
Chapter 1

Overview

This book explores the challenges of building, understanding, and using predictive models. It turns
out there are many subtleties involved even with simple linear regression—straight-line fitting. After
a review of fundamental ideas of data, measurement, and statistics in the first five chapters of the book,
we cover linear regression with one predictor and multiple predictors, and then logistic regression
and other generalized linear models. We next consider various applications of regression involving
generalization from the data at hand to larger questions involving sampling and causal inference. The
book concludes with a taste of more advanced modeling ideas and appendixes on quick tips and
getting started with computing.

This introductory chapter lays out the key challenges of statistical inference in general and
regression modeling in particular. We present a series of applied examples to show how complex and
subtle regression can be, and why a book-length treatment is needed, not just on the mathematics of
regression modeling but on how to apply and understand these methods.

1.1 The three challenges of statistics
The three challenges of statistical inference are:

1. Generalizing from sample to population, a problem that is associated with survey sampling but
actually arises in nearly every application of statistical inference;

2. Generalizing from treatment to control group, a problem that is associated with causal inference,
which is implicitly or explicitly part of the interpretation of most regressions we have seen; and

3. Generalizing from observed measurements to the underlying constructs of interest, as most of the
time our data do not record exactly what we would ideally like to study.

All three of these challenges can be framed as problems of prediction (for new people or new items
that are not in the sample, future outcomes under di�erent potentially assigned treatments, and
underlying constructs of interest, if they could be measured exactly).

The key skills you should learn from this book are:

• Understanding regression models. These are mathematical models for predicting an outcome
variable from a set of predictors, starting with straight-line fits and moving to various nonlinear
generalizations.

• Constructing regression models. The regression framework is open-ended, with many options
involving the choice of what variables to include and how to transform and constrain them.

• Fitting regression models to data, which we do using the open-source software R and Stan.
• Displaying and interpreting the results, which requires additional programming skills and

mathematical understanding.

A central subject of this book, as with most statistics books, is inference: using mathematical
models to make general claims from particular data.
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y = 46.3 + 3.0 x

Figure 1.1: Predicting elections from the economy: (a) the data, (b) the linear fit, y = 46.3 + 3.0x.

1.2 Why learn regression?
Regression is a method that allows researchers to summarize how predictions or average values ofExample:

Elections
and the
economy

an outcome vary across individuals defined by a set of predictors. For example, Figure 1.1a shows
the incumbent party’s vote share in a series of U.S. presidential elections, plotted vs. a measure of
economic growth in the period leading up to each election year. Figure 1.1b shows a linear regression
fit to these data. The model allows us to predict the vote—with some uncertainty—given the economy
and under the assumption that future elections are in some way like the past.

We do our computing in the open-source software R; see Appendix A for how to set up and use R
on your computer. For this example, we first load in the data:1

hibbs <- read.tab�e(�hibbs.dat�, header=TRUE)

Then we make a scatterplot:

p�ot(hibbs$growth, hibbs$vote, x�ab=�Average recent growth in persona� income�,
y�ab=�Incumbent party�s vote share�)

Then we estimate the regression, y = a + bx + error:2

M1 <- stan_g�m(vote ~ growth, data=hibbs)

And then we add the fitted line to our graph:

ab�ine(coef(M1), co�=�gray�)

This produces something similar to Figure 1.1b.
To display the fitted model, we type print(M1), which gives the following output:

Median MAD_SD
(Intercept) 46.3 1.7
growth 3.0 0.7

Auxi�iary parameter(s):
Median MAD_SD

sigma 3.9 0.7

1Data and code for all examples in this book are at www.stat.co�umbia.edu/~ge�man/regression/. Information for
this particular example is in the folder E�ectionsEconomy at this website.

2Section 1.6 introduces R code for least squares and Bayesian regression.
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The first column shows estimates: 46.3 and 3.0 are the coe�cients in the fitted line, y = 46.3 + 3.0x

(see Figure 1.1b). The second column displays uncertainties in the estimates using median absolute
deviations (see Section 5.3). The last line of output shows the estimate and uncertainty of �, the
scale of the variation in the data unexplained by the regression model (the scatter of the points above
and below from the regression line). In Figure 1.1b, the linear model predicts vote share to roughly
an accuracy of 3.9 percentage points. We explain all the above code and output starting in Chapter 6.

If desired we can also summarize the fit in di�erent ways, such as plotting residuals (di�erences
between data and fitted model) and computing R

2, the proportion of variance explained by the model,
as discussed in Chapter 11.

Some of the most important uses of regression are:

• Prediction: Modeling existing observations or forecasting new data. Examples with continuous or
approximately continuous outcomes include vote shares in an upcoming election, future sales of a
product, and health status in a medical study. Examples with discrete or categorical outcomes
(sometimes referred to as classification) include disease diagnosis, victory or defeat in a sporting
event, and individual voting decisions.

• Exploring associations: Summarizing how well one variable, or set of variables, predicts the
outcome. Examples include identifying risk factors for a disease, attitudes that predict voting, and
characteristics that make someone more likely to be successful in a job. More generally, one can
use a model to explore associations, stratifications, or structural relationships between variables.
Examples include associations between pollution levels and disease incidence, di�erential police
stop rates of suspects by ethnicity, and growth rates of di�erent parts of the body.

• Extrapolation: Adjusting for known di�erences between the sample (that is, observed data) and
a population of interest. A familiar example is polling: real-world samples are not completely
representative and so it is necessary to perform some adjustment to extrapolate to the general
population. Another example is the use of data from a self-selected sample of schools to make
conclusions about all the schools in a state. Another example would be using experimental data
from a drug trial, along with background characteristics from the full population, to estimate the
average e�ect of the drug in the population.

