
Chapter 2

Data and measurement

In this book, we’ll be fitting lines (and some curves) to data, making comparisons and predictions
and assessing our uncertainties in the resulting inferences. We’ll discuss the assumptions underlying
regression models, methods for checking these assumptions, and directions for improving fitted
models. We’ll discuss the challenges of extrapolating from available data to make causal inferences
and predictions for new data, and we’ll use computer simulations to summarize the uncertainties in
our estimates and predictions.

Before fitting a model, though, it is a good idea to understand where your numbers are coming
from. The present chapter demonstrates through examples how to use graphical tools to explore and
understand data and measurements.

2.1 Examining where data come from
Figure 2.1 went viral on the web a few years ago. The map compares the 50 states and Washington,Example:

Human De-
velopment
Index

D.C., in something called the Human Development Index (HDI), which had previously been used to
compare di�erent countries in public health measures. The coding of the map is kind of goofy: the
states with the three lowest values are Louisiana at 0.801, West Virginia at 0.800, and Mississippi at
0.799, but their shading scheme makes Mississippi stand out.

But we have bigger concerns than that. Is Alaska really so developed as all that? And what’s up
with Washington, D.C., which, according to the report, is ranked at #4, behind only Connecticut,
Massachusetts, and New Jersey?

Time to look behind the numbers. From the published report, the HDI combines three basic
dimensions:
• Life expectancy at birth, as an index of population health and longevity.
• Knowledge and education, as measured by the adult literacy rate (with two-thirds weighting) and

the combined primary, secondary, and tertiary gross enrollment ratio (with one-third weighting).
• Standard of living, as measured by the natural logarithm of gross domestic product (GDP) per

capita at purchasing power parity (PPP) in U.S. dollars.
Now we can see what’s going on. There is not much variation by state in life expectancy, literacy,

or school enrollment. Sure, Hawaiians live a few years longer than Mississippians, and there are
some di�erences in who stays in school, but by far the biggest di�erences between states, from
these measures, are in GDP. The average income in Connecticut is twice that of Mississippi. And
Washington, D.C., ranks high because its residents have a high average income.

To check out the relation between HDI and income, we loaded in the tabulated HDI numbers
and plotted them versus some historical data on average income by state.1 Figure 2.2a shows the
result. The pattern is strong but nonlinear. Figure 2.2b plots the ranks and reveals a clear pattern,
with most of the states falling right on the 45-degree line and a high correlation between the two
rankings. We were surprised the correlation isn’t higher—and surprised the first scatterplot above is

1Data and code for this example are in the folder HDI.
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Figure 2.1 Map that appeared on the internet of the so-called “Human Development Index,” ranking the 50
states and Washington, D.C., from PlatypeanArchcow (2009).

Figure 2.2 Graphing the Human Development Index versus average income by state: (a) scatterplot of the data,
(b) scatterplot of ranks.

so nonlinear—but, then again, we’re using state income rather than GDP, so maybe there’s something
going on with that. No, the logarithmic transformation is not what’s doing this, at least not if you’re
logging income as is stated in the report. Logging stretches out the lower end of the scale a bit but
does not change the overall pattern of the plot. The income values don’t have enough dynamic range
for the log transformation to have much e�ect.

Or maybe more is going on than we realize with those other components. If anyone is interested
in following up on this, we suggest looking into South Carolina and Kentucky, which are so close in
average income and so far apart on the HDI; see Figure 2.2a.

In any case, the map in Figure 2.1 is pretty much a map of state income with a mysterious
transformation and a catchy name. The relevance of this example is that we were better able to
understand the data by plotting them in di�erent ways.
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Figure 2.3 Distribution of (a) political ideology and (b) party identification, by income, from a survey conducted
during the 2008 U.S. election campaign.

Details of measurement can be important

In American politics, there are two major parties, and most voters fall in an ideological spectrumExample:
Political
ideology
and party
identifica-
tion

ranging from left, or liberal, to right, or conservative. The split between Democrats and Republicans
roughly aligns with the division between liberal and conservative.

