
Chapter 16

Design and sample size decisions

This chapter is a departure from the rest of the book, which focuses on data analysis: building,
fitting, understanding, and evaluating models fit to existing data. In the present chapter, we consider
the design of studies, in particular asking the question of what sample size is required to estimate
a quantity of interest to some desired precision. We focus on the paradigmatic inferential tasks
of estimating population averages, proportions, and comparisons in sample surveys, or estimating
treatment e�ects in experiments and observational studies. However, the general principles apply for
other inferential goals such as prediction and data reduction. We present the relevant algebra and
formulas for sample size decisions and demonstrating with a range of examples, but we also criticize
the standard design framework of “statistical power,” which when studied naively yields unrealistic
expectations of success and can lead to the design of ine�ective, noisy studies. As we frame it, the
goal of design is not to attain statistical significance with some high probability, but rather to have
a sense—before and after data have been collected—about what can realistically be learned from
statistical analysis of an empirical study.

16.1 The problem with statistical power
Statistical power is defined as the probability, before a study is performed, that a particular comparison
will achieve “statistical significance” at some predetermined level (typically a p-value below 0.05),
given some assumed true e�ect size. A power analysis is performed by first hypothesizing an e�ect
size, then making some assumptions about the variation in the data and the sample size of the study
to be conducted, and finally using probability calculations to determine the chance of the p-value
being below the threshold.

The conventional view is that you should avoid low-power studies because they are unlikely to
succeed. This, for example, comes from an influential paper in criminology:

Statistical power provides the most direct measure of whether a study has been designed to allow a fair test
of its research hypothesis. When a study is underpowered it is unlikely to yield a statistically significant
result even when a relatively large program or intervention e�ect is found.

This statement is correct but too simply presents statistical significance as a goal.
To see the problem with aiming for statistical significance, suppose that a study is low power

but can be performed for free, or for a cost that it is very low compared to the potential benefits that
would arise from a research success. Then a researcher might conclude that a lower-power study is
still worth doing, that it is a gamble worth undertaking.

The traditional power threshold is 80%; funding agencies are reluctant to approve studies that
are not deemed to have at least an 80% chance of obtaining a statistically significant result. But
under a simple cost-benefit calculation, there would be cases where 50% power, or even 10% power,
would su�ce, for simple studies such as psychology experiments where human and dollar costs are
low. Hence, when costs are low, researchers are often inclined to roll the dice, on the belief that
a successful finding could potentially bring large benefits (to society as well as to the researcher’s
career). But this is not necessarily a good idea, as we discuss next.
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The winner's curse of the low−power study
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Figure 16.1 When the e�ect size is small compared to the standard error, statistical power is low. In this
diagram, the bell-shaped curve represents the distribution of possible estimates, and the gray shaded zones
correspond to estimates that are “statistically significant” (at least two standard errors away from zero). In
this example, statistical significance is unlikely to be achieved, but in the rare cases where it does happen,
it is highly misleading: there is a large chance the estimate has the wrong sign (a type S error) and, in any
case, the magnitude of the e�ect size will be vastly overstated (a type M error) if it happens to be statistically
significant. Thus, what would naively appear to be a “win” or a lucky draw—a statistically significant result
from a low-power study—is, in the larger sense, a loss to science and to policy evaluation.

The winner’s curse in low-power studies

The problem with the conventional reasoning is that, in a low-power study, the seeming “win” of
statistical significance can actually be a trap. Economists speak of a “winner’s curse” in which the
highest bidder in an auction will, on average, be overpaying. Research studies—even randomized
experiments—su�er from a similar winner’s curse, that by focusing on comparisons that are statistically
significant, we (the scholarly community as well as individual researchers) get a systematically biased
and over-optimistic picture of the world.

Put simply, when signal is low and noise is high, statistically significant patterns in data are likely
to be wrong, in the sense that the results are unlikely to replicate.

To put it in technical terms, statistically significant results are subject to type M and type S
errors, as described in Section 4.4. Figure 16.1 illustrates for a study where the true e�ect could not
realistically be more than 2 percentage points and is estimated with a standard error of 8.1 percentage
points. We can examine the statistical properties of the estimate using the normal distribution:
conditional on it being statistically significant (that is, at least two standard errors from zero), the
estimate has at least a 24% probability of being in the wrong direction and is, by necessity, over 8
times larger than the true e�ect.

A study with these characteristics has essentially no chance of providing useful information, and
we can say this even before the data have been collected. Given the numbers above for standard error
and possible e�ect size, the study has a power of at most 6% (see Exercise 16.4), but it would be
misleading to say it has even a 6% chance of success. From the perspective of scientific learning,
the real failures are the 6% of the time that the study appears to succeed, in that these correspond to
ridiculous overestimates of treatment e�ects that are likely to be in the wrong direction as well. In
such an experiment, to win is to lose.

Thus, a key risk for a low-power study is not so much that it has a small chance of succeeding,
but rather that an apparent success merely masks a larger failure. Publication of noisy findings in
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turn can contribute to the replication crisis when these fragile claims collapse under more careful
analysis or do not show up in attempted replications, as discussed in Section 4.5.

Hypothesizing an effect size

The other challenge is that any power analysis or sample size calculations is conditional on an assumed
e�ect size, and this is something that is the target of the study and is thus never known ahead of time.

There are di�erent ways to choose an e�ect size for performing an analysis of a planned study
design. One strategy, which we demonstrate in Section 16.5, is to try a range of values consistent with
the previous literature on the topic. Another approach is to decide what magnitude of e�ect would be
of practical interest: for example, in a social intervention we might feel that we are only interested in
pursuing a particular treatment if it increases some outcome by at least 10%; we could then perform a
design analysis to see what sample size would be needed to reliably detect an e�ect of that size.

One common practice that we do not recommend is to make design decisions based on the
estimate from a single noisy study. Section 16.3 gives an example of how one can use a patchwork of
information from earlier studies to make informed judgments about statistical power and sample size.

16.2 General principles of design, as illustrated by estimates of
proportions

Effect sizes and sample sizes

In designing a study, it is generally better, if possible, to double the e�ect size ✓ than to double
the sample size n, since standard errors of estimation decrease with the square root of the sample
size. This is one reason, for example, why potential toxins are tested on animals at many times their
exposure levels in humans; see Exercise 16.8.

Studies are designed in several ways to maximize e�ect size:

• In drug studies, setting doses as low as ethically possible in the control group and as high as
ethically possible in the experimental group.

• To the extent possible, choosing individuals that are likely to respond strongly to the treatment.
For example, an educational intervention in schools might be performed on poorly performing
classes in each grade, for which there will be more room for improvement.

In practice, this advice cannot be followed completely. Sometimes it can be di�cult to find an
intervention with any noticeable positive e�ect, let alone to design one where the e�ect would be
doubled. Also, when treatments in an experiment are set to extreme values, generalizations to more
realistic levels can be suspect. Further, treatment e�ects discovered on a sensitive subgroup may not
generalize to the entire population. But, on the whole, conclusive e�ects on a subgroup are generally
preferred to inconclusive but more generalizable results, and so conditions are usually set up to make
e�ects as large as possible.

Published results tend to be overestimates

There are various reasons why we would typically expect future e�ects to be smaller than published
estimates. First, as noted just above, interventions are often tested on people and in scenarios where
they will be most e�ective—indeed, this is good design advice—and e�ects will be smaller in the
general population “in the wild.” Second, results are more likely to be reported and more likely to be
published when they are “statistically significant,” which leads to overestimation: type M errors, as
discussed in Section 4.4. Some understanding of the big picture is helpful when considering how to
interpret the results of published studies, even beyond the uncertainty captured in the standard error.
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Design calculations

Before data are collected, it can be useful to estimate the precision of inferences that one expects to
achieve with a given sample size, or to estimate the sample size required to attain a certain precision.
This goal is typically set in one of two ways:
• Specifying the standard error of a parameter or quantity to be estimated, or
• specifying the probability that a particular estimate will be “statistically significant,” which

typically is equivalent to ensuring that its 95% confidence interval will exclude the null value.
In either case, the sample size calculation requires assumptions that typically cannot really be tested
until the data have been collected. Sample size calculations are thus inherently hypothetical.