• Causal inference: Perhaps the most important use of regression is for estimating treatment e�ects.
We define causal inference more carefully in Part 5 of this book; for now we’ll just talk about
comparing outcomes under treatment or control, or under di�erent levels of a treatment. For
example, in an education study, the outcome could be scores on a standardized test, the control
could be an existing method of teaching, and the treatment could be some new innovation. Or
in public health, the outcome could be incidence of asthma and the continuous treatment could
be exposure to some pollutant. A key challenge of causal inference is ensuring that treatment
and control groups are similar, on average, before exposure to the treatment, or else adjusting for
di�erences between these groups.

In all these settings, it is crucial that the regression model have enough complexity to carry the
required information. For example, if most of the participants in a drug trial are healthy and under the
age of 70, but there is interest in estimating an average e�ect among the general elderly population,
then it is important to include age and prior health condition as predictors in the regression model. If
these predictors are not included, the model will simply not have enough information to allow the
adjustment that we want to do.

1.3 Some examples of regression

To give a sense of the di�culties involved in applied regression, we briefly discuss some examples
involving sampling, prediction, and causal inference.
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Figure 1.2 Post-treatment classroom-average test scores from an experiment measuring the e�ect of an educational
television program, The Electric Company, on children’s reading abilities. The dark vertical line in each
histogram shows the average for the corresponding group of classrooms.

Estimating public opinion from an opt-in internet survey

In a research project with colleagues at Microsoft Research, we used a regression model to adjustExample:
Xbox survey a convenience sample to obtain accurate opinion monitoring, at a sharper time scale and at less

expense than traditional survey methods. The data were from a novel and highly non-representative
survey dataset: a series of daily voter intention polls for the 2012 presidential election conducted
on the Xbox gaming platform with a total sample size of 750 148 interviews from 345 858 unique
respondents. This is a characteristic problem of big data: a very large sample, relatively inexpensive
to collect, but not immediately representative of the larger population. After adjusting the Xbox
responses via multilevel regression and poststratification (MRP), we obtained estimates in line with
forecasts from leading poll analysts, which were based on aggregating hundreds of traditional polls
conducted during the election cycle.

The purpose of the Xbox project was not to forecast individual survey responses, nor was it to
identify important predictors or causal inference. Rather, the goal was to learn about nationwide
trends in public opinion, and regression allowed us to adjust for di�erences between sample and
population, as we describe in Section 17.1; this required extrapolation.

A randomized experiment on the effect of an educational television program

A study was performed around 1970 to measure the e�ect of a new educational television program,Example:
Electric
Company
experiment

The Electric Company, on children’s reading abilities. An experiment was performed on children
in grades 1–4 in two small cities in the United States. For each city and grade, the experimenters
selected 10 to 20 schools, within each school selecting the two classes in the grade whose average
reading test scores were lowest. For each pair, one of these classes was randomly assigned to continue
with their regular reading course and the other was assigned to view the TV program. Each student
was given a pre-test at the beginning of the school year and a post-test at the end.

Figure 1.2 shows post-test data for the control and treated classrooms in each grade.3 Comparing
the top and bottom row of graphs, we see what appears to be large beneficial e�ects in grades 1 and 2
with smaller e�ects for the higher grades, a plausible result given that most children in grades 3 and 4
already know how to read.

Further statistical analysis is required to adjust for di�erences in pre-treatment test scores between
the two groups, and to assess uncertainty in the estimates. We return to this example in Section 19.2.

3Data and code for this example are in the folder E�ectricCompany.
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Figure 1.3 Outcomes after civil war in countries with and without United Nations peacekeeping. The countries
with peacekeeping were more likely to stay at peace and took on average about the same amount of time to
return to war when that happened. However, there is a concern that countries with and without peacekeeping
may di�er in their pre-existing conditions; see Figure 1.4.

Estimating the effects of United Nations peacekeeping, using pre-treatment variables to
adjust for differences between treatment and control groups

Several years ago, political scientist Page Fortna conducted a study on the e�ectiveness of internationalExample:
United
Nations
peace-
keeping

peacekeeping. She analyzed data from countries that had been involved in civil wars between 1989
and 1999, comparing countries with and without United Nations peacekeeping. The outcome measure
was whether there was a return to civil war in the country and, if so, the length of time until that
happened. Data collection ended in 2004, so any countries that had not returned to civil war by the
end of that year were characterized as being still at peace. The subset of the data summarized here
contains 96 ceasefires, corresponding to 64 di�erent wars.4

A quick comparison found better outcomes after peacekeeping: 56% stayed at peace, compared
to 34% of countries without peacekeeping. When civil war did return, it typically came soon:
the average lag between ceasefire and revival of the fighting was 17 months in the presence of
peacekeeping and 18 months without. Figure 1.3 shows the results.

There is, however, a concern about selection bias: perhaps peacekeepers chose the easy cases.
Maybe the really bad civil wars were so dangerous that peacekeepers didn’t go to those places, which
would explain the di�erence in outcomes.

To put this in more general terms: in this study, the “treatment”—peacekeeping—was not
randomly assigned. In statistics jargon, Fortna had an observational study rather than an experiment,
and in an observational study we must do our best to adjust for pre-treatment di�erences between the
treatment and control groups.