But these two scales of partisanship and ideology are not identical.2 Figure 2.3a shows that the
proportion of political liberals, moderates, and conservatives is about the same for all income levels.
In contrast, Figure 2.3b shows a strong relation between income and Republican partisanship, at least
as of 2008, when these survey data were gathered. Party identification and political ideology were
each measured on a five-point scale running from left to right, but, as the graphs show, there are clear
di�erences between the two variables.

How does Figure 2.3 relate to the general themes of our book? Regression is a way to summarize
and draw inferences from data. As such, conclusions from regressions will depend on the quality of
the data being analyzed and the relevance of these data to questions of interest. The partisanship and
ideology example is a reminder that even very similar measures can answer quite di�erent questions.

Unfortunately, gaps between measurement and reality are a general problem in scientific research
and communication. For example, Temple University’s medical school issued a press release entitled
“Extra-virgin olive oil preserves memory & protects brain against Alzheimer’s”—but the actual study
was performed on mice and had no direct connection with dementia or Alzheimer’s disease. The
claim thus lacks external validity (see Section 2.2). This sort of leap happens all the time. In some
sense it is necessary—lab experimentation precedes clinical trials—but we should be open and aware
of what we know.

2.2 Validity and reliability
We discuss the important issue of measurement for two reasons. First, we need to understand what
our data actually mean. We have looked at ways to visualize data and extract information. But if we
do not know what the data actually represent, then we cannot extract the right information.

Data analysis reaches a dead end if we have poor data. There are some measurement problems that
no amount of fixing and adjusting can solve. In Section 1.3 we discussed how we made adjustments
to the Xbox polling data to account for di�erences between sample and population. But if we had
asked our respondents the wrong question, or had nor recorded key background variables that could
be used for the adjustment, then there would have been no easy fix.

2Data and code for this example are in the folder Pew.



24 2. D��� ��� �����������

The second reason for discussing measurement is that learning about accuracy, reliability, and
validity will set a foundation for understanding variance, correlation, and error, which will all be
useful in setting up linear models in the forthcoming chapters.

Most of us don’t think very much about measurement on a day-to-day basis, primarily because
we take for granted the measures we work with, and even where we know there are some issues with
precision, the precision we have is usually good enough for our purposes. So we have no trouble
talking about the temperature outside, the weight of groceries, the speed of a car, etc. We take for
granted the correspondence between the numbers and the “thing” that we are measuring. And we’re
usually not worried about the precision—we don’t need temperature to the nearest half degree, or our
car speed to six decimal places.

This is all dependent on what we are measuring and what our proposed inferences are. A scale
that measures weight to an accuracy of 1 kilogram is fine for most purposes of weighing people, great
for weighing elephants, and terrible for weighing medicine at a pharmacy. The property of being
precise enough is a combination of the properties of the scale and what we are trying to use it for.

In social science, the way to measure what we are trying to measure is not as transparent as it is
in everyday life. Sometimes this is because what we want to measure is “real” and well defined, but
di�cult to actually count. Examples include counting the number of immigrants, or measuring daily
intake of food in uncontrolled conditions.

Other times, the thing we are trying to measure is pretty straightforward, but a little bit fuzzy,
and the ways to tally it up aren’t obvious, for example, counting the number of people in your
neighborhood you know or trust, or counting the number of vocabulary words you know.

Sometimes we are trying to measure something that we all agree has meaning, but which is
subjective for every person and does not correspond to a “thing” we can count or measure with a
ruler. Examples include attitudes, beliefs, intentions to vote, and customer satisfaction. In all these
cases, we share an understanding of what we are talking about; it is deeply embedded in our language
and understanding that people have opinions about things and feelings. But attitudes are private;
you can’t just weigh them or measure their widths. And that also means that to probe them you have
to invent some kind of measure such as, “Tell us on a scale of 0 to 100 how much you enjoyed the
service you got today?” The relative answer matters, but we could have asked on a scale of 1 to 3,
or for that matter 300 too 500. We just hope that people can be sincere when they answer and that
they use the scale the same way. These concerns arise if you are designing your own study or when
analyzing data collected by others.

It can be helpful to take multiple measurements on an underlying construct of interest. For
example, in a class evaluation survey, students are typically asked several questions about the quality
of an instructor and a course. And various health conditions are measured using standard batteries of
questions. For example, the Beck Depression Inventory includes 21 items, each of which is given a
score from 0 to 3, and then these are added to get a total from 0 to 63.