Sample size to achieve a specified standard error

To understand these two kinds of calculations, consider the simple example of estimating the
proportion of the population who support the death penalty (under a particular question wording).
Suppose we suspect the population proportion is around 60%. First, consider the goal of estimating
the true proportion p to an accuracy (that is, standard error) of no worse than 0.05, or 5 percentage
points, from a simple random sample of size n. The standard error of the mean is

p
p(1 � p)/n.

Substituting the guessed value of 0.6 for p yields a standard error of
p

0.6 ⇤ 0.4/n = 0.49/
p

n, and
so we need 0.49/

p
n  0.05, or n � 96. More generally, we do not know p, so we would use a

conservative standard error of
p

0.5 ⇤ 0.5/n = 0.5/
p

n, so that 0.5/
p

n  0.05, or n � 100.

Sample size to achieve a specified probability of obtaining statistical significance

Second, suppose we have the goal of demonstrating that more than half the population supports the
death penalty—that is, that p > 1/2—based on the estimate p̂ = y/n from a sample of size n. As
above, we shall evaluate this under the hypothesis that the true proportion is p = 0.60, using the
conservative standard error for p̂ of

p
0.5 ⇤ 0.5/n = 0.5/

p
n. The 95% confidence interval for p is

[p̂ ± 1.96 ⇤ 0.5/
p

n], and classically we would say we have demonstrated that p > 1/2 if the interval
lies entirely above 1/2; that is, if p̂ > 0.5+ 1.96 ⇤ 0.5/

p
n. The estimate must be at least 1.96 standard

errors away from the comparison point of 0.5.
A simple, but not quite correct, calculation, would set p̂ to the hypothesized value of 0.6, so

that the requirement is 0.6 > 0.5 + 1.96 ⇤ 0.5/
p

n, or n > (1.96 ⇤ 0.5/0.1)2 = 96. This is mistaken,
however, because it confuses the assumption that p = 0.6 with the claim that p̂ > 0.6. In fact, if
p = 0.6, then p̂ depends on the sample, and it has an approximate normal distribution with mean 0.6
and standard deviation

p
0.6 ⇤ 0.4/n = 0.49/

p
n; see the top half of Figure 16.2.

To determine the appropriate sample size, we must specify the desired power—that is, the
probability that a 95% interval will be entirely above the comparison point of 0.5. Under the
assumption that p = 0.6, choosing n = 96 yields 50% power: there is a 50% chance that p̂ will be
more than 1.96 standard deviations away from 0.5, and thus a 50% chance that the 95% interval will
be entirely greater than 0.5.

The conventional level of power in sample size calculations is 80%: the goal is to choose n such
that 80% of the possible 95% confidence intervals will not include 0.5. When n is increased, the
estimate becomes closer (on average) to the true value, and the width of the confidence interval
decreases. Both these e�ects (decreasing variability of the estimator and narrowing of the confidence
interval) can be seen in going from the top half to the bottom half of Figure 16.2.

To find the value of n such that exactly 80% of the estimates will be at least 1.96 standard errors
from 0.5, we need

0.5 + 1.96 ⇤ s.e. = 0.6 � 0.84 ⇤ s.e.

Some algebra then yields (1.96 + 0.84) ⇤ s.e. = 0.1. We can then substitute s.e. = 0.5/
p

n and solve
for n, as we discuss next.
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Figure 16.2 Illustration of simple sample size calculations. Top row: (left) distribution of the sample proportion
p̂ if the true population proportion is p = 0.6, based on a sample size of 96; (right) several possible 95%
intervals for p based on a sample size of 96. The power is 50%—that is, the probability is 50% that a randomly
generated interval will be entirely to the right of the comparison point of 0.5. Bottom row: corresponding graphs
for a sample size of 196. Here the power is 80%.

In summary, to have 80% power, the true value of the parameter must be 2.8 standard errors
away from the comparison point: the value 2.8 is 1.96 from the 95% interval, plus 0.84 to reach the
80th percentile of the normal distribution. The bottom row of Figures 16.2 and 16.3 illustrate: with
n = (2.8 ⇤ 0.49/0.1)2 = 196, and if the true population proportion is p = 0.6, there is an 80% chance
that the 95% confidence interval will be entirely greater than 0.5, thus conclusively demonstrating
that more than half the people support the death penalty.

These calculations are only as good as their assumptions; in particular, one would generally not
know the true value of p before doing the study. Nonetheless, design analyses can be useful in giving
a sense of the size of e�ects that one could reasonably expect to demonstrate with a study of given
size. For example, a survey of size 196 has 80% power to demonstrate that p > 0.5 if the true value
is 0.6, and it would easily detect the di�erence if the true value were 0.7; but if the true p were equal
to 0.56, say, then the di�erence would be only 0.06/(0.5/

p
196) = 1.6 standard errors away from

zero, and it would be likely that the 95% interval for p would include 0.5, even in the presence of this
true e�ect. Thus, if the goal of the survey is to conclusively detect a di�erence from 0.5, it would
probably not be wise to use a sample of only n = 196 unless we suspect the true p is at least 0.6.
Such a small survey would not have the power to reliably detect di�erences of less than 0.1.

Estimates of hypothesized proportions

The standard error of a proportion p, if it is estimated from a simple random sample of size n, isp
p(1 � p)/n, which has an upper bound of 0.5/

p
n. This upper bound is very close to the actual

standard error for a wide range of probabilities p near 1/2: for example, if the probability is 0.5,
then the standard error is

p
0.5 ⇤ 0.5/n = 0.5/

p
n exactly; if probabilities are 60/40, then we get
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Figure 16.3 Sketch illustrating that, to obtain 80% power for a 95% confidence interval, the true e�ect size
must be at least 2.8 standard errors from zero (assuming a normal distribution for estimation error). The top
curve shows that the estimate must be at least 1.96 standard errors from zero for the 95% interval to be entirely
positive. The bottom curve shows the distribution of the parameter estimates that might occur, if the true e�ect
size is 2.8. Under this assumption, there is an 80% probability that the estimate will exceed 1.96. The two curves
together show that the lower curve must be centered all the way at 2.8 to get an 80% probability that the 95%
interval will be entirely positive.

p
0.6 ⇤ 0.4/n = 0.49/

p
n; and if probabilities are 70/30, then we get

p
0.7 ⇤ 0.3/n = 0.46/

p
n, which

is still not far from 0.5/
p

n.
If the goal is a specified standard error, then the required sample size is determined conservatively

by s.e. = 0.5/
p

n, so that n = (0.5/s.e.)2 or, more precisely, n = p(1 � p)/(s.e.)2. If the goal is 80%
power to distinguish p from a specified value p0, then a conservative required sample size is that
needed for the true parameter value to be 2.8 standard errors from zero; solving for this standard error
yields n = (2.8 ⇤ 0.5/(p � p0))2 or, more precisely, n = p(1 � p)(2.8/(p � p0))2.

Simple comparisons of proportions: equal sample sizes

The standard error of a di�erence between two proportions is, by a simple probability calculation,p
p1(1 � p1)/n1 + p2(1 � p2)/n2, which has an upper bound of 0.5

p
1/n1 + 1/n2. If we assume

n1 = n2 = n/2 (equal sample sizes in the two groups), the upper bound on the standard error becomes
simply 1/

p
n. A specified standard error can then be attained with a sample size of n = 1/(s.e.)2. If

the goal is 80% power to distinguish between hypothesized proportions p1 and p2 with a study of size
n, equally divided between the two groups, a conservative sample size is n = ((2.8/(p1�p2))2 or,
more precisely, n = 2(p1(1�p1) + p2(1�p2))(2.8/(p1�p2))2.

For example, suppose we suspect that the death penalty is 10% more popular in the United
States than in Canada, and we plan to conduct surveys in both countries on the topic. If the
surveys are of equal sample size, n/2, how large must n be so that there is an 80% chance of
achieving statistical significance, if the true di�erence in proportions is 10%? The standard error
of p̂1 � p̂2 is approximately 1/

p
n, so for 10% to be 2.8 standard errors from zero, we must have

n > (2.8/0.10)2 = 784, or a survey of 392 people in each country.