Fortna adjusted for how bad o� the country was before the peacekeeping-or-no-peacekeeping
decision was made, using some objective measures of conditions within the country. The analysis was
further complicated because in some countries we know the time until return to civil war, whereas in
other countries all we can say is that civil war had not yet returned during the period of data collection.
In statistics, this sort of incomplete data process is called “censoring,” which does not mean that
someone has refused to provide the data but rather that, due to the process of data collection, certain
ranges of data cannot be observed: in this case, the length of time until resumption of civil war
is inherently unknowable for the countries that remained at peace through the date at which data
collection had concluded. Fortna addressed this using a “survival model,” a complexity that we will
ignore here. For our purposes here we summarize the combination of pre-treatment predictors as a

4Data and code for this example are in the folder Peacekeeping.
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Figure 1.4 Outcomes after civil war in countries with and without United Nations peacekeeping, plotted vs. a
measure of how bad the situation was in the country. After adjusting for this pre-treatment variable, peacekeeping
remains associated with longer periods without war.

scalar “badness score,” which ranges from 1.9 for the Yemen civil war in 1994 and 2.0 for India’s
Sikh rebellion in 1993, to the cases with the highest badness scores, 6.9 for Angola in 1991 and 6.5
for Liberia in 1990.

Figure 1.4 shows outcomes for treated and control countries as a function of badness score, with
some missing cases where not all the variables were available to make that assessment. According
to these data, peacekeeping was actually performed in tougher conditions, on average. As a result,
adjusting for badness in the analysis (while recognizing that this adjustment is only as good as the
data and model used to perform it) increases the estimated beneficial e�ects of peacekeeping, at least
during the period of this study.

Estimating the effect of gun laws, and the difficulty of inference using regression with a
large number of predictors

A leading medical journal published an article purporting to estimate the e�ects of a set of gun-controlExample:
gun-control
policies

policies:

Of 25 firearm laws, nine were associated with reduced firearm mortality, nine were associated with
increased firearm mortality, and seven had an inconclusive association. . . . Projected federal-level
implementation of universal background checks for firearm purchase could reduce national firearm
mortality from 10.35 to 4.46 deaths per 100 000 people, background checks for ammunition purchase
could reduce it to 1.99 per 100 000, and firearm identification to 1.81 per 100 000.

This study attempted causal inference using regression on the treatment variables, adjusting for
background variables to account for di�erences between treatment and control groups. The model
was also used to make forecasts conditional on di�erent values of the predictors corresponding to
various hypothetical policy implementations.

But we believe these results are essentially useless, for two reasons: First, in this sort of regression
with 50 data points and 30 predictors and no prior information to guide the inference, the coe�cient
estimates will be hopelessly noisy and compromised by dependence among the predictors. Second,
the treatments were observational, not externally applied. To put it another way, there are systematic
di�erences between states that have implemented di�erent gun-control policies, di�erences which
will not be captured in the model’s other predictors (state-level covariates or background variables),
and there is no reason to think that the big di�erences in gun-related deaths between states are mostly
attributable to these particular policies.
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Comparing the peacekeeping and gun-control studies

Why do we feel satisfied with the conclusions drawn from the peacekeeping study but not with the
gun-control study? In both cases, policy conclusions have been drawn from observational data,
using regression modeling to adjust for di�erences between treatment and control groups. So what
distinguishes these two projects?

One di�erence is that the peacekeeping study is focused, whereas the gun-control study is
di�use. It is more practical to perform adjustments when there is a single goal. In particular, in
the peacekeeping study there was a particular concern that the United Nations might be more likely
to step in when the situation on the ground was not so bad. The data analysis found the opposite,
that peacekeeping appeared to be performed in slightly worse settings, on average. This conclusion
is not airtight—in particular, the measure of badness is constructed based on particular measured
variables and so it is possible that there are important unmeasured characteristics that would cause
the adjustment to go the other way. Still, the pattern we see based on observed variables makes the
larger story more convincing.

In contrast, it is hard to make much sense of the gun-control regression, for two reasons. First,
the model adjusts for many potential causal variables at once: the e�ect of each law is estimated
conditional on all the others being held constant, which is not realistic given that multiple laws can
be changed at once, and there is no particular reason for their e�ects to add up in a simple manner.
Second, the comparisons are between states, but states vary in many systematic ways, and it is not at
all clear that a simple model can hope to adjust for the relevant di�erences. Yes, the comparisons in
the peacekeeping project vary between countries, but the constructed badness measure seems more
clearly relevant for the question being asked in that study.

We don’t want to make too much of the di�erences between these studies, which ultimately are
of degree and not of kind. Policies need to be evaluated in peacekeeping, gun control, and other
areas, and it makes sense to use data and statistical analysis to aid in decision making. We see
the peacekeeping study, for all its potential flaws, as a good example in that it starts with a direct
comparison of data and then addresses a potential threat to validity in a focused way. In contrast,
in the gun-control study the adjustments for pre-treatment variables seem less convincing, indeed
fatally dependent on implausible model assumptions, which can happen when data are modeled in an
unstructured way.

Indeed, statistical methods are part of the problem in that the gun-control claims would never have
been publishable without the false sense of confidence supplied by regression analysis and statistical
statements of uncertainty. Regression analysis was taken naively to be able to control for variation
and give valid causal inference from observational data; and statistical significance and confidence
intervals were taken naively to be able to screen out noise and deliver replicable statements about the
world outside the data at hand. Put these together, and the result was that a respected medical journal
was induced to publish strong and poorly supported conclusions taken from a messy set of aggregate
trend data.