A measure can be useful for some purposes but not others. For example, in public health studies, a
“never smoker” is typically defined as someone who has smoked fewer than 100 cigarettes in his or her
lifetime, which generally seems like a reasonable definition when studying adult behavior and health.
But in a study of adolescents, it would be mistaken to put a youth who has smoked 90 cigarettes in
the same “never smoker” category as a youth who has smoked zero or one or two cigarettes.

Validity

A measure is valid to the degree that it represents what you are trying to measure. It’s easy to come
up with negative examples. A written test is not a valid measure of musical ability. There is a vast
gap between the evidence and what we want to make inferences about.

Similarly, asking people how satisfied they are with some government service might not be
considered a valid measure of the e�ectiveness of that service. Valid measures are ones in which
there is general agreement that the observations are closely related to the intended construct.

We can define the validity of a measuring process as the property of giving the right answer on
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average across a wide range of plausible scenarios. To study validity in an empirical way, ideally you
want settings in which there is an observable true value and multiple measurements can be taken.

In social science, validity can be di�cult to assess. When the truth is not available, measurements
can be compared to expert opinion or another “gold standard” measurement. For instance, a set
of survey questions designed to measure depression in a new population could be compared to
the opinion of an experienced psychiatrist for a set of patients, and it can also be compared to a
well-established depression inventory.

Reliability

A reliable measure is one that is precise and stable. If we make a measurement, and then we have
occasion to do it again, we would hope that the value would not move (much). Put another way, the
variability in our sample is due to real di�erences among people or things, and not due to random
error incurred during the measurement process.

For example, consider a test that is given twice to the same group of students. We could use the
correlation between the scores across the two administrations of the test to help understand the extent
to which the test reliably measures the given construct.

Another approach would be to have di�erent raters administer the same measure in the same
context. For instance, we could compare the responses on a measure of classroom quality across
raters who observed the same classroom at the same time. Or we could compare judges’ ratings of
proficiency of gymnasts’ performance of a given skill based on the same demonstration of that skill.
This is referred to as inter-rater reliability.

Sample selection

Yet another feature of data quality is selection, the idea that the data you see can be a nonrepresentative
sample of a larger population that you will not see. For example, suppose you are interested in
satisfaction with a city’s public transit system, so you interview people who ride the buses and trains;
maybe you even take some measurements such as travel times or percentage of time spent sitting or
standing. But there is selection: you only include people who have chosen to ride the bus or train.
Among those excluded are those who have chosen not to ride the bus or the train because they are
unhappy with those services.

In addition to this sort of selection bias based on who is included in the dataset, there are also
biases from nonresponse to particular survey items, partially observed measurements, and choices in
coding and interpretation of data. We prefer to think about all these measurement issues, including
validity, reliability, and selection, in the context of larger models connecting measurements to
underlying relationships of interest.

2.3 All graphs are comparisons
As demonstrated throughout this book, we can learn a lot by looking at data with an open mind. We
present three quick examples here. In the larger context of workflow, we go back and forth between
data exploration, modeling, inference, and model building, and each step requires its own tools.

Simple scatterplots

Figure 2.4 shows some data on health spending and life expectancy, revealing that the United StatesExample:
Health
spending
and lifespan

spends much more per person than any other country without seeing any apparent benefit in lifespan.3
Here is R code to plot the data:

3Data and code for this example are in the folder Hea�thExpenditure.
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Figure 2.4 Health care spending and life expectancy in several countries. This scatterplot shows two things: the
generally positive correlation between spending and lifespan, and the extreme position of the United States.

hea�th <- read.tab�e(�hea�thdata.txt�, header=TRUE)
country <- rownames(hea�th)
p�ot(hea�th$spending, hea�th$�ifespan, type=�n�)
text(hea�th$spending, hea�th$�ifespan, country)

To make the graph just as displayed in Figure 2.4, further commands are required, and these are
available on our website, but the code here gives the basic idea.

The graph shows the exceptional position of the United States and also shows the relation between
spending and lifespan in the other countries.