Simple comparisons of proportions: unequal sample sizes

In epidemiology, it is common to have unequal sample sizes in comparison groups. For example,
consider a study in which 20% of units are exposed and 80% are controls.
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First, consider the goal of estimating the di�erence between the exposed and control groups, to some
specified precision. The standard error of the di�erence is

p
p1(1 � p1)/(0.2n) + p2(1 � p2)/(0.8n),

and this expression has an upper bound of 0.5
p

1/(0.2n) + 1/(0.8n) = 0.5
p

1/(0.2) + 1/(0.8)/
p

n =
1.25/

p
n. A specified standard error can then be attained with a sample size of n = (1.25/s.e.)2.

Second, suppose we want su�cient total sample size n to achieve 80% power to detect a di�erence
of 10%, again with 20% of the sample size in one group and 80% in the other. Again, the standard
error of p̂1 � p̂2 is bounded by 1.25/

p
n, so for 10% to be 2.8 standard errors from zero, we must

have n > (2.8 ⇤ 1.25/0.10)2 = 1225, or 245 cases and 980 controls.

16.3 Sample size and design calculations for continuous outcomes
Sample size calculations proceed much the same way with continuous outcomes, with the addedExample:

Zinc experi-
ments

di�culty that the population standard deviation must also be specified along with the hypothesized
e�ect size. We shall illustrate with a proposed experiment adding zinc to the diet of HIV-positive
children in South Africa. In various other populations, zinc and other micronutrients have been found
to reduce the occurrence of diarrhea, which is associated with immune system problems, as well as
to slow the progress of HIV. We first consider the one-sample problem—how large a sample size
we would expect to need to measure various outcomes to a specified precision—and then move to
two-sample problems comparing treatment to control groups.

Estimates of means

Suppose we are trying to estimate a population mean value ✓ from data y1, . . . , yn , a random sample
of size n. The quick estimate of ✓ is the sample mean, ȳ , which has a standard error of �/

p
n, where

� is the standard deviation of y in the population. So if the goal is to achieve a specified s.e. for ȳ ,
then the sample size must be at least n = (�/s.e.)2. If the goal is 80% power to distinguish ✓ from a
specified value ✓0, then a conservative required sample size is n = (2.8�/(✓ � ✓0))2.

The t distribution and uncertainty in standard deviations

In this section, we perform all design analyses using the normal distribution, which is appropriate for
linear regression when the residual standard deviation � is known. For very small studies, though,
degrees of freedom are low, the residual standard deviation is not estimated precisely from data, and
inferential uncertainties (confidence intervals or posterior intervals) follow the t distribution. In that
case, the value 2.8 needs to be replaced with a larger number to capture this additional source of
uncertainty. For example, when designing a study comparing two groups of 6 patients each, the
degrees of freedom are 10 (calculated as 12 data points minus two coe�cients being estimated; see
the beginning of Section 4.4), and the normal distributions in the power calculations are replaced by
t10. In R, qnorm(0.8) + qnorm(0.975) yields the value 2.8, while qt(0.8,10) + qt(0.975,10)
yields the value 3.1, so we would replace 2.8 by 3.1 in the calculations for 80% power. We usually
don’t worry about the t correction because it is minor except when sample sizes are very small.

Simple comparisons of means

The standard error of ȳ1 � ȳ2 is
q
�2

1/n1 + �2
2/n2. If we make the restriction n1 = n2 = n/2 (equal

sample sizes in the two groups), the standard error becomes simply s.e. =
q

2(�2
1 + �

2
2)/n. A

specified standard error can then be attained with a sample size of n = 2(�2
1 + �

2
2)/(s.e.)2. If

we further suppose that the variation is the same within each of the groups (�1 = �2 = �), then
s.e. = 2�/

p
n, and the required sample size is n = (2�/s.e.)2.

If the goal is 80% power to detect a di�erence of �, with a study of size n, equally divided
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Rosado et al. (1997), Mexico

Sample Avg. # episodes
Treatment size in a year ± s.e.
placebo 56 1.1 ± 0.2
iron 54 1.4 ± 0.2
zinc 54 0.7 ± 0.1
zinc + iron 55 0.8 ± 0.1

Ruel et al. (1997), Guatemala

Sample Avg. # episodes
Treatment size per 100 days [95% c.i.]
placebo 44 8.1 [5.8, 10.2]
zinc 45 6.3 [4.2, 8.9]

Lira et al. (1998), Brazil

Sample % days with Prevalence ratio
Treatment size diarrhea [95% c.i.]
placebo 66 5% 1
1 mg zinc 68 5% 1.00 [0.72, 1.40]
5 mg zinc 71 3% 0.68 [0.49, 0.95]

Muller et al. (2001), West Africa

Sample # days with diarrhea/
Treatment size total # days
placebo 329 997/49 021 = 0.020
zinc 332 869/49 086 = 0.018

Figure 16.4 Results from various experiments studying zinc supplements for children with diarrhea. We use this
information to hypothesize the e�ect size � and within-group standard deviation � for our planned experiment.

between the two groups, then the required sample size is n = 2(�2
1 + �

2
2)(2.8/�)2. If �1 = �2 = �,

this simplifies to (5.6�/�)2.
For example, consider the e�ect of zinc supplements on young children’s growth. Results of

published studies suggest that zinc can improve growth by approximately 0.5 standard deviations.
That is, � = 0.5� in the our notation. To have 80% power to detect an e�ect size, it would be
su�cient to have a total sample size of n = (5.6/0.5)2 = 126, or n/2 = 63 in each group.

Estimating standard deviations using results from previous studies

Sample size calculations for continuous outcomes are based on estimated e�ect sizes and standard
deviations in the population—that is, � and �. Guesses for these parameters can be estimated or
deduced from previous studies. We illustrate with the design of a study to estimate the e�ects of
zinc on diarrhea in children. Various experiments have been performed on this topic—Figure 16.4
summarizes the results, which we shall use to get a sense of the sample size required for our study.

We consider the studies reported in Figure 16.4 in order. For Rosado et al. (1997), we estimate the
e�ect of zinc by averaging over the iron and no-iron cases, thus an estimated� of 1

2 (1.1+1.4)� 1
2 (0.7+

0.8) = 0.5 episodes in a year, with a standard error of
q

1
4 (0.22 + 0.22) + 1

4 (0.12 + 0.12) = 0.15.
From this study, we estimate that zinc reduces diarrhea in that population by an average of about 0.3
to 0.7 episodes per year. Next, we deduce the within-group standard deviations � using the formula
s.e.= �/

p
n; thus the standard deviations are 0.2 ⇤

p
56 = 1.5 for the placebo group and are for 1.5,

0.7, and 0.7 for the other three groups. The number of episodes is bounded below by zero, so it
makes sense that when the mean level goes down, the standard deviation decreases also.

Assuming an e�ect size of � = 0.5 episodes per year and within-group standard deviations
of 1.5 and 0.7 for the control and treatment groups, we can evaluate the power of a future
study with n/2 children in each group. The estimated di�erence would have a standard error ofp

1.52/(n/2) + 0.72/(n/2) = 2.4/
p

n, and so for the e�ect size to be at least 2.8 standard errors away
from zero (and thus to have 80% power to attain statistical significance), n would have to be at least
(2.8 ⇤ 2.4/0.5)2 = 180 people in the two groups.
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Now turning to the Ruel et al. (1997) study, we first see that rates of diarrhea—for control and
treated children both—are much higher than in the previous study: 8 episodes per hundred days,
which corresponds to 30 episodes per year, more than 20 times the rate in the earlier group. We are
dealing with very di�erent populations here. In any case, we can divide the uncertainty interval widths
by 4 to get standard errors—thus, 1.1 for the placebo group and 1.2 for the treated group—yielding
an estimated treatment e�ect of 1.8 with standard error 1.6, which is consistent with a treatment
e�ect of nearly zero or as high as about 4 episodes per 100 days. When compared to the average
observed rate in the control group, the estimated treatment e�ect from this study is about half that of
the Rosado et al. (1997) experiment: 1.8/8.1 = 0.22, compared to 0.5/1.15 = 0.43, which suggests a
higher sample size might be required. However, the wide uncertainty bounds of the Ruel et al. (1997)
study make it consistent with the larger e�ect size.