1.4 Challenges in building, understanding, and interpreting
regressions

We can distinguish two di�erent ways in which regression is used for causal inference: estimating a
relationship and adjusting for background variables.

Regression to estimate a relationship of interest

Start with the simplest scenario of comparability of treatment and control groups. This condition
can be approximated by randomization, a design in which people—or, more generally, experimental
units—are randomly assigned to treatment or control groups, or through some more complicated
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Figure 1.5 Regression to estimate a causal e�ect with (a) simple comparison of treatment and control, or (b) a
range of treatment levels.
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Figure 1.6 (a) Hypothetical data in which the causal e�ect is a nonlinear function of the treatment level; (b) same
data with a linear e�ect estimated. It is always possible to estimate a linear model, even if it does not fit the data.

design that assures balance between the groups. In Part 5 of this book we discuss in detail the
connections between treatment assignments, balance, and statistical analysis. For now, we just note
that there are various ways to attain approximate comparability of treatment and control groups, and
to adjust for known or modeled di�erences between the groups.

If we are interested in the e�ect of some treatment x on an outcome y , and our data come from a
randomized or otherwise balanced experiment, we can fit a regression—that is, a model that predicts
y from x, allowing for uncertainty.

If x is binary (x = 0 for control or x = 1 for treatment), then the regression is particularly simple;Example:
Hypothetical
linear and
nonlinear
models

see Figure 1.5a. But the same idea holds for a continuous predictor, as shown in Figure 1.5b.5
In this setting, we are assuming comparability of the groups assigned to di�erent treatments, so

that a regression analysis predicting the outcome given the treatment gives us a direct estimate of the
causal e�ect. Again, we defer to Part 5 a discussion of what assumptions, both mathematical and
practical, are required for this simple model to make sense for causal inference.

But setting those qualms aside, we can continue by elaborating the model in various ways to better
fit the data and make more accurate predictions. One direction is to consider nonlinear modeling of a
continuous treatment e�ect. Figure 1.5b shows a linear estimate, Figure 1.6a shows an example of an
underlying nonlinear e�ect, and Figure 1.6b shows what happens if this curve is fit by a straight line.

Another important direction is to model interactions—treatment e�ects that vary as a function of

5Code for this example is in the folder Simp�eCausa�.
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Figure 1.7 Lifetime added risk of lung cancer for men, as a function of average radon exposure in picocuries per
liter (pCi/L). The relation between cancer rate and radon is di�erent for smokers and nonsmokers.

other predictors in the model. For example, Figure 1.7 shows the estimated e�ects of radon gas onExample:
Radon,
smoking,
and lung
cancer

lung cancer rates for men. Radon causes cancer (or, to be more precise, it increases the probability of
cancer), with this e�ect being larger among smokers than nonsmokers. In this model (which is a
summary of the literature and is not the result of fitting to any single dataset), the e�ect of radon is
assumed to be linear but with an interaction with smoking.

Interactions can be important and we discuss them throughout the book. If we care about the
e�ect of a treatment, then we also care about how this e�ect varies. Such variation can be important
for practical reasons—for example, in deciding how to allocate some expensive medical procedure,
or who is at most risk from some environmental hazard—or for the goal of scientific understanding.

Regression to adjust for differences between treatment and control groups

In most real-world causal inference problems, there are systematic di�erences between experimental
units that receive treatment and control. Perhaps the treated patients were sicker, on average, than
those who received the control. Or, in an educational experiment, perhaps the classrooms that
received the new teaching method had more highly motivated teachers than those that stuck with
the old program. In such settings it is important to adjust for pre-treatment di�erences between the
groups, and we can use regression to do this.

Figure 1.8 shows some hypothetical data with a fitted linear regression.6 A key di�erenceExample:
Hypothetical
causal
adjustment

compared to Figures 1.5 and 1.6 is that in this case the variable on the x-axis is a pre-treatment
predictor, not the treatment level.

Adjusting for background variables is particularly important when there is imbalance so that the
treated and control groups di�er on key pre-treatment predictors. Such an adjustment will depend on
some model—in the example of Figure 1.8, the key assumptions are linearity and additivity—and a
good analysis will follow up with a clear explanation of the consequences of any adjustments.

For example, the hypothetical analysis of Figure 1.8 could be summarized as follows:

On average, the treated units were 4.8 points higher than the controls, ȳ = 31.7 under the treatment and
ȳ = 25.5 for the controls. But the two groups di�ered in their pre-treatment predictor: x̄ = 0.4 for the
treated units and x̄ = 1.2 for the controls. After adjusting for this di�erence, we obtained an estimated
treatment e�ect of 10.0.

This estimated e�ect is necessarily model based, but the point of this example is that when there is
imbalance between treated and controls on a key predictor, some adjustment should be done.

6Code for this example is in the folder Simp�eCausa�.
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Figure 1.8 Hypothetical data with a binary treatment and a continuous pre-treatment variable. Treated units
are displayed with circles on the scatterplot, and controls are shown with dots. Overlaid is a fitted regression
predicting the outcome given treatment and background variable, with the estimated treatment e�ect being the
di�erence between the two lines.