Displaying more information on a graph

You can make as many plots as you want (or as your patience allows), but it is useful to think a bit
about each plot, just as it is useful to think a bit about each model you fit.

The points within a scatterplot correspond to the unit of analysis in your study. At least in theory,
you can display five variables easily with a scatterplot: x position, y position, symbol, symbol size,
and symbol color. A two-way grid of plots allows two more dimensions, bringing the total number of
variables potentially displayed to seven.

We demonstrate some of the virtues of a rich visual description of data and estimates with FigureExample:
Redistricting
and
partisan
bias

2.5, a graph from our applied research that was central to the discovery and presentation of our key
finding. The scatterplot in question displays three variables, conveyed by x position, y position, and
symbol, a comparison of treatments to control with a before and after measurement. In this case, the
units are state legislative elections, and the plot displays estimated partisan bias (a measure of the
extent to which the drawing of district boundaries favors one party or the other) in two successive
election years. The “treatments” are di�erent kinds of redistricting plans, and the “control” points
(indicated by dots on the figure) represent pairs of elections with no intervening redistricting. We
display all the data and also show the regression lines on the same scale. As a matter of fact, we did not
at first think of fitting nonparallel regression lines; it was only after making the figure and displaying
parallel lines that we realized that nonparallel lines (that is, an interaction between the treatment and
the “before” measurement) are appropriate. The interaction is crucial to the interpretation of these
data: (1) when there is no redistricting, partisan bias is not systematically changed; (2) the largest
e�ect of any kind of redistricting is typically to bring partisan bias closer to zero. The lines and
points together show this much more clearly than any numerical summary.
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Figure 2.5 E�ect of redistricting on partisan bias in U.S. state legislative elections. Each symbol represents a
state and election year, with solid circles, open circles, and crosses representing Democratic, bipartisan, and
Republican redistricting, respectively. The small dots are the control cases—state-years that did not immediately
follow a redistricting. Lines show fit from a regression model. Redistricting tends to make elections less biased,
but small partisan biases remain based on the party controlling the redistricting.

We sometimes have had success using descriptive symbol names such as two-letter state
abbreviations. But if there are only two or three categories, we’re happier with visually distinct
symbols. For example, to distinguish men and women, we would not use M and W or M and
F. In genealogical charts, men and women are often indicated by open squares and open circles,
respectively, but even these symbols are hard to tell apart in a group. We prefer clearly distinguishable
colors or symbols such as the open circles, solid circles, crosses, and dots in Figure 2.5. When a
graph has multiple lines, label them directly, as in Figure 1.7.

These suggestions are based on our experience and attempts at logical reasoning; as far as we
know, they have not been validated (or disproved) in any systematic study.

Multiple plots

Looking at data in unexpected ways can lead to discovery. For example, Figure 2.6 displays theExample:
Last letters
of names

distribution of the last letters of boys’ names in the United States in 1906. The most common names
in that year included John, James, George, and Edward, for example.

We can learn by putting multiple related graphs in a single display. Figures 2.6 and 2.7 show
the dramatic change in the distribution of last letters of boys’ names during the twentieth century.
In recent years, over a third of boys have been given names that end in “n,” with the most common
being Ethan, Jayden, Aiden, Mason, and Logan.

There is no single best way to display a dataset. For another view of the data just discussed, we
created Figure 2.8, which shows time series of the percentage of boys’ names recorded each year
ending in each letter.4 The graph has 26 lines, and we have labeled three of them. We played around
with di�erent representations but found the graphs hard to read when more than three lines were
highlighted. There has been a steady increase in boys’ names ending in “n” during the past 60 years.

Looking at names data another way, Figure 2.9 plots the proportion of boys’ and girls’ names
each year that were in the top 10 names for each sex. Traditionally, boys’ names were chosen from a
narrower range than girls, with the top 10 names representing 30–40% of all boys, but in recent years,

4Data and code for this example are in the folder Names.
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Figure 2.6 Distribution of last letters of boys’ names from a database of American babies born in 1906. Redrawn
from a graph by Laura Wattenberg.
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Figure 2.7 Distribution of last letters of boys’ names of American babies born in 1956 and 2006. Redrawn from
graphs by Laura Wattenberg. Putting these plots together with the 1906 graph (Figure 2.6) shows a striking
trend.

name choice in the United States has become much more diverse. There are many more patterns to
be found in this rich dataset.