Next, Lira et al. (1998) report the average percentage of days with diarrhea of children in the
control and two treatment groups corresponding to a low (1 mg) or high (5 mg) dose of zinc. We shall
consider only the 5 mg condition, as this is closer to the treatment for our experiment. The estimated
e�ect of the treatment is to multiply the number of days with diarrhea by 68%—that is, a reduction of
32%, which again is consistent with the approximate 40% decrease found in the first study. To make
a power calculation, we first convert the uncertainty interval [0.49, 0.95] for this multiplicative e�ect
to the logarithmic scale—thus, an additive e�ect of [�0.71,�0.05] on the logarithm—then divide by
4 to get an estimated standard error of 0.16 on this scale. The estimated e�ect of 0.68 is �0.38 on the
log scale, thus 2.4 standard errors away from zero. For this e�ect size to be 2.8 standard errors from
zero, we would need to increase the sample size by a factor of (2.8/2.4)2 = 1.4, thus moving from
approximately 70 children to approximately 100 in each of the two groups.

Finally, Muller et al. (2001) compare the proportion of days with diarrhea, which declined from
2.03% in the controls to 1.77% among children who received zinc. Unfortunately, no standard error
is reported for this 13% decrease, and it is not possible to compute it from the information in the
article. However, the estimates of within-group variation � from the other studies would lead us to
conclude that we would need a very large sample size to be likely to reach statistical significance, if
the true e�ect size were only 10%. For example, from the Lira et al. (1998) study, we estimate a
sample size of 100 in each group is needed to detect an e�ect of 32%; thus, to detect a true e�ect of
13%, we would need a sample size of 100 ⇤ (0.32/0.13)2 = 600.

These calculations are necessarily speculative; for example, to detect an e�ect of 10% (instead
of 13%), the required sample size would be 100 ⇤ (0.32/0.10)2 = 1000 per group, a huge change
considering the very small change in hypothesized treatment e�ects. Thus, it is misleading to think
of these as required sample sizes. Rather, these calculations tell us how large the e�ects are that we
could expect to have a good chance of discovering, given any specified sample size.

The first two studies in Figure 16.4 report the frequency of episodes, and the last two give the
proportion of days with diarrhea, which is proportional to the frequency of episodes multiplied by the
average duration of each episode. Other data (not shown here) show no e�ect of zinc on average
duration, and so we treat all four studies as estimating the e�ects on frequency of episodes.

In conclusion, a sample size of about 100 per treatment group should give adequate power to
detect an e�ect of zinc on diarrhea, if its true e�ect is to reduce the frequency, on average, by
30%–50% compared to no treatment. A sample size of 200 per group would have the same power to
detect e�ects a factor

p
2 smaller, that is, e�ects in the 20%–35% range.

Including more regression predictors

Now suppose we are comparing treatment and control groups with additional pre-treatment data on
the children (for example, age, height, weight, and health status at the start of the experiment). These
can be included in a regression. For simplicity, consider a model with no interactions—that is, with
coe�cients for the treatment indicator and the other inputs—in which case, the treatment coe�cient
represents the causal e�ect, the comparison after adjusting for pre-treatment di�erences.

Sample size calculations for this new study are exactly as before, except that the within-group
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standard deviation � is replaced by the residual standard deviation of the regression. This can be
hypothesized in its own right or in terms of the added predictive power of the pre-treatment data.
For example, if we hypothesize a within-group standard deviation of 0.2, then a residual standard
deviation of 0.14 would imply that half the variance within any group is explained by the regression
model, which would actually be pretty good.

Adding relevant predictors should decrease the residual standard deviation and thus reduce the
required sample size for any specified level of precision or power.

Estimation of regression coefficients more generally

More generally, sample sizes for regression coe�cients and other estimands can be calculated using
the rule that standard errors are proportional to 1/

p
n; thus, if inferences exist under a current sample

size, e�ect sizes can be estimated and standard errors extrapolated for other hypothetical samples.
We illustrate with the example of the survey earnings and height discussed in Chapter 4. The

coe�cient for the sex-earnings interaction in model (12.2) is plausible (a positive interaction, implying
that an extra inch of height is worth 0.7% more for men than for women), but it is not statistically
significant—the standard error is 1.9%, yielding a 95% interval of [�3.1, 4.5], which contains zero.

How large a sample size would be needed for the coe�cient on the interaction to be statistically
significant? A simple calculation uses the fact that standard errors are proportional to 1/

p
n. For a

point estimate of 0.7% to achieve statistical significance, it would need a standard error of 0.35%,
which would require the sample size to be increased by a factor of (1.9%/0.35%)2 = 29. The original
survey had a sample of 1192; this implies a required sample size of 29 ⇤ 1192 = 35 000.

To extend this to a power calculation, we suppose that the true � for the interaction is equal to
0.7% and that the standard error is as we have just calculated. With a standard error of 0.35%, the
estimate from the regression would then be statistically significant only if �̂ > 0.7% (or, strictly
speaking, if �̂ < �0.7%, but that latter possibility is highly unlikely given our assumptions). If the
true coe�cient is �, we would expect the estimate from the regression to possibly take on values in
the range � ± 0.35% (that is what is meant by “a standard error of 0.35%”), and thus if � truly equals
0.7%, we would expect �̂ to exceed 0.7%, and thus achieve statistical significance, with a probability
of 1/2—that is, 50% power. To get 80% power, we need the true � to be 2.8 standard errors from
zero, so that there is an 80% probability that �̂ is at least 2 standard errors from zero. If � = 0.7%,
then its standard error would have to be no greater than 0.7%/2.8 = 0.25%, so that the survey would
need a sample size of (1.9%/0.25%)2 ⇤ 1192 = 70 000.

This design calculation is close to meaningless, however, because it makes the very strong
assumption that the true value of � is 0.7%, the estimate that we happened to obtain from our survey.
But the estimate from the regression is 0.7% ± 1.9%, which implies that these data are consistent
with a low, zero, or even negative value of the true � (or, in the other direction, a true value that is
greater than the point estimate of 0.7%). If the true � is actually less than 0.7%, then even a sample
size of 70 000 would be insu�cient for 80% power.

This is not to say the design analysis is useless but just to point out that, even when done correctly,
it is based on an assumption that is inherently untestable from the available data (hence the need for
a larger study). So we should not necessarily expect statistical significance from a proposed study,
even if the sample size has been calculated correctly. To put it another way, the value of the above
calculations is not to tell us the power of the study that was just performed, or to choose a sample size
of a new study, but rather to develop our intuitions of the relation between inferential uncertainty,
standard error, and sample size.

Sample size, design, and interactions

Sample size is never large enough. As n increases, we can estimate more interactions, which typically
are smaller and have relatively larger standard errors than main e�ects; for example, see the fitted
regression on page 193 of log earnings on sex, standardized height, and their interaction. Estimating
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interactions is similar to comparing coe�cients estimated from subsets of the data (for example, the
coe�cient for height among men, compared to the coe�cient among women), thus reducing power
because the sample size for each subset is halved, and also the di�erences themselves may be small.
As more data are included in an analysis, it becomes possible to estimate these interactions (or, using
multilevel modeling, to include them and partially pool them as appropriate), so this is not a problem.
We are just emphasizing that, just as you never have enough money, because perceived needs increase
with resources, your inferential needs will increase with your sample size.

16.4 Interactions are harder to estimate than main effects
In causal inference, it is often important to study varying e�ects: for example, a treatment could
be more e�ective for men than for women, or for healthy than for unhealthy patients. We are often
interested in interactions in predictive models as well.

You need 4 times the sample size to estimate an interaction that is the same size as the
main effect

Suppose a study is designed to have 80% power to detect a main e�ect at a 95% confidence level. As
discussed earlier in this chapter, that implies that the true e�ect size is 2.8 standard errors from zero.
That is, the z-score has a mean of 2.8 and standard deviation of 1, and there’s an 80% chance that the
z-score exceeds 1.96 (in R, pnorm(2.8,1.96,1) = 0.8).

Further suppose that an interaction of interest is the same size as the main e�ect. For example,
if the average treatment e�ect on the entire population is ✓, with an e�ect of 0.5 ✓ among women
and 1.5 ✓ among men, then the interaction—the di�erence in treatment e�ect comparing men to
women—is the same size as the main e�ect.

The standard error of an interaction is roughly twice the standard error of the main e�ect, as we
can see from some simple algebra:
• The estimate of the main e�ect is ȳT � ȳC , and this has standard error

p
�2/(n/2) + �2/(n/2) =

2�/
p

n; for simplicity we are assuming a constant variance within groups, which will typically be
a good approximation for binary data, for example.

