
Appendix B

10 quick tips to improve your regression
modeling

B.1 Think about variation and replication
Variation is central to regression modeling, and not just in the error term. If a regression is fit to
di�erent datasets, we can expect the relations between variables, and thus coe�cients and causal
e�ects, to vary. Fitting the same model to di�erent datasets—the technique called the “secret weapon”
in Section 10.9—can give a sense of variation across problems, which in many settings is more
relevant to applications than the standard errors from a single study.

Replication ideally implies performing all the steps of a study from the start, not just increasing
the sample size and collecting more data within an existing setting. Repeating an entire experiment
can be seen as a way of capturing the variation corresponding to various aspects of data collection
and measurement, not just the variation seen within a single study. And this is all in addition to the
advantages of a fresh perspective and an avoidance of forking paths in data coding and analysis.

In some fields, such as psychology and cell biology, it can be easy and inexpensive to replicate an
experiment from scratch. In mostly observational sciences, such as economics and political science,
replication can be more di�cult—we cannot re-run the international economy and political system so
as to observe 10 more recessions or 20 more civil wars. For such problems, replication will need to
be more indirect, for example analyzing local economic or political activity within di�erent countries.

B.2 Forget about statistical significance
Forget about p-values, and forget about whether your confidence intervals exclude zero.

We say this for three reasons. First, if you discretize results based on significance tests, you are
throwing away information. Measures of significance such as p-values are noisy, and it is misleading
to treat an experiment as a success or failure based on a significance test. Second, in the sorts of
problems we work on, there are no true zeroes. For example, religious attendance is associated with
attitudes on economic as well as social issues, and both these correlations vary by state. And it
does not interest us, for example, to test a model in which social class a�ects vote choice through
party identification but not along a direct path. More generally, no true populations are identical,
and anything that plausibly could have an e�ect will not have an e�ect that is exactly zero. Third,
comparisons and e�ects vary by context, so there is typically little reason to focus on whether a
confidence interval excludes zero, as if that would tell us something useful about future di�erences.

B.3 Graph the relevant and not the irrelevant
Graphing the fitted model

Graphing the data is fine (see Chapter 2), but it is also useful to graph the estimated model itself; see
lots of examples of regression lines and curves throughout this book. A table of regression coe�cients
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does not give you the same sense as graphs of the model. This point should seem obvious but can
be obscured in statistics textbooks that focus so strongly on plots for raw data and for regression
diagnostics, forgetting the simple plots that help us understand a model.

Make many graphs

Real data are full of complexity, and regression models can be hard to understand. Try di�erent
visualizations of your data, and look at your model from di�erent angles. Grids of plots can be
helpful in visualizing many dimensions, as in Figure 2.10, and a series of graphs can tell a story in a
way that would not be possible with a single image; see Section 2.4 for an example. Letting go of the
search for the single perfect graph liberates you to learn more from your data and to understand and
explain your findings better.

Don’t graph the irrelevant

Are you sure you really want to make those quantile-quantile plots, influence diagrams, and all the
other things that spew out of a standard regression package? What are you going to do with all that?
Just forget about it and focus on something more important. A quick rule: any graph you show, be
prepared to explain.

B.4 Interpret regression coefficients as comparisons
Regression coe�cients are commonly called “e�ects,” but this terminology can be misleading. From
the data alone, a regression only tells us about comparisons between individuals, not about changes
within individuals.

Taken as a data description, a linear regression coe�cient is the modeled average di�erence
in the outcome, comparing two individuals that di�er in one predictor, while being at the same
levels of all the other predictors. In the special case of a single binary predictor, the coe�cient is a
simple di�erence: the average of y for individuals with x = 1, minus the average with x = 0. For a
continuous predictor, we should either scale it so that a di�erence of 1 unit is of interest, or we should
multiply the coe�cient by a reasonable change in that predictor.

There are several benefits to thinking of regressions as comparisons. First, the interpretation as
a comparison is always available: it is a description of the model and does not require any causal
assumptions. Second, we can consider more complicated regressions as built up from simpler models,
starting with simple comparisons and adding adjustments. Third, the comparative interpretation also
works in the special case of causal inference, where we can consider comparisons between the same
individual receiving two di�erent levels of a treatment.

Causal inference can be considered as an application of statistical modeling in which predictions
are being made about potential outcomes and where we often summarize inferences as average
causal e�ects, which represent average predictive comparisons under the model. In the special case
of an ignorable treatment assignment with no interaction, the average treatment e�ect is the same
as the coe�cient of the treatment indicator; more generally, we need to work through the model’s
predictions to construct an average causal e�ect.