Grids of plots

A scatterplot displays two continuous variables, say y vs. x1. Coloring the dots enables us to plot a
third variable, x2, with some small number of discrete levels. Realistically it can be di�cult to read a
plot with more than two colors. We can then include two more discrete variables by constructing a
two-way grid of plots representing discrete variables x3 and x4. This approach of small multiples can
be more e�ective than trying to cram five variables onto a single plot.

Figure 2.10 demonstrates with a grid relating to incumbency in U.S. congressional elections.5Example:
Swings in
congres-
sional
elections

Each graph plots the swing toward the Democrats from one election to another, vs. the Democratic
candidate’s share of the vote in the first election, where each dot represents a di�erent seat in the
House of Representatives, colored gray for elections where incumbents are running for reelection, or
black for open seats. Each row of the graph shows a di�erent pair of national election years, and the
four columns show data from di�erent regions of the country.

Breaking up the data in this way allows us to see some patterns, such as increasing political
polarization (going from the 1940s through the 1960s to the 1980s, we see a decreasing number of
elections with vote shares near 50%), increasing volatility of elections (larger swings in the later
periods than before), and a change in the South, which in the 1940s was overwhelmingly Democratic
but by the 1980s had a more symmetric range of election results. It would be di�cult to see all this in
a single plot; in addition, the graph could be easily extended to additional rows (more years of data)
or columns (smaller geographic subdivisions).

More generally, we can plot a continuous outcome y vs. a continuous predictor x1 and discrete

5Data and code for this example are in the folder Congress.
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Figure 2.8 Trends in percentage of boys’ names ending in each letter. This graph has 26 lines, with the lines for
N, D, and Y in bold to show the di�erent trends in di�erent-sounding names. Compare to Figures 2.6 and 2.7,
which show snapshots of the last-letter distribution in 1906, 1956, and 2006.
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Figure 2.9 Trends in concentration of boys’ and girls’ names. In the late 1800s, and then again at di�erent
periods since 1950, there have been steep declines in the percentage of babies given the most popular names, so
that now the top 10 names of each sex represent only about 10% of baby names. Thus, even as the sounds of
boys’ names have become more uniform (as indicated by the pattern of last letters shown in Figure 2.6), the
particular names chosen have become more varied.

predictors x2, x3, and x4. If there is interest, we can also plot fitted lines within each plot, showing
the expected value of y as a function of x1 for di�erent fixed values of the other three predictors.

The discrete variables can also represent continuous bins. For example, to display data from an
experiment on blood-pressure medication, we could plot after vs. before measurements with di�erent
colors for treated and control students, with top and bottom rows of plots showing data from men and
women, and rows corresponding to di�erent age categories of patients. Age is a continuous variable,
but it could be binned into categories for the graph.

Applying graphical principles to numerical displays and communication more generally

When reporting data and analysis, you should always imagine yourself in the position of the reader
of the report. Avoid overwhelming the reader with irrelevant material. For the simplest (but still
important) example, consider the reporting of numerical results, either alone or in tables.

Do not report numbers to too many decimal places. There is no absolute standard for significant
digits; rather, you should display precision in a way that respects the uncertainty and variability in the
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Figure 2.10 Swings in U.S. congressional elections in three di�erent periods. This grid of plots demonstrates how
we can display an outcome (in this case, the swing toward the Democrats or Republicans between two elections
in a congressional district) as a function of four predictors: previous Democratic vote share, incumbency status
(gray for incumbents running for reelection, black for open seats), region of the country, and time period.
Uncontested and landslide elections have been excluded.

numbers being presented. For example, the uncertainty interval [3.276, 6.410] would be more clearly
written as [3.3, 6.4]. (An exception is that it makes sense to save lots of extra digits for intermediate
steps in computations, for example, 51.7643 � 51.7581.) A related issue is that you can often make a
list or table of numbers more clear by first subtracting out the average (or for a table, row and column
averages). The appropriate number of significant digits depends on the uncertainty. But in practice,
three digits are usually enough because if more were necessary, we would subtract out the mean first.