• The estimate of the interaction is ( ȳT ,men � ȳC,men) � ( ȳT ,women � ȳC,women), which has standard
error

p
�2/(n/4) + �2/(n/4) + �2/(n/4) + �2/(n/4) = 4�/

p
n. By using the same � here as

in the earlier calculation, we are assuming that the residual standard deviation is unchanged (or
essentially unchanged) after including the interaction in the model; that is, we are assuming that
inclusion of the interaction does not change R

2 much.
To put it another way, to be able to estimate the interaction to the same level of accuracy as the main
e�ect, we would need four times the sample size.

What is the power of the estimate of the interaction, as estimated from the original experiment
of size n? The probability of seeing a di�erence that is “statistically significant” at the 5% level is
the probability that the z-score exceeds 1.96; that is, pnorm(1.4,1.96,1) = 0.29. And, if you do
perform the analysis and report it if the 95% interval excludes zero, you will overestimate the size of
the interaction by a lot, as we can see by simulating a million runs of the experiment:

raw <- rnorm(1e6, 1.4, 1)
significant <- raw > 1.96
mean(raw[significant])

The result is 2.6, implying that, on average, a statistically significant result will overestimate the size
of the interaction by a factor of 2.6.

This implies a big problem with the common plan of designing a study with a focus on the main
e�ect and then looking to see what shows up in the interactions. Or, even worse, designing a study,
not finding the anticipated main e�ect, and then using the interactions to bail you out. The problem is
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not just that this sort of analysis is “exploratory”; it’s that these data are a lot noisier than you realize,
so what you think of as interesting exploratory findings could be just a bunch of noise.

You need 16 times the sample size to estimate an interaction that is half the size as the
main effect

As demonstrated above, if an interaction is the same size as the main e�ect—for example, a treatment
e�ect of 0.5 among women, 1.5 among men, and 1.0 overall—then it will require four times the
sample size to estimate with the same accuracy from a balanced experiment.

There are cases where main e�ects are small and interactions are large. Indeed, in general, these
labels have some arbitrariness to them; for example, when studying U.S. congressional elections,
recode the outcome from Democratic or Republican vote share to incumbent party vote share, and
interactions with incumbent party become main e�ects, and main e�ects become interactions. So the
above analysis is in the context of main e�ects that are modified by interactions; there’s the implicit
assumption that if the main e�ect is positive, then it will be positive in the subgroups we look at, just
maybe a bit larger or smaller.

It makes sense, where possible, to code variables in a regression so that the larger comparisons
appear as main e�ects and the smaller comparisons appear as interactions. The very nature of a “main
e�ect” is that it is supposed to tell as much of the story as possible. When interactions are important,
they are important as modifications of some main e�ect. This is not always the case—for example,
you could have a treatment that flat-out hurts men while helping women—but in such examples it’s
not clear that the main-e�ects-plus-interaction framework is the best way of looking at things.

When a large number of interactions are being considered, we would expect most interactions
to be smaller than the main e�ect. Consider a treatment that could interact with many possible
individual characteristics, including age, sex, education, health status, and so forth. We would not
expect all or most of the interactions of treatment e�ect with these variables to be large. Thus, when
considering the challenge of estimating interactions that are not chosen ahead of time, it could be
more realistic to suppose something like half the size of main e�ects. In that case—for example, a
treatment e�ect of 0.75 in one group and 1.25 in the other—one would need 16 times the sample size
to estimate the interaction with the same relative precision as is needed to estimate the main e�ect.

The message we take from this analysis is not that interactions are too di�cult to estimate and
should be ignored. Rather, interactions can be important; we just need to accept that in many settings
we won’t be able to attain anything like near-certainty regarding the magnitude or even direction of
particular interactions. It is typically not appropriate to aim for “statistical significance” or 95%
intervals that exclude zero, and it often will be appropriate to use prior information to get more stable
and reasonable estimates, and to accept uncertainty, not acting as if interactions of interest are zero
just because their estimate is not statistically significant.

Understanding the problem by simulating regressions in R

We can play around in R to get a sense of how standard errors for main e�ects and interactions depend
on parameterization. For simplicity, all our simulations assume that the true (underlying) coe�cients
are 0. In this case, the true values are irrelevant for our goal of computing the standard error.

We start with a basic model in which we simulate 1000 data points with two predictors, eachExample:
Simulation
of main
effects and
interactions

taking on the value �0.5 or 0.5. This is the same as the model above: the estimated main e�ects are
simple di�erences, and the estimated interaction is a di�erence in di�erences. We also have assumed
the two predictors are independent, which is what would happen in a randomized experiment where,
on average, the treatment and control groups would each be expected to be evenly divided between
men and women. Here is the simulation:1

1Code for this example is in the folder Samp�eSize.
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n <- 1000
sigma <- 10
y <- rnorm(n, 0, sigma)
x1 <- samp�e(c(-0.5,0.5), n, rep�ace=TRUE)
x2 <- samp�e(c(-0.5,0.5), n, rep�ace=TRUE)
fake <- data.frame(c(y,x1,x2))
fit_1 <- stan_g�m(y ~ x1, data=fake)
fit_2 <- stan_g�m(y ~ x1 + x2 + x1:x2, data=fake)
print(fit_1)
print(fit_2)

And here is the result:
Median MAD_SD

(Intercept) -0.1 0.3
x1 0.7 0.6
x2 0.8 0.6
x1:x2 1.2 1.3

Auxi�iary parameter(s):
Median MAD_SD

sigma 10.0 0.2

Ignore the estimates; they’re pure noise. Just look at the standard errors. They go just as in the above
formulas: 2�/

p
n = 2 ⇤ 10/

p
1000 = 0.6, and 4�/

p
n = 1.3.

Now let’s do the exact same thing but make the predictors take on the values 0 and 1 rather than
�0.5 and 0.5:

fake$x1 <- samp�e(c(0,1), n, rep�ace=TRUE)
fake$x2 <- samp�e(c(0,1), n, rep�ace=TRUE)
fit_1 <- stan_g�m(y ~ x1, data=fake)
fit_2 <- stan_g�m(y ~ x1 + x2 + x1:x2, data=fake)
print(fit_1)
print(fit_2)

And this is what happens:
Median MAD_SD

(Intercept) -0.1 0.6
x1 1.0 0.9
x2 0.1 0.9
x1:x2 -1.9 1.3

Auxi�iary parameter(s):
Median MAD_SD

sigma 10.0 0.2

Again, just look at the standard errors. The standard error for the interaction is still 1.3, but the
standard errors for the main e�ects went up to 0.9. What happened?

What happened was that the main e�ects are now estimated at the edge of the data: the estimated
coe�cient of x1 is now the di�erence in y, comparing the two values of x1, just at x2 = 0. So its
standard error is

p
�2/(n/4) + �2/(n/4) = 2

p
2�/
p

n. Under this parameterization, the coe�cient
of x1 is estimated just from the half of the data for which x2 = 0, so the standard error is

p
2 times as

big as before. Similarly for x2.
But these aren’t really “main e�ects”; in the context of the above problem, the main e�ect of the

treatment is the average over men and women. If we put the problem in a regression framework, we
should be coding the predictors not as 0, 1 but as �0.5, 0.5, so that the main e�ect for each predictor
corresponds to the other predictor set to its average level.

But here’s another possibility: What about coding each predictor as �1, 1? Let’s take a look:
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fake$x1 <- samp�e(c(-1,1), n, rep�ace=TRUE)
fake$x2 <- samp�e(c(-1,1), n, rep�ace=TRUE)
fit_1 <- stan_g�m(y ~ x1, data=fake)
fit_2 <- stan_g�m(y ~ x1 + x2 + x1:x2, data=fake)
print(fit_1)
print(fit_2)

This yields:
Median MAD_SD

(Intercept) -0.4 0.3
x1 -0.5 0.3
x2 0.0 0.3
x1:x2 0.7 0.3

Auxi�iary parameter(s):
Median MAD_SD

sigma 9.9 0.2

Again, ignore the coe�cient estimates and look at the standard errors. Compared to the fitted model
with the �0.5, 0.5 coding on page 303, the standard errors for the main e�ects are smaller by a factor
of 2, and now the standard error for the interaction has been divided by 4. What happened in this
simulation?

