1000; mu_x <- 1; alpha <- 1; beta <- 3; sigma <- 3/2

x <- rnorm(N, mu_x, 1)

y1 <- alpha + beta*x + epsilon(N, sigma, 0, 1/3)

y2 <- alpha + beta*x + epsilon(N, sigma, 2/3, 1/3)

2

(Histogram) Y1 The mean E[yi] = 1 + 3[X] = 4 with excess right kurtosis with
Y2 showing asymmetric kurtosis. (QQ plot) Only the left tail of Y1 is normal,
but the right tail is heavier. Y2 shows much greater kurtosis on the left tail vs
the right tail.

3

Given a sample from the data generating process (X, Y), we now show that we
can recover the unknown parameters (α, β, σ, δl, δr) using Asymmetric Heavy-
Tailed LambertW ×N (µ = α+ βX, σ = 3/2) transform.

y1 var(true val) mean median sd mad q5 q95 rhat ess bulk ess tail
1 α(1) 0.97 0.97 0.07 0.07 0.86 1.08 1.00 2435.13 2623.44
2 β(3) 2.97 2.97 0.05 0.05 2.89 3.04 1.00 2535.51 2711.36
3 σ(1.5) 1.40 1.40 0.04 0.04 1.33 1.47 1.00 3238.89 2345.71
4 δl(0) 0.01 0.01 0.01 0.01 0.00 0.04 1.00 2566.76 1873.71
5 δr(.3) 0.32 0.32 0.04 0.04 0.26 0.39 1.00 3455.14 2586.87

y2 var(true val) mean median sd mad q5 q95 rhat ess bulk ess tail
1 α(1) 1.03 1.03 0.08 0.08 0.90 1.16 1.00 3303.34 2885.34
2 β(3) 2.97 2.97 0.06 0.06 2.88 3.07 1.00 3032.88 2892.40
3 σ(1.5) 1.49 1.49 0.06 0.06 1.39 1.60 1.00 3804.82 3063.84
4 δl(.6) 0.62 0.61 0.06 0.06 0.52 0.73 1.00 4435.63 2863.12
5 δr(.3) 0.34 0.34 0.04 0.04 0.27 0.42 1.00 4114.28 3162.88

We can simulate samples from the posterior (Stan code below) and run a pos-
terior retrodictive check [1]. By comparing quantiles of generated posterior
samples against original data, we can be sure that the model fits the data in
distribution.

generated quantities {
real x_new = normal_rng(1, 1);

real mu_new = alpha + beta * x_new;

real u = normal_rng(0, 1);

real delta = u <= 0 ? delta_left : delta_right;

real y_post_pred = u * exp(delta/2 * square(u))*sigma + mu_new;

}

4

Quantized generated samples (red) of y1 (left) and y2 (right) vs. actual data
(black). Since there are no systematic deviations (red vs. black), particularly
in the tails, the data and model are consistent with each other.

In the next section, we derive the LambertW ×N (µ, σ) likelihood, which illus-
trates that the Normal seed in the LambertW transform can be substituted by
another distribution with continuous support. For example, with this theory,
we can readily define LambertW × Exp(λ) random variables.

3 How to go the LambertW way

As described in the papers by Georg M. Goerg [2, 3], start with a random
variable X that has density FX with finite mean and variance, center and rescale
it as U = X−µ

σ . Then, if we transform U by U exp(δ2U
2), the corresponding

random variable has density involving a derivative of the product logarithm.

Take X ∼ N (µ, σ) and δ ≥ 0. Let Y ∼ U exp (δ2U
2) be the random variable of

interest. Define β = (µ, σ), z = y−µ
σ and Wδ(z) = sgn(z)

√
W (δz2)

δ where Wδ(z)

is the inverse of U exp(δ2U
2).

The theory states

gY (y | β, δ) = fX(Wδ(z)σ + µ | β) ·
∣∣∣∣ ddzWδ(z)

∣∣∣∣
=

1√
2πσ2

exp{−1

2
Wδ(z)

2} · Wδ(z)

z[1 +W (δz2)]

5

For Y1, . . . , YN i.i.d, the log-likelihood is

N∏
i=1

gy(yi | β, δ) =

(
−N log σ − 1

2
z2e−W (δz2)

)
+

(
1

2
logW (δz2)− 1

2
log δ − log |z| − log(1 +W (δz2))

)

where the first parenthetical is the likelihood of σW (δz2) + µ ∼ fX(· | β) and
the second parenthetical is a reformulation of the log-likelihood of

∣∣ d
dzWδ(z)

∣∣.
Since z is squared, we’re dealing with the non-negative input into W (z) and can
always use the principal branch of the LambertW function. The finite mean
and variance restriction can be lifted, but is not shown here.