Interpreting coefficients in a predictive model

There can be challenges in interpreting regression models, even in the simplest case of pure prediction.
Consider the following model fit to survey data: earnings = 11 000+ 1500 ⇤ (height� 60) + error,Example:

Earnings
and height

where annual earnings are measured in dollars, height is measured in inches, and the errors are mostly
in the range ±22 000 (in mathematical terms, the errors have mean 0 and standard deviation 22 000).
This is a prediction model, but it is close to useless for forecasting because the errors from the model
are so large: it is not particularly helpful to predict someone’s earnings as 25 000 with uncertainty
22 000. The regression is, however, somewhat useful for exploring an association in that it shows
that the estimated slope is positive (with an associated standard error conveying uncertainty in that
slope). As sampling inference, the regression coe�cients can be interpreted directly to the extent
that the people in the survey are a representative sample of the population of interest (adult residents
of the United States in 1990); otherwise, it is best to include additional predictors in the model to
bridge the gap from sample to population. Interpreting the regression as a causal inference—each
additional inch of height gives you another $1500 a year in earnings—may feel natural. But such an
interpretation is questionable because tall people and short people may di�er in many other ways:
height is not a randomly assigned treatment. Moreover, height is a problematic variable to consider
causally in other ways that will be discussed later in the book. Rather, the best fit for this example
might be the exploring associations category. Observing a pattern in data might prompt a researcher
to perform further research to study reasons that taller people earn more than shorter people.

Building, interpreting, and checking regression models

Statistical analysis cycles through four steps:
• Model building, starting with simple linear models of the form, y = a + bx + error and expanding

through additional predictors, interactions, and transformations.
• Model fitting, which includes data manipulation, programming, and the use of algorithms to

estimate regression coe�cients and their uncertainties and to make probabilistic predictions.
• Understanding model fits, which involves graphics, more programming, and an active investigation

of the (imperfect) connections between measurements, parameters, and the underlying objects of
study.
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• Criticism, which is not just about finding flaws and identifying questionable assumptions, but is
also about considering directions for improvement of models. Or, if nothing else, limiting the
claims that might be made by a naive reading of a fitted model.

The next step is return to the model-building step, possibly incorporating new data in this e�ort.
A challenge in serious applied work is how to be critical without being nihilistic, to accept that

we can learn from statistical analysis—we can generalize from sample to population, from treatment
to control, and from observed measurements to underlying constructs of interest—even while these
inferences can be flawed.

A key step in criticizing research claims—and in understanding the limits to such criticisms—is
to follow the steps that link the larger claims to the data and the statistical analysis. One weakness
of the gun-control study discussed on page 8 is that conclusions were made regarding proposed
changes in laws, but the comparisons were done across states, with no direct data on laws being
implemented or removed. In contrast, the analysis of height and earnings was more clearly descriptive,
not claiming or implying e�ects of policy changes. Another concern with the gun-control study was
that the estimated e�ects were so large, up to fivefold reductions of the death rate. This is a sign of
overinterpretation of noisy data, in this case taking existing variation among states and too eagerly
attributing it to available factors. One might just as well try correlating firearm mortality with various
laws on poultry processing and find similar correlations that could be given causal attributions. In
contrast, the study of peacekeeping is more controlled—looking at one intervention rather than trying
to consider 25 possibilities at once—and is more open about variation. The point of Figure 1.4 is not
to claim that peacekeeping has some particular e�ect but rather to reveal that it was associated with a
delay in return to civil war, in comparison to comparable situations in countries that did not have
United Nations intervention.

No study is perfect. In the Xbox analysis, we used a non-representative sample to draw inference
about the general population of voters. The Electric Company study was a controlled experiment,
so that we have little worry about di�erences between treatment and control group, but one can be
concerned about generalizing from an experimental setting to make claims about the e�ects of a
national release of the television show. The common theme is that we should recognize challenges in
extrapolation and then work to adjust for them. For the Xbox survey we used regression to model
opinion as a function of demographic variables such as age, sex, and education where the sample
di�ered from the population; the Electric Company data were analyzed separately for each grade,
which gives some sense of variation in the treatment e�ect.

1.5 Classical and Bayesian inference
As statisticians, we spend much of our e�ort fitting models to data and using those models to
make predictions. These steps can be performed under various methodological and philosophical
frameworks. Common to all these approaches are three concerns: (1) what information is being
used in the estimation process, (2) what assumptions are being made, and (3) how estimates and
predictions are interpreted, in a classical or Bayesian framework. We investigate these in turn.

Information

The starting point for any regression problem is data on an outcome variable y and one or more
predictors x. When data are continuous and there is a single predictor, the data can be displayed
as a scatterplot, as in Figures 1.5 and 1.6. When there is one continuous predictor and one binary
predictor, the data can be displayed as a scatterplot with two di�erent symbols, as in Figure 1.8. More
generally, it is not always possible to present all the data in a single display.

In addition to the data themselves, we typically know something about how they were collected.
For example, in a survey, we can look at the survey questions, and we might know something about
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how they were asked and where and when the interviews took place. If data are laboratory assays, we
might have knowledge of the biases and variation of the measurements, and so on.

Information should also be available on what data were observed at all. In a survey, respondents
may be a random sample from a well-defined population (for example, sampled by extracting random
names from a list) or they could be a convenience sample, in which case we should have some idea
which sorts of people were more or less likely to be reached. In an experiment, treatments might be
assigned at random or not, in which case we will typically have some information on how assignment
was done. For example, if doctors are choosing which therapies to assign to individual patients,
we might be able to find out which therapies were considered by each doctor, and which patient
characteristics were relevant in the assignment decisions.

Finally, we typically have prior knowledge coming from sources other than the data at hand,
based on experience with previous, similar studies. We have to be careful about how to include such
information. For example, the published literature tends to overestimate e�ect sizes, as there is a
selection by which researchers are under pressure to find large and “statistically significant” results;
see Section 4.5. There are settings, however, where local data are weak and it would be foolish to draw
conclusions without using prior knowledge. We give an example in Section 9.4 of the association
between parental characteristics and the sexes of their children.