The factor of 2 for the main e�ect is clear enough: If you multiply x by 2, and � ⇤ x doesn’t
change, then you have to divide � by 2 to compensate, and its standard error gets divided by 2 as well.
But what happened to the interaction? That’s clear too: we’ve multiplied x1 and x2 each by 2, so
x1x2 is multiplied by 4.

So to make sense of all these standard errors, you have to have a feel for the appropriate scale for
the coe�cients.

16.5 Design calculations after the data have been collected
We return to the beauty and sex ratio example, introduced in Sections 9.4 and 9.5 to demonstrate
Bayesian inference. Here we attack the problem in a slightly di�erent way using design analysis.
Either way, the message is that we can use available prior information to interpret results from
particular data.

As a result of the intrinsic interest of the topic and the availability of data from birth records, thereExample:
Beauty and
sex ratio

have been many studies of factors a�ecting the probability of male and female births. Most have
found little or no evidence of any e�ects, but the study described in Section 9.4 appeared to be an
exception, reporting data from a survey in which attractive parents were more likely to have daughters,
a finding that was then given an explanation in terms of evolutionary biology, on the grounds that
physical attractiveness enhances the reproductive success of women more than that of men.

For our discussion here we shall work with the simple analysis from Section 9.4, comparing the
“very attractive” parents in the survey (56% of their children were girls) to the other parents (only
44% of their children were girls). The di�erence was 8% with a standard error of 3%. The classical
95% interval is [8% ± 2 ⇤ 3%] = [2%, 14%], which tells us that e�ects as low as 2 percentage points
or as high as 14 percentage are roughly consistent with the data.

The challenge is to interpret this finding in light of our knowledge from the scientific literature
that any di�erence in sex ratios between two such groups in the population is probably much less
than 0.5% (for example, the probability of a girl birth shifting from 48.5% to 49.0%).

How, then, do we account for the fact that the 95% interval for the di�erence is [2%, 14%], which
excludes the range of plausible di�erences in the population? One answer is that unusual things
happen: 5% events do occur 5% of the time. A longer answer is that researchers typically have many
choices or “degrees of freedom” in their analysis. For example, in this particular example, survey
respondents were placed in five attractiveness categories, and the published comparison was category
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5 compared to categories 1–4, pooled; see Figure 9.5. But the researcher could just as well have
compared categories 4–5 to categories 1–3, or compared 3–5 to 1–2, or compared 4–5 to 1–2, and so
forth. Looked at this way, it’s no surprise that a determined data analyst was able to find a comparison
somewhere in the data for which the 95% interval was far from zero.

What, then, can be learned from the published estimate of 8%? For the present example, the
standard error of 3% means that statistical significance would only happen with an estimate of at
least 6% in either direction: more than 12 times larger than any true e�ect that could reasonably be
expected based on previous research. Thus, even if the inference of an association between parental
beauty and child’s sex is valid for the general population, the magnitude of the estimate from a study
of this size is likely to be much larger than the true e�ect. This is an example of a type M (magnitude)
error, as defined in Section 4.4. We can also consider the possibility of type S (sign) errors, in which
a statistically significant estimate is in the opposite direction of the true e�ect.

We may get a sense of the probabilities of these errors by considering three scenarios of studies
with standard errors of 3 percentage points:
1. True di�erence of zero. If there is no correlation between parental beauty and sex ratio of

children, then a statistically significant estimate will occur 5% of the time, and it will always be
misleading—a type 1 error.

2. True di�erence of 0.2%. If the probability of girl births is actually 0.2 percentage points higher
among beautiful than among other parents, then what might happen with an estimate whose
standard error is 3%? We can do the calculation in R: the probability of the estimate being at least
6% (two standard errors away from zero, thus “statistically significant”) is 1 - pnorm(6,0.2,3),
or 0.027, and the probability of it being at least 6% in the negative direction is pnorm(-6,0.2,3),
which comes to 0.019. The type S error rate is 0.019/(0.019 + 0.027) = 42%.
Thus, before the data were collected, we could say that if the true population di�erence were
0.2%, that this study has a 3% probability of being statistically significant and positive—and a 2%
chance of being statistically significant negative result. If the estimate is statistically significant, it
must be at least 6 percentage points, thus at least 30 times higher than the true e�ect, and with a
40% chance of going in the wrong direction.

3. True di�erence of 0.5%. If the probability of girl births is actually 0.5 percentage point higher
among beautiful than among other parents—which, based on the literature, is well beyond the
high end of possible e�ect sizes—then there is a 0.033 chance of a statistically significant positive
result, and a 0.015 chance of a statistically significant result in the wrong direction. The type S
error rate is 0.015/(0.015 + 0.033) = 31%.
So, if the true di�erence is 0.5%, any statistically significant estimated e�ect will be at least 12
times the magnitude of the true e�ect and with a 30% chance of having the wrong sign. Thus,
again, the experiment gives little information about the sign or the magnitude of the true e�ect.

A sample of this size is just not useful for estimating variation on the order of half a percentage
points or less, which is why most studies of the human sex ratio use much larger samples, typically
from demographic databases. The example shows that if the sample is too small relative to the
expected size of any di�erences, it is not possible to draw strong conclusions even when estimates are
seemingly statistically significant.

Indeed, with this level of noise, only very large estimated e�ects could make it through the
statistical significance filter. The result is almost a machine for producing exaggerated claims, which
become only more exaggerated when they hit the news media with the seal of scientific approval.

It is well known that with a large enough sample size, even a very small estimate can be
statistically significantly di�erent from zero. Many textbooks contain warnings about mistaking
statistical significance in a large sample for practical importance. It is also well known that it is
di�cult to obtain statistically significant results in a small sample. Consequently, when results are
significant despite the handicap of a small sample, it is natural to think that they are real and important.
The above example shows then this is not necessarily the case.

If the estimated e�ects in the sample are much larger than those that might reasonably be expected
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in the population, even seemingly statistically significant results provide only weak evidence of any
e�ect. Yet one cannot simply ask researchers to avoid using small samples. There are cases in which
it is di�cult or impossible to obtain more data, and researchers must make do with what is available.

In such settings, researchers should determine plausible e�ect sizes based on previous research
or theory, and carry out design calculations based on the observed test statistics. Conventional
significance levels tell us how often the observed test statistic would be obtained if there were no e�ect,
but one should also ask how often the observed test statistic would be obtained under a reasonable
assumption about the size of e�ects. Estimates that are much larger than expected might reflect
population e�ects that are much larger than previously imagined. Often, however, large estimates will
merely reflect the influence of random variation. It may be disappointing to researchers to learn that
even estimates that are both “statistically” and “practically” significant do not necessarily provide
strong evidence. Accurately identifying findings that are suggestive rather than definitive, however,
should benefit both the scientific community and the general public.

16.6 Design analysis using fake-data simulation
The most general and often the clearest method for studying the statistical properties of a proposedExample:

Fake-data
simulation
for experi-
mental
design

design is to simulate the data that might be collected along with the analyses that could be performed.
We demonstrate with an artificial example of a randomized experiment on 100 students designed to
test an intervention for improving final exam scores.2

Simulating a randomized experiment

We start by assigning the potential outcomes, the final exam scores that would be observed for each
student if he or she gets the control or the treatment:

n <- 100
y_if_contro� <- rnorm(n, 60, 20)
y_if_treated <- y_if_contro� + 5

In this very simple model, the intervention would add 5 points to each student’s score.
We then assign treatments (z = 0 for control or 1 for treatment), which then determine which

outcome is observed for each person:
z <- samp�e(rep(c(0,1), n/2))
y <- ife�se(z==1, y_if_treated, y_if_contro�)
fake <- data.frame(y, z)

Having simulated the data, we can now compare treated to control outcomes and compute the standard
error for the di�erence:

diff <- mean(y[z==1]) - mean(y[z==0])
se_diff <- sqrt(sd(y[z==0])^2/sum(z==0) + sd(y[z==1])^2/sum(z==1))

Equivalently (see Section 7.3), we can run the regression:
fit_1a <- stan_g�m(y ~ z, data=fake)

which yields,
Median MAD_SD

(Intercept) 66.0 2.7
z -2.8 4.3

Auxi�iary parameter(s):
Median MAD_SD

sigma 21.3 1.5

2Code for this example is in the folder FakeMidtermFina�.
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The parameter of interest here is the coe�cient of z, and its standard error is 4.3, suggesting that,
under these conditions, a sample size of 100 would not be enough to get a good estimate of a treatment
e�ect of 5 points. The standard error of 4.3 is fairly precisely estimated, as we can tell because the
uncertainty in sigma is low compared to its estimate.