To disambiguate the different LambertW transforms, we call the above trans-
form the LambertW Normal h transform, it models Gaussian RVs whose tails
are symmetrically heavier. A natural extension is what we call the LambertW
Normal hh transform, Gaussian RVs whose tails are asymmetrically (left or
right of the mean) heavier. Again, start with X ∼ N (µ, σ), with U as before,
then for parameter δl, δr ≥ 0 define

Y =

{
U exp

(
δl
2 U

2
)

U ≤ 0

U exp
(
δr
2 U

2
)

U > 0

The likelihood function remains the same, except it now branches on deltal
and deltar based on the input value U . Since LambertW × FX transforms are
continuous-bijective and map 0 to 0, choosing the correct parameter δl or δr is
unambigious, regardless of whether we’re given values of X or values of Y .

In Stan, the math translates directly to likelihood increments

z = (y[i] - mu[i]) / sigma;

if (z <= 0) {
w_delta_z_sq = lambert_w0(delta_left * square(z));

sigma * sqrt(w_delta_z_sq / delta_left) ~ normal(0, sigma);

target += (0.5 * log(w_delta_z_sq) - 0.5 * log(delta_left)

- log(fabs(z)) - log1p(w_delta_z_sq));

} else {
w_delta_z_sq = lambert_w0(delta_right * square(z));

sigma * sqrt(w_delta_z_sq / delta_right) ~ normal(0, sigma);

target += (0.5 * log(w_delta_z_sq) - 0.5 * log(delta_right)

- log(fabs(z)) - log1p(w_delta_z_sq));

}

6

Conclusion

In a real-world regression setting, we seldom know the true distribution of the
data-generating process. But, if we can identify the relationship as approxi-
mately Normal except for the tails, then we can apply LambertW x Normal
hh transforms to model the feature-response relationship. The main advantage
of the transformation approach over directly-fitting a heavy-tailed probability
distribution is the ability to back-transform heavy-tailed observations into a
Gaussian kernel. Being able to separate the normal and non-normal compo-
nents helps you interpret the inference and resolve computational frustrations.

The flexibility of LambertW transforms does not stop here. If you have ap-
proximately Exponential data except for a heavy-right tail, you can apply a
LambertW x Exponential h transform. If you have approximate-but-skewed
Normal data, then you can apply a LambertW x Exponential s transform. Nei-
ther of these are described here, but will be part of the inbuilt functionality we
plan to deliver as part of this GSOC project.

7

Full Stan Code For LambertW ×Normal hh

data {
int N;

vector[N] y;

vector[N] x;

}
parameters {
real alpha;

real beta;

real<lower=0> sigma;

real<lower=0> delta_left;

real<lower=0> delta_right;

}
transformed parameters {
vector[N] mu = alpha + beta * x;

}
model {
alpha ~ normal(0.5, 1);

beta ~ normal(3, 1);

sigma ~ normal(0, 1.5*sqrt(pi()/2));

delta_left ~ exponential(3);

delta_right ~ exponential(3);

real z, w_delta_z_sq;

for (i in 1:N) {
z = (y[i] - mu[i]) / sigma;

if (z <= 0) {
w_delta_z_sq = lambert_w0(delta_left * square(z));

sigma * sqrt(w_delta_z_sq / delta_left) ~ normal(0, sigma);

target += 0.5 * log(w_delta_z_sq) - 0.5 * log(delta_left)

- log(fabs(z)) - log1p(w_delta_z_sq);

} else {
w_delta_z_sq = lambert_w0(delta_right * square(z));

sigma * sqrt(w_delta_z_sq / delta_right) ~ normal(0, sigma);

target += 0.5 * log(w_delta_z_sq) - 0.5 * log(delta_right)

- log(fabs(z)) - log1p(w_delta_z_sq);

}
}

}
generated quantities {
vector[N] y_new;

for (i in 1:N)

{
real x_new = normal_rng(1, 1);

real mu_new = alpha + beta * x_new;

real u = normal_rng(0, 1);

real delta = u <= 0 ? delta_left : delta_right;

y_new[i] = u * exp(delta/2 * square(u))*sigma + mu_new;

}
}

8

References

[1] Michael Betancourt. Towards a principled bayesian workflow, 2020.

[2] Georg M Goerg. Lambert w random variables—a new family of generalized
skewed distributions with applications to risk estimation. The Annals of
Applied Statistics, 5(3):2197–2230, 2011.

[3] Georg M Goerg. The lambert way to gaussianize heavy-tailed data with the
inverse of tukey’sh transformation as a special case. The Scientific World
Journal, 2015, 2015.

9

	LambertW transforms reintroduced
	Simulation study
	How to go the LambertW way