Assumptions

There are three sorts of assumptions that are essential to any regression model of an outcome y
given predictors x. First is the functional form of the relation between x and y: we typically assume
linearity, but this is more flexible than it might seem, as we can perform transformations of predictors
or outcomes, and we can also combine predictors in linear or nonlinear ways, as discussed in Chapter
12 and elsewhere in this book. Still, the choices of transformations, as well as the choice of which
variables to include in the model in the first place, correspond to assumptions about the relations
between the di�erent variables being studied.

The second set of assumptions involves where the data came from: which potential observations
are seen and which are not, who is surveyed and who does not respond, who gets which experimental
treatment, and so on. These assumptions might be simple and strong—assuming random sampling
or random treatment assignment—or weaker, for example allowing the probability of response in a
survey to be di�erent for men and women and to vary by ethnicity and education, or allowing the
probability of assignment of a medical treatment to vary by age and previous health status. The
strongest assumptions such as random assignment tend to be simple and easy to understand, whereas
weaker assumptions, being more general, can also be more complicated.

The third set of assumptions required in any statistical model involves the real-world relevance of
the measured data: are survey responses accurate, can behavior in a lab experiment be generalized
to the outside world, are today’s measurements predictive of what might happen tomorrow? These
questions can be studied statistically by comparing the stability of observations conducted in di�erent
ways or at di�erent times, but in the context of regression they are typically taken for granted. The
interpretation of a regression of y on x depends also on the relation between the measured x and the
underlying predictors of interest, and on the relation between the measured y and the underlying
outcomes of interest.

Classical inference

The traditional approach to statistical analysis is based on summarizing the information in the data,
not using prior information, but getting estimates and predictions that have well-understood statistical
properties, low bias and low variance. This attitude is sometimes called “frequentist,” in that the
classical statistician is interested in the long-run expectations of his or her methods—estimates should
be correct on average (unbiasedness), confidence intervals should cover the true parameter value 95%
of the time (coverage). An important principle of classical statistics is conservatism: sometimes data
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are weak and we can’t make strong statements, but we’d like to be able to say, at least approximately,
that our estimates are unbiased and our intervals have the advertised coverage. In classical statistics
there should be a clear and unambiguous (“objective”) path from data to inferences, which in turn
should be checkable, at least in theory, based on their frequency properties.

Classical statistics has a lot to o�er, and there’s an appeal to summarizing the information from
the data alone. The weaknesses of the classical approach arise when studies are small and data are
indirect or highly variable. We illustrate with an example.

In 2013, a study was released by a team of economists, reporting “large e�ects on the earnings ofExample:
Jamaica
childhood
interven-
tion

participants from a randomized intervention that gave psychosocial stimulation to stunted Jamaican
toddlers living in poverty. The intervention consisted of one-hour weekly visits from community
Jamaican health workers over a 2-year period . . . We re-interviewed the study participants 20 years
after the intervention.” The researchers estimated the intervention to have increased earnings by 42%,
with a 95% confidence interval for the treatment e�ect which we reconstruct as [+2%, +98%]. That
is, the estimate based on the data alone is that the treatment multiplies average earnings by a factor of
1.42, with a 95% interval of [1.02, 1.98] for this multiplicative factor; see Exercise 3.8.

The uncertainty here is wide, which is unavoidable given that the estimate is based on comparing
earnings of only 127 children, who when they grow up have earnings that are highly variable. From
the standpoint of classical inference, there’s nothing wrong with that wide interval—if this same
statistical procedure were applied over and over, to many di�erent problems, the resulting 95%
confidence intervals would contain the true parameter values 95% of the time (setting aside any
imperfections in the data and experimental protocols). However, we know realistically that these
intervals are more likely to be reported when they exclude zero, and therefore we would not expect
them to have 95% coverage in the real world; see Exercises 5.8 and 5.9. And, perhaps more to the
point, certain values in this interval are much more plausible than others: the treatment might well
have an e�ect of 2% or even 0%, but it is highly unlikely for it to have an benefit of 98% and actually
double people’s earnings. We say this from prior knowledge, or general understanding. Indeed, we
do not trust the estimate of 42%: if the study were to be replicated and we were o�ered a bet on
whether the result would be greater or less than 42%, we would confidently bet on the “less than”
side. This is not to say that the study is useless, just that not much can be learned about the e�ects of
early childhood intervention from these data alone.

Bayesian inference

Bayesian inference is an approach to statistics which incorporates prior information into inferences,
going beyond the goal of merely summarizing existing data. In the early childhood intervention
example, for instance, one might start with the assumption that the treatment could make a di�erence
but that the average e�ect would most likely be less than 10% in a positive or negative direction. We
can use this information as a prior distribution that the multiplicative treatment e�ect is likely to be
in the range [0.9, 1.1]; combining this with the data and using the rules of Bayesian inference, we get
a 95% posterior interval of [0.92, 1.28], which ranges from an 8% negative e�ect of the intervention
to a possible 28% positive e�ect; see Exercise 9.6 for details. Based on this Bayesian analysis, our
best guess of the observed di�erence in a future replication study is much lower than 42%.