When looking at the above simulation result to assess this design choice, we should focus on the
standard error of the parameter of interest (in this case, 4.0) and compare it to the assumed parameter
value (in this case, 5), not to the noisy point estimate from the simulation (in this case �2.8).

To give a sense of why it would be a mistake to focus on the point estimate, we repeat the above
steps, simulating for a new batch of 100 students simulated from the model. Here is the result:

(Intercept) 59.7 2.9
z 11.8 4.0

Auxi�iary parameter(s):
Median MAD_SD

sigma 20.1 1.4

A naive read of this table would be that the design with 100 students is just fine, as the estimate
is well over two standard errors away from zero. But that conclusion would be a mistake, as the
coe�cient estimate here is too noisy to be useful.

The above simulation indicates that, under the given assumptions, the randomized design with
100 students gives an estimate of the treatment e�ect with standard error of approximately 4 points.
If that is acceptable, fine. If not, one approach would be to increase the sample size. Standard error
decreases with the square root of sample size, so if, for example, we wanted to reduce the standard
error to 2 points, we would need a sample size of approximately 400.

Including a pre-treatment predictor

Another approach to increase e�ciency is to consider a pre-test. Suppose pre-test scores x have the
same distribution as post-test scores y but with a slightly lower average:

fake$x <- rnorm(n, 50, 20)

We can then adjust for pre-test in our regression:

fit_1b <- stan_g�m(y ~ z + x, data=fake)

Median MAD_SD
(Intercept) 51.3 5.9
z 10.9 4.5
x 0.2 0.1

Auxi�iary parameter(s):
Median MAD_SD

sigma 21.1 1.5

Again, the coe�cient of z estimates the treatment e�ect, and it still has a standard error of about
4, which might seem surprising: shouldn’t the inclusion of a pre-treatment predictor increase the
precision of our estimate? The answer is that, the way we constructed the pre-test variable, it wasn’t
much of a pre-treatment predictor at all, as we simulated it independently of the potential outcomes
for the final test score.

To perform a realistic simulation, we must simulate both test scores in a correlated way, which we
do here by borrowing a trick from the example of simulated midterm and final exams in Section 6.5:
1. Each student is assumed to have a true ability drawn from a distribution with mean 50 and standard

deviation 16.
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2. Each student’s score on the pre-test, x, is the sum of two components: the student’s true ability,
and a random component with mean 0 and standard deviation 12, reflecting that performance on
any given test will be unpredictable.

3. Each student’s score on the post-test, y , is his or her true ability, plus another, independent, random
component, plus an additional 10 points if a student receives the control or 15 points if he or she
receives the treatment.

These are the same conditions as in Section 6.5, except that (i) we have increased the standard
deviations of each component of the model so that the standard deviation of the final scores,p

162 + 122 = 20, is consistent with the distribution assumed for y in our simulations above, and (ii)
we have increased the average score level on the post-test along with a treatment e�ect.

Here is the code to create the artificial world:

n <- 100
true_abi�ity <- rnorm(n, 50, 16)
x <- true_abi�ity + rnorm(n, 0, 12)
y_if_contro� <- true_abi�ity + rnorm(n, 0, 12) + 10
y_if_treated <- y_if_contro� + 5

As above, we assign treatments, construct the observed outcome, and put the data into a frame:

z <- samp�e(rep(c(0,1), n/2))
y <- ife�se(z==1, y_if_treated, y_if_contro�)
fake_2 <- data.frame(x, y, z)

The simple comparison is equivalent to a regression on the treatment indicator:

fit_2a <- stan_g�m(y ~ z, data=fake_2)

Median MAD_SD
(Intercept) 59.2 3.0
z 9.5 4.3

Auxi�iary parameter(s):
Median MAD_SD

sigma 21.6 1.5

And the estimate adjusting for pre-test:

fit_2b <- stan_g�m(y ~ z + x, data=fake_2)

Median MAD_SD
(Intercept) 27.4 4.3
z 6.1 3.3
x 0.7 0.1

Auxi�iary parameter(s):
Median MAD_SD

sigma 16.2 1.2

In this case, with the strong dependence between pre-test and post-test, this adjustment has reduced
the residual standard deviation by about a third.

Simulating an experiment with selection bias

With data coming from a randomized experiment, all the regressions considered above give unbiased
estimates of the treatment e�ect. But suppose we are concerned about bias in the treatment assignment.
We can simulate that too.

For example, suppose that school administrators, out of kindness, are more likely to give the
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Figure 16.5 Simulated treatment assignments based on a rule in which students with lower pre-test scores are
more likely to get the treatment. We use this to demonstrate how a simulation study can be used to assess the
bias in a design and estimation procedure.

treatment to students who are performing poorly. We could simulate this behavior with an unequal-
probability assignment rule such as Pr(zi = 1) = logit�1(�(xi � 50)/20), where we have chosen the
logistic curve for convenience and set its parameters so that the probability averages to approximately
0.5, with a bit of variation from one end of the data to the other. Figure 16.5 shows the assumed
logistic curve and the simulated treatment assignments for the 100 students in this example, as
produced by the following code:

z <- rbinom(n, 1, inv�ogit(-(x-50)/20))

We then record the observed post-test and save as a data frame:

y <- ife�se(z==1, y_if_treated, y_if_contro�)
fake_3 <- data.frame(x, y, z)

By construction, the true treatment e�ect is 5 points, as before, but a simple comparison yields a
biased estimate, while the linear regression adjusting for pre-test is better.

To see this, we should not just perform one simulation; as discussed earlier in this section, not
much can be learned from the estimate obtained from any single simulation. Instead we first write a
function to simulate the fake data, assign the treatments, and perform the simple comparison and the
regression adjusting for pre-test:

experiment <- function(n) {
true_abi�ity <- rnorm(n, 50, 16)
x <- true_abi�ity + rnorm(n, 0, 12)
y_if_contro� <- true_abi�ity + rnorm(n, 0, 12) + 10
y_if_treated <- y_if_contro� + 5
z <- rbinom(n, 1, inv�ogit(-(x-50)/20))
y <- ife�se(z==1, y_if_treated, y_if_contro�)
fake_3 <- data.frame(x, y, z)
fit_3a <- stan_g�m(y ~ z, data=fake_3, refresh=0)
fit_3b <- stan_g�m(y ~ z + x, data=fake_3, refresh=0)
rbind(c(coef(fit_3a)[�z�], se(fit_3a)[�z�]), c(coef(fit_3b)[�z�], se(fit_3b)[�z�]))

}

We then loop this simulation 50 times:

n <- 100
n_�oop <- 50
resu�ts <- array(NA, c(n_�oop, 2, 2),

dimnames=�ist(1:n_�oop, c(�Simp�e�, �Adjusted�), c(�Estimate�, �SE�)))
for (�oop in 1:n_�oop){
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resu�ts[�oop,,] <- experiment(n)
}

The above steps produce a 50⇥ 2⇥ 2 matrix which we then average over to compute a 2⇥ 2 matrix of
average estimate and average standard error for the two procedures:

resu�ts_avg <- app�y(resu�ts, c(2,3), mean)

Here is the result:

Estimate SE
Simp�e -6.4 3.9
Adjusted 4.6 3.4

The true parameter value here is 5.0, so in this case the simple comparison is horribly biased—no
surprise if you reflect upon the big di�erences between treatment and control groups from the
simulation shown in Figure 16.5. In contrast, the bias of the adjusted estimate is low. In other
settings, for example if the underlying relation between pre-test and post-test is nonlinear, or if there is
selection on an unobserved or unmodeled variable, the regression-adjusted estimate can have a large
bias too. We discuss these topics further in Chapters 18–21; our point here is that you can assess such
biases using simulation, conditional on a model for data, measurement, and treatment assignment.