The biggest source of too many significant digits may be default computer output. One solution
is to set the rounding in the computer program (for example in R, options(digits=2)).

A graph can almost always be made smaller than you think and still be readable. This then leaves
room for more plots on a grid, which then allows more patterns to be seen at once and compared.

Never display a graph you can’t talk about. Give a full caption for every graph, as we try to
do in this book. This explains, to yourself and others, what you are trying to show and what you
have learned from each plot. Avoid displaying graphs that have been made simply because they are
conventional.

Graphics for understanding statistical models

We can consider three uses of graphics in statistical analysis:
1. Displays of raw data, often called “exploratory analysis.” These don’t have to look pretty; the goal

is to see things you did not expect or even know to look for.
2. Graphs of fitted models and inferences, sometimes overlaying data plots in order to understand

model fit, sometimes structuring or summarizing inference for many parameters to see a larger
pattern. In addition, we can plot simulations of replicated data from fitted models and compare
them to comparable plots of raw data.
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3. Graphs presenting your final results—a communication tool. Often your most important audience
here is yourself—in presenting all of your results clearly on the page, you’ll suddenly understand
the big picture.
The goal of any graph is communication to self or others. More immediately, graphs are

comparisons: to zero, to other graphs, to horizontal lines, and so forth. We “read” a graph both by
pulling out the expected (for example, the slope of a fitted regression line, the comparison of a series
of uncertainty intervals to zero and each other) and the unexpected. In our experience, the unexpected
is usually not an “outlier” or aberrant point but rather a systematic pattern in some part of the data.

Some of the most e�ective graphs simply show us what a fitted model is doing. See Figure 15.6
for an example.

Graphs as comparisons

All graphical displays can be considered as comparisons. When making a graph, line things up so
that the most important comparisons are clearest. Comparisons are clearest when scales are lined
up. Creative thinking might be needed to display numerical data e�ectively, but your creativity can
sometimes be enhanced by carefully considering your goals. Just as in writing, you sometimes have
to rearrange your sentences to make yourself clear.

Graphs of fitted models

It can be helpful to graph a fitted model and data on the same plot, as we do throughout the book. We
also like to graph sets of estimated parameters; see, for example, in Figure 10.9. Graphs of parameter
estimates can be thought of as proto-models in that the graph suggests a relation between the y-axis
(the parameter estimates being displayed) and the x-axis (often time, or some other index of the
di�erent data subsets being fit by a model). These graphs contain an implicit model, or a comparison
to an implicit model, the same way that any scatterplot contains the seed of a prediction model.

Another use of graphics with fitted models is to plot predicted datasets and compare them visually
to actual data, as we discuss in Sections 11.4 and 11.5. For data structures more complicated than
simple exchangeable batches or time series, plots can be tailored to specific aspects of the models
being checked.

2.4 Data and adjustment: trends in mortality rates
Even when there are no questions of data quality or modeling, it can make sense to adjust measurements
to answer real-world questions.

In late 2015, economists Anne Case and Angus Deaton published a graph illustrating “a markedExample:
Trends in
mortality
rates

increase in the all-cause mortality of middle-aged white non-Hispanic men and women in the United
States between 1999 and 2013.” The authors stated that their numbers “are not age-adjusted within
the 10-y 45–54 age group.” They calculated the mortality rate each year by dividing the total number
of deaths for the age group by the population as a whole, and they focused on this particular subgroup
because it stood out with its increase: the death rates for other age and ethnic groups were declining
during this period.

Suspecting an aggregation bias, we examined whether much of the increase in aggregate mortality
rates for this age group could be due to the changing composition of the 45-to-54-year-old age group
over the 1990 to 2013 time period. If this were the case, the change in the group mortality rate
over time may not reflect a change in age-specific mortality rates. Adjusting for age confirmed this
suspicion. Contrary to the original claim from the raw numbers, we find there is no longer a steady
increase in mortality rates for this age group after adjusting for age composition. Instead, there is an
increasing trend from 1999 to 2005 and a constant trend thereafter. Moreover, stratifying age-adjusted
mortality rates by sex shows a marked increase only for women and not men.
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Figure 2.11 (a) Observed increase in raw mortality rate among 45-to-54-year-old non-Hispanic whites, unadjusted
for age; (b) increase in average age of this group as the baby boom generation moves through; (c) raw death
rate, along with trend in death rate attributable by change in age distribution alone, had age-specific mortality
rates been at the 2013 level throughout.
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Figure 2.12 (a) Age-adjusted death rates among 45-to-54-year-old non-Hispanic whites, showing an increase
from 1999 to 2005 and a steady pattern since 2005; (b) comparison of two di�erent age adjustments; (c) trends
in age-adjusted death rates broken down by sex. The three graphs are on di�erent scales.