This simple example illustrates both the strength and the weaknesses of Bayesian inference. On
the plus side, the analysis gives more reasonable results and can be used to make direct predictions
about future outcomes and about the results of future experiments. On the minus side, an additional
piece of information is required—the “prior distribution,” which in this case represents the perhaps
contentious claim that the e�ect of the treatment on earnings is probably less than 10%. For
better or worse, we can’t have one without the other: in Bayesian inference, the prior distribution
represents the arena over which any predictions will be evaluated. In a world in which the treatment
could plausibly double average earnings, the raw estimate of 1.42 and interval of [1.02, 1.98] yield
reasonable predictions. But in a world in which such huge e�ects are implausible, we must adjust our
expectations and predictions accordingly.
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So, in that sense, we have a choice: classical inference, leading to pure summaries of data
which can have limited value as predictions; or Bayesian inference, which in theory can yield valid
predictions even with weak data, but relies on additional assumptions. There is no universally correct
answer here; we should just be aware of our options.

There is also a practical advantage of the Bayesian approach, which is that all its inferences are
probabilistic and thus can be represented by random simulations. For this reason, whenever we want
to summarize uncertainty in estimation beyond simple confidence intervals, and whenever we want to
use regression models for predictions, we go Bayesian. As we discuss in Chapter 9, we can perform
Bayesian inference using noninformative or weakly informative priors and obtain results similar to
classical estimates, along with simulation draws that can be used to express predictive uncertainty, or
we can use informative priors if so desired.

To the extent that we have relevant information that is not in our model (for example, awareness
of bias, selection on unmeasured characteristics, prior information on e�ect sizes, etc), then we have
a duty to account for this as well as we can when interpreting our data summaries.

1.6 Computing least squares and Bayesian regression
We write R code to make graphs and compute data summaries, fit statistical models, and simulate fake
data from theoretical or fitted models. We introduce code in the book as needed, with background on
R in Appendix A.

In general we recommend using Bayesian inference for regression: if prior information is available,
you can use it, and, if not, Bayesian regression with weakly informative default priors still has the
advantage of yielding stable estimates and producing simulations that enable you to express inferential
and predictive uncertainty (that is, estimates with uncertainties and probabilistic predictions or
forecasts). For example, in the election model presented in Section 1.2, to which we return in
Chapter 7, simulations from the fitted Bayesian model capture uncertainty in the estimated regression
coe�cients and allow us to compute probabilistic predictions for future elections conditional on
assumptions about the election-year economy.

You can fit Bayesian regression in R using commands of the form,

fit <- stan_g�m(y ~ x, data=mydata)

But some users of statistics will be unfamiliar or uncomfortable with Bayesian inference. If you are
one of these people, or if you need to communicate with people who are more comfortable with
classical statistics, you can fit least squares regression:

fit <- �m(y ~ x, data=mydata)

Finally, another concern about stan_g�m is that it can go slowly for large problems. We can make it
faster by running it in optimizing mode:

fit <- stan_g�m(y ~ x, data=mydata, a�gorithm=�optimizing�)

For the examples in this book, datasets are small and speed is not really a concern, but it is good to be
aware of this option in larger applications. When run in optimizing mode, stan_g�m performs an
approximate fit, but it still produces simulations that can again be used to summarize inferential and
predictive uncertainty.

In summary, if you would prefer to avoid Bayesian inference, you can replace most of the instances
of stan_g�m in this book with �m for linear regression or g�m for logistic and generalized linear
models and get nearly identical results. Di�erences show up in an example in Section 9.5 with a strong
prior distribution, examples of logistic and ordered logistic regressions with complete separation in
Sections 14.6 and 15.5, our implementation of cross validation in Section 11.8, and various examples
throughout the book where we use simulations to express uncertainty in estimates or predictions. It is
also possible to fit least squares regression and get Bayesian uncertainties by running stan_g�m with
flat prior distributions, as we discuss in Section 8.4.
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Bayesian and simulation approaches become more important when fitting regularized regression
and multilevel models. These topics are beyond the scope of the present book, but once you are
comfortable using simulations to handle uncertainty, you will be well situated to learn and work with
those more advanced models.

1.7 Bibliographic note
We return to the election forecasting example in Chapter 7. We discuss the height/earnings regression,
the Xbox survey, and the Electric Company experiment in detail in Chapters 6, 17, and 19, respectively.
Further references on these topics appear in the bibliographic notes to those chapters.

Fortna (2008) discusses the United Nations peacekeeping study and its implications. The
gun-control study appears in Kalesan et al. (2016); see also Gelman (2016a, b); the last of these
references links to a reply by the authors to criticisms of that controversial paper.

For more on radon and cancer risk, see Lin et al. (1999). The Jamaica childhood intervention
experiment comes from Gertler et al. (2013) and is discussed further by Gelman (2013, 2018).

1.8 Exercises
Data for examples and assignments in this and other chapters are at www.stat.co�umbia.edu/
~ge�man/regression/. See Appendix A for an introduction to R, the software you will use for
computing.
1.1 From design to decision: Figure 1.9 displays the prototype for a paper “helicopter.” The goal ofExample:

Helicopter
design

this assignment is to design a helicopter that takes as long as possible to reach the floor when
dropped from a fixed height, for example 8 feet. The helicopters are restricted to have the general
form shown in the sketch. No additional folds, creases, or perforations are allowed. The wing
length and the wing width of the helicopter are the only two design parameters, that is, the only
two aspects of the helicopter that can be changed. The body width and length must remain the
same for all helicopters. A metal paper clip is attached to the bottom of the helicopter.
Here are some comments from previous students who were given this assignment:

Rich creased the wings too much and the helicopters dropped like a rock, turned upside down, turned
sideways, etc.
Helis seem to react very positively to added length. Too much width seems to make the helis unstable.
They flip-flop during flight.
Andy proposes to use an index card to make a template for folding the base into thirds.
After practicing, we decided to switch jobs. It worked better with Yee timing and John dropping. 3 –
2 – 1 – GO.