16.7 Bibliographic note
The quote at the beginning of Section 16.1 is from Weisburd, Petrosino, and Mason (1993); see
also Gelman, Skardhamar, and Aaltonen (2017). The problems of statistical power are discussed by
Button et al. (2013) and Gelman (2019a). Figure 16.1 comes from Gelman (2015d).

Cochran (1977) and Lohr (2009) are standard and useful references for classical models in survey
sampling. Groves et al. (2009) and Heeringa, West, and Berglund (2017) go over practical aspects of
survey design and analysis. Yates (1967), Montgomery (1986), and Box, Hunter, and Hunter (2005)
review the statistical aspects of experimental design.

Hoenig and Heisey (2001), Lenth (2001), and Gelman and Carlin (2014) provide some general
warnings and advice on sample size and power calculations. Assmann et al. (2000) discuss the
general di�culty of estimating interactions. The design calculations for the sex ratio example in
Section 16.5 are taken from Gelman and Weakliem (2009).

16.8 Exercises
16.1 Sample size calculations for estimating a proportion:

(a) How large a sample survey would be required to estimate, to within a standard error of ± 3%,
the proportion of the U.S. population who support the death penalty?

(b) About 14% of the U.S. population is Latino. How large would a national sample of Americans
have to be in order to estimate, to within a standard error of ±3%, the proportion of Latinos
in the United States who support the death penalty?

(c) How large would a national sample of Americans have to be in order to estimate, to within a
standard error of ± 1%, the proportion who are Latino?

16.2 Sample size calculation for estimating a di�erence: Consider an election with two major
candidates, A and B, and a minor candidate, C, who are believed to have support of approximately
45%, 35%, and 20% in the population. A poll is to be conducted with the goal of estimating the
di�erence in support between candidates A and B. How large a sample would you estimate
is needed to estimate this di�erence to within a standard error of 5 percentage points? (Hint:
consider an outcome variable that is coded as +1, �1, and 0 for supporters of A, B, and C,
respectively.)
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16.3 Power: Following Figure 16.3, determine the power (the probability of getting an estimate that
is “statistically significantly” di�erent from zero at the 5% level) of a study where the true e�ect
size is X standard errors from zero. Answer for the following values of X : 0, 1, 2, and 3.

16.4 Power, type M error, and type S error: Consider the experiment shown in Figure 16.1 where the
true e�ect could not realistically be more than 2 percentage points and it is estimated with a
standard error of 8.1 percentage points.

(a) Assuming the estimate is unbiased and normally distributed and the true e�ect size is 2
percentage points, use simulation to answer the following questions: What is the power of
this study? What is the type M error rate? What is the type S error rate?

(b) Assuming the estimate is unbiased and normally distributed and the true e�ect size is no
more than 2 percentage points in absolute value, what can you say about the power, type M
error rate, and type S error rate?

16.5 Design analysis for an experiment: You conduct an experiment in which half the people get a
special get-out-the-vote message and others do not. Then you follow up after the election with
a random sample of 500 people to see if they voted.

(a) What will be the standard error of your estimate of e�ect size? Figure this out making
reasonable assumptions about voter turnout and the true e�ect size.

(b) Check how sensitive your standard error calculation is to your assumptions.
(c) For a range of plausible e�ect sizes, consider conclusions from this study, in light of the

statistical significance filter. As a researcher, how can you avoid this problem?

16.6 Design analysis with pre-treatment information: A new teaching method is hoped to increase
scores by 5 points on a certain standardized test. An experiment is performed on n students,
where half get this intervention and half get the control. Suppose that the standard deviation of
test scores in the population is 20 points. Further suppose that a pre-test is available which has
a correlation of 0.8 with the post-test under the control condition. What will be the standard
error of the estimated treatment e�ect based on a fitted regression, assuming that the treatment
e�ect is constant and independent of the value of the pre-test?

16.7 Decline e�ect: After a study is published on the e�ect of some treatment or intervention, it is
common for the estimated e�ect in future studies to be lower. Give five reasons why you might
expect this to happen.

16.8 E�ect size and sample size: Consider a toxin that can be tested on animals at di�erent doses.
Suppose a typical exposure level for humans is 1 (in some units), and at this level the toxin is
hypothesized to introduce a risk of 0.01% of death per person.

(a) Consider di�erent animal studies, each time assuming a linear dose-response relation (that
is, 0.01% risk of death per animal per unit of the toxin), with doses of 1, 100, and 10 000. At
each of these exposure levels, what sample size is needed to have 80% power of detecting
the e�ect?

(b) This time assume that response is a logged function of dose and redo the calculations in (a).
16.9 Cluster sampling with equal-sized clusters: A survey is being planned with the goal of

interviewing n people in some number J of clusters. For simplicity, assume simple random
sampling of clusters and a simple random sample of size n/J (appropriately rounded) within
each sampled cluster.
Consider inferences for the proportion of Yes responses in the population for some question
of interest. The estimate will be simply the average response for the n people in the sample.
Suppose that the true proportion of Yes responses is not too far from 0.5 and that the standard
deviation among the mean responses of clusters is 0.1.

(a) Suppose the total sample size is n = 1000. What is the standard error for the sample average
if J = 1000? What if J = 100, 10, 1?



312 16. D����� ��� ������ ���� ���������

(b) Suppose the cost of the survey is $50 per interview, plus $500 per cluster. Further suppose
that the goal is to estimate the proportion of Yes responses in the population with a standard
error of no more than 2%. What values of n and J will achieve this at the lowest cost?

16.10 Simulation for design analysis: The folder E�ectricCompany contains data from the Electric
Company experiment analyzed in Chapter 19. Suppose you wanted to perform a new experiment
under similar conditions, but for simplicity just for second graders, with the goal of having 80%
power to find a statistically significant result (at the 5% level) in grade 2.

(a) State clearly the assumptions you are making for your design calculations. (Hint: you can
set the numerical values for these assumptions based on the analysis of the existing Electric
Company data.)

(b) Suppose that the new data will be analyzed by simply comparing the average scores for the
treated classrooms to the average scores for the controls. How many classrooms would be
needed for 80% power?

(c) Repeat (b), but supposing that the new data will be analyzed by comparing the average gain
scores for the treated classrooms to the average gain scores of the controls.

(d) Repeat, but supposing that the new data will be analyzed by regression, adjusting for pre-test
scores as well as the treatment indicator.

16.11 Optimal design:
(a) Suppose that the zinc study described in Section 16.3 would cost $150 for each treated

child and $100 for each control. Under the assumptions given in that section, determine
the number of control and treated children needed to attain 80% power at minimal total
cost. You will need to set up a loop of simulations as illustrated for the example in the text.
Assume that the number of measurements per child is fixed at K = 7 (that is, measuring
every two months for a year).

(b) Make a generalization of Figure 16.1 with several lines corresponding to di�erent values of
the design parameter K , the number of measurements for each child.

16.12 Experiment with pre-treatment information: An intervention is hoped to increase voter turnout
in a local election from 20% to 25%.

(a) In a simple randomized experiment, how large a sample size would be needed so that the
standard error of the estimated treatment e�ect is less than 2 percentage points?

(b) Now suppose that previous voter turnout was known for all participants in the experiment.
Make a reasonable assumption about the correlation between turnout in two successive
elections. Under this assumption, how much would the standard error decrease if previous
voter turnout was included as a pre-treatment predictor in a regression to estimate the
treatment e�ect?

16.13 Sample size calculations for main e�ects and interactions: In causal inference, it is often
important to study varying treatment e�ects: for example, a treatment could be more e�ective
for men than for women, or for healthy than for unhealthy patients. Suppose a study is designed
to have 80% power to detect a main e�ect at a 95% confidence level. Further suppose that
interactions of interest are half the size of main e�ects.

(a) What is its power for detecting an interaction, comparing men to women (say) in a study that
is half men and half women?

(b) Suppose 1000 studies of this size are performed. How many of the studies would you expect
to report a “statistically significant” interaction? Of these, what is the expectation of the
ratio of estimated e�ect size to actual e�ect size?

16.14 Working through your own example: Continuing the example from the final exercises of the
earlier chapters, think of a new data survey, experiment, or observational study that could be
relevant and perform a design analysis for it, addressing issues of measurement, precision, and
sample size. Simulate fake data for this study and analyze the simulated data.