We demonstrate the necessity of the age adjustment in Figure 2.11.6 The unadjusted numbers in
Figure 2.11a show a steady increase in the mortality rate of 45-to-54-year-old non-Hispanic whites.
During this period, however, the average age in this group increased as the baby boom generation
passed through. Figure 2.11b shows this increase.

Suppose for the moment that mortality rates did not change for individuals in this age group from
1999 to 2013. In this case, we could calculate the change in the group mortality rate due solely to the
change in the underlying age of the population. We do this by taking the 2013 mortality rates for
each age and computing a weighted average rate each year using the number of individuals in each
age group. Figure 2.11c shows the result. The changing composition in age explains about half the
change in the mortality rate of this group since 1999 and all the change since 2005.

Having demonstrated the importance of age adjustment, we now perform an adjustment for the
changing age composition. We ask what the data would look like if the age groups remained the
same each year and only the individual mortality rates changed. Figure 2.12a shows the simplest such
adjustment, normalizing each year to a hypothetical uniformly distributed population in which the
number of people is equal at each age from 45 through 54. That is, we calculate the mortality rate each
year by dividing the number of deaths for each age between 45 and 54 by the population of that age
and then taking the average. This allows us to compare mortality rates across years. Consistent with
Figure 2.11c, the resulting mortality rate increased from 1999 to 2005 and then stopped increasing.

We could just as easily use another age distribution to make valid comparisons across years.
Checking, we find that age-adjusted trend is not sensitive to the age distribution used to normalize the
mortality rates. Figure 2.12b shows the estimated changes in mortality rate under three options: first
assuming a uniform distribution of ages 45–54; second using the distribution of ages that existed in
1999, which is skewed toward the younger end of the 45–54 group; and third using the 2013 age
distribution, which is skewed older. The general pattern does not change.

6Data and code for this example are in the folder AgePeriodCohort.
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Figure 2.13 Age-adjusted death rates among 45-to-54-year-old non-Hispanic white men and women, broken
down by region of the country. The most notable pattern has been an increase in death rates among women
in the South. In contrast, death rates for both sexes have been declining in the Northeast. The graphs are on
di�erent scales; as can be seen from the y-axes, death rates are lower for women than for men.

Calculating the age-adjusted rates separately for each sex reveals a crucial result, which we display
in Figure 2.12c. The mortality rate among white non-Hispanic American women increased from
1999 to 2013. Among the corresponding group of men, however, the mortality rate increase from
1999 to 2005 was nearly reversed from 2005 to 2013.

In summary, age adjustment is not merely an academic exercise. Due to the changing composition
of the 45-to-54-year-old age group, adjusting for age changes the interpretation of the data in important
ways. This does not change a key finding that had been seen in the unadjusted data: the comparison of
non-Hispanic U.S. middle-aged whites to other countries and other ethnic groups. These comparisons
hold up after our age adjustment. The aggregation bias in the published unadjusted numbers is on the
order of 5% in the trend from 1999 to 2003, while mortality rates in other countries and other groups
fell by around 20% during that period.

One can learn more by further decomposing these data. For example, Figure 2.13 breaks down
the age-adjusted death rates in that group by U.S. region. The most notable pattern has been an
increase in death rates among women in the South. In contrast, death rates for both sexes have been
declining in the Northeast, the region where mortality rates were lowest to begin with. These graphs
demonstrate the value of this sort of data exploration.

2.5 Bibliographic note
Some general references on data display and exploration include Cleveland (1985, 1993), Friendly
and Kwan (2003), Chambers et al. (1983), Tukey (1977), Mosteller and Tukey (1977), Tufte (1983,
1990), Bertin (1967), and Wainer (1984, 1997). Gelman and Unwin (2013) discuss di�erent goals of
information visualization and statistical graphics.