Your instructor will hand out 25 half-sheets of paper and 2 paper clips to each group of students.
The body width will be one-third of the width of the sheets, so the wing width can be anywhere
from 1

6 to 1
2 of the body width; see Figure 1.9a. The body length will be specified by the instructor.

For example, if the sheets are U.S.-sized (8.5 ⇥ 5.5 inches) and the body length is set to 3 inches,
then the wing width could be anywhere from 0.91 to 2.75 inches and the wing length could be
anywhere from 0 to 5.5 inches.
In this assignment you can experiment using your 25 half-sheets and 10 paper clips. You can
make each half-sheet into only one helicopter. But you are allowed to design sequentially, setting
the wing width and body length for each helicopter given the data you have already recorded.
Take a few measurements using each helicopter, each time dropping it from the required height
and timing how long it takes to land.

(a) Record the wing width and body length for each of your 25 helicopters along with your time
measurements, all in a file in which each observation is in its own row, following the pattern
of he�icopters.txt in the folder He�icopters, also shown in Figure 1.9b.
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He�icopter_ID width �ength time

1 1.8 3.2 1.64
1 1.8 3.2 1.74
1 1.8 3.2 1.68
1 1.8 3.2 1.62
1 1.8 3.2 1.68
2 1.8 3.2 1.62
2 1.8 3.2 1.65
2 1.8 3.2 1.66
2 1.8 3.2 1.63
2 1.8 3.2 1.66

Figure 1.9 (a) Diagram for making a “helicopter” from half a sheet of paper and a paper clip. The long segments
on the left and right are folded toward the middle, and the resulting long 3-ply strip is held together by a paper
clip. One of the two segments at the top is folded forward and the other backward. The helicopter spins in the
air when dropped. (b) Data file showing flight times, in seconds, for 5 flights each of two identical helicopters
with wing width 1.8 inches and wing length 3.2 inches dropped from a height of approximately 8 feet. From
Gelman and Nolan (2017).

(b) Graph your data in a way that seems reasonable to you.
(c) Given your results, propose a design (wing width and length) that you think will maximize the

helicopter’s expected time aloft. It is not necessary for you to fit a formal regression model
here, but you should think about the general concerns of regression.

The above description is adapted from Gelman and Nolan (2017, section 20.4). See Box, Hunter,
and Hunter (2005) for a more advanced statistical treatment of this sort of problem.

1.2 Sketching a regression model and data: Figure 1.1b shows data corresponding to the fitted line
y = 46.3 + 3.0x with residual standard deviation 3.9, and values of x ranging roughly from 0 to
4%.

(a) Sketch hypothetical data with the same range of x but corresponding to the line y = 30 + 10x

with residual standard deviation 3.9.
(b) Sketch hypothetical data with the same range of x but corresponding to the line y = 30 + 10x

with residual standard deviation 10.
1.3 Goals of regression: Download some data on a topic of interest to you. Without graphing the data

or performing any statistical analysis, discuss how you might use these data to do the following
things:

(a) Fit a regression to estimate a relationship of interest.
(b) Use regression to adjust for di�erences between treatment and control groups.
(c) Use a regression to make predictions.

1.4 Problems of statistics: Give examples of applied statistics problems of interest to you in which
there are challenges in:

(a) Generalizing from sample to population.
(b) Generalizing from treatment to control group.
(c) Generalizing from observed measurements to the underlying constructs of interest.
Explain your answers.

1.5 Goals of regression: Give examples of applied statistics problems of interest to you in which the
goals are:

(a) Forecasting/classification.
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(b) Exploring associations.
(c) Extrapolation.
(d) Causal inference.
Explain your answers.

1.6 Causal inference: Find a real-world example of interest with a treatment group, control group, a
pre-treatment predictor, and a post-treatment predictor. Make a graph like Figure 1.8 using the
data from this example.

1.7 Statistics as generalization: Find a published paper on a topic of interest where you feel there
has been insu�cient attention to:

(a) Generalizing from sample to population.
(b) Generalizing from treatment to control group.
(c) Generalizing from observed measurements to the underlying constructs of interest.
Explain your answers.

1.8 Statistics as generalization: Find a published paper on a topic of interest where you feel the
following issues have been addressed well:

(a) Generalizing from sample to population.
(b) Generalizing from treatment to control group.
(c) Generalizing from observed measurements to the underlying constructs of interest.
Explain your answers.

1.9 A problem with linear models: Consider the helicopter design experiment in Exercise 1.1.
Suppose you were to construct 25 helicopters, measure their falling times, fit a linear model
predicting that outcome given wing width and body length:

time = �0 + �1 ⇤ width + �2 ⇤ length + error,

and then use the fitted model time = �0 + �1 ⇤width+ �2 ⇤ length to estimate the values of wing
width and body length that will maximize expected time aloft.

(a) Why will this approach fail?
(b) Suggest a better model to fit that would not have this problem.

1.10 Working through your own example: Download or collect some data on a topic of interest of to
you. You can use this example to work though the concepts and methods covered in the book,
so the example should be worth your time and should have some complexity. This assignment
continues throughout the book as the final exercise of each chapter. For this first exercise, discuss
your applied goals in studying this example and how the data can address these goals.