B.5 Understand statistical methods using fake-data simulation
Simulating fake data can take more e�ort than fitting models to real data. For example, to simulate
from a linear model, you need to pick reasonable values of the coe�cients and residual standard
deviation, and you also need to specify all the predictors x for your fake data. Depending on the
context, you might want some structure in these predictors, as demonstrated in the simulated midterm
and final exams in Sections 6.5 and 16.6 and the simulated poststratification in Section 17.2.
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The e�ort of creating and simulating from a fake world has several payo�s. First, the decisions
made in constructing this world can be clarifying: how large a treatment e�ect could we realistically
expect to see, how large are the interactions we want to consider, what might be the correlation
between pre-test and post-test, and so forth. Asking these questions requires contact with the
application in a way that can increase our understanding. Second, fake-data simulation is a general
way to study the properties of statistical methods under repeated sampling. Put the simulation and
inference into a loop and you can see how close the model’s estimates and predictions are to the
assumed true values. Here it can make sense to simulate from a process that includes features not
included in the model you will use to fit the data—but, again, this can be a good thing in that it forces
you to consider assumptions that might be violated. Third, fake-data simulation is a way to debug
your code. With large samples or small data variance, your fitted model should be able to recover the
true parameters; if it can’t, you may have a coding problem or a conceptual problem, where your
model is not doing what you think it is doing. It can help in such settings to plot the simulated data
overlaid with the assumed and fitted models. Finally, fake-data simulation, or its analytical equivalent,
is necessary if you want to design a new study and collect new data with some reasonable expectation
of what you might find.

B.6 Fit many models
Think of a series of models, starting with the too-simple and continuing through to the hopelessly
messy. Generally it’s a good idea to start simple. Or start complex if you’d like, but prepare to quickly
drop things out and move to the simpler model to help understand what’s going on. Working with
simple models is not a research goal—in the problems we work on, we usually find complicated
models more believable—but rather a technique to help understand the fitting process.

A corollary is the need to be able to fit models relatively quickly. Realistically, you don’t know
what model you want, so it’s rarely a good idea to run the computer overnight fitting a single model.
At least, wait until you’ve developed some understanding by fitting many models.

When fitting multiple models, you should keep track of what models you have fit. This is
important for the purpose of understanding your data and also to protect yourself from the biases that
can arise when you have many possible ways of analyzing your data (many researcher degrees of
freedom or forking paths). In such settings, it’s best to record all that you’ve done and report results
from all relevant models, rather than to pick just one and then overinterpret a story from it.

B.7 Set up a computational workflow
With a bit of work, you can make your computations faster and more reliable. This sounds like
computational advice but is really about statistical workflow: if you can fit models faster, you can fit
more models and better understand both data and model.

Data subsetting

Related to the “fit many models” approach are simple approximations that speed the computations.
Computers are getting faster and faster—but models are getting more and more complicated! And so
these general tricks might remain important. A simple and general trick is to break a large dataset
into subsets and analyze each subset separately. For example, perform separate analyses within each
region of a country, and then display in one plot the estimates and uncertainties corresponding to the
di�erent regions.

An advantage of working with data subsets is that computation is faster, allowing you to explore
the data by trying out more models. In addition, separate analyses, when well chosen, can reveal
variation that is of interest.

There are two disadvantages of working with data subsets. First, it can be inconvenient to partition
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the data, perform separate analyses, and summarize the results. Second, the separate analyses may
not be as accurate as would be obtained by putting all the data together in a single analysis. Moving
forward, one can use multilevel modeling to get some of the advantages of subsetting without losing
inferential e�ciency or computational stability.

Fake-data and predictive simulation

When computations get stuck, or a model does not fit the data, it is usually not clear at first if this
is a problem with the data, the model, or the computation. Fake-data and predictive simulation are
e�ective ways of diagnosing problems. First use fake-data simulation to check that your computer
program does what it is supposed to do, then use predictive simulation to compare the data to the
fitted model’s predictions.

B.8 Use transformations
Consider transforming just about every variable in sight:
• Logarithms of all-positive variables (primarily because this leads to multiplicative models on the

original scale, which often makes sense).
• Standardizing based on the scale or potential range of the data (so that coe�cients can be more

directly interpreted and scaled); an alternative is to present results in scaled and unscaled forms.
Plots of raw data and residuals can also be informative when considering transformations, as with the
log transformation for arsenic levels in Section 14.5.

In addition to univariate transformations, consider interactions and predictors created by combining
inputs (for example, adding several related survey responses to create a total score). The goal is to
create models that could make sense (and can then be fit and compared to data) and that include all
relevant information.

B.9 Do causal inference in a targeted way, not as a byproduct of a
large regression

Don’t assume that a comparison or regression coe�cient can be interpreted causally. If you are
interested in causal inference, consider your treatment variable carefully and use the tools of Chapters
18–21 to address the challenges of balance and overlap when comparing treated and control units
to estimate a causal e�ect and its variation across the population. Even if you are using a natural
experiment or identification strategy, it is important to compare treatment and control groups and
adjust for pre-treatment di�erences between them.

When considering several causal questions, it can be tempting to set up a single large regression
to answer them all at once; however, in observational settings (including experiments in which certain
conditions of interest are observational) this is not appropriate, as we discuss in Sections 19.5–19.7.

B.10 Learn methods through live examples
We have demonstrated the concepts, methods, and tools in this book through examples that are of
interest to us, many of which came from our applied research. Consider these as a starting point:
when learning these and more complicated ideas yourself, apply them to problems that you care about,
gather data on these examples, and develop statistical understanding by simulating and graphing data
from models that make sense to you. Know your data, your measurements, and your data-collection
procedure. Be aware of your population of interest and the larger goals of your data collection and
analysis. Understand the magnitudes of your regression coe�cients, not just their signs. You will
need this understanding to interpret your findings and catch things that go wrong.