For statistical graphics in R, the books by Healy (2018), Wickham (2016), and Murrell (2005) are
good starting points. Fox (2002) is also helpful in that it focuses on regression models. An important
topic not discussed in the present book is dynamic graphics; see Buja et al. (1988).

There are various systematic ways of studying statistical graphics. One useful approach is to
interpret exploratory visualization as checks of explicit or implicit models. Another approach is
to perform experiments to find out how well people can gather information from various graphical
displays; see Hullman, Resnick, and Adar (2015) for an example of such research. More work
is needed on both these approaches: relating to probability models is important for allowing us
to understand graphs and devise graphs for new problems, and e�ective display is important for
communicating to ourselves as well as others.

For some ideas on the connections between statistical theory, modeling, and graphics, see Buja et
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al. (2009), Wilkinson (2005), and, for our own perspective, Gelman (2004a). Unwin, Volinsky, and
Winkler (2003), Urbanek (2004), and Wickham (2006) discuss exploratory model analysis, that is,
visualization of di�erent models fit to the same data.

For di�erent perspectives on tabular displays, compare Tukey (1977); Ehrenberg (1978); Gelman,
Pasarica, and Dodhia; and Wickham and Grolemund (2017, chapter 10).

For background on the Human Development Index, see Gelman (2009a). The graphs of political
ideology, party identification, and income come from Gelman (2009b). The graph of health spending
and life expectancy appears in Gelman (2009c). The graphs of baby names are adapted from
Wattenberg (2007).

Validity and reliability are discussed in textbooks on psychometrics but have unfortunately been
underemphasized in applied statistics; see Gelman (2015b). Rodu and Plurphanswat (2018) discuss
a problem with the “never smoker” definition in a study of adolescent behavior. The middle-aged
mortality rate example appears in Gelman (2015c) and Gelman and Auerbach (2016); see also Schmid
(2016), Case and Deaton (2015, 2016), and Gelman (2017).

2.6 Exercises
2.1 Composite measures: Following the example of the Human Development Index in Section 2.1,

find a composite measure on a topic of interest to you. Track down the individual components
of the measure and use scatterplots to understand how the measure works, as was done for that
example in the book.

2.2 Significant digits:
(a) Find a published article in a statistics or social science journal in which too many significant

digits are used, that is, where numbers are presented or displayed to an inappropriate level of
precision. Explain.

(b) Find an example of a published article in a statistics or social science journal in which there is
not a problem with too many significant digits being used.

2.3 Data processing: Go to the folder Names and make a graph similar to Figure 2.8, but for girls.
2.4 Data visualization: Take any data analysis exercise from this book and present the raw data in

several di�erent ways. Discuss the advantages and disadvantages of each presentation.
2.5 Visualization of fitted models: Take any data analysis exercise from this book and present the fitted

model in several di�erent ways. Discuss the advantages and disadvantages of each presentation.
2.6 Data visualization: Take data from some problem of interest to you and make several plots to

highlight di�erent aspects of the data, as was done in Figures 2.6–2.8.
2.7 Reliability and validity:

(a) Give an example of a scenario of measurements that have validity but not reliability.
(b) Give an example of a scenario of measurements that have reliability but not validity.

2.8 Reliability and validity: Discuss validity, reliability, and selection in the context of measurements
on a topic of interest to you. Be specific: make a pen-on-paper sketch of data from multiple
measurements to demonstrate reliability, sketch true and measured values to demonstrate validity,
and sketch observed and complete data to demonstrate selection.

2.9 Graphing parallel time series: The mortality data in Section 2.4 are accessible from this site at
the U.S. Centers for Disease Control and Prevention: wonder.cdc.gov. Download mortality
data from this source but choose just one particular cause of death, and then make graphs similar
to those in Section 2.4, breaking down trends in death rate by age, sex, and region of the country.

2.10 Working through your own example: Continuing the example from Exercise 1.10, graph your
data and discuss issues of validity and reliability. How could you gather additional data, at least
in theory, to address these issues?


