Subject Index

1.6, converting from logit to probit, 227, 272, 273, 286

10 quick tips, 493-496
2 standard deviations, scaling by, 186-187
2.8 standard errors for power analysis, 295

3 challenges of statistical inference, 3
4, divide by for interpreting logistic regression coefficients, 220
55,000 residents need your help, 63-65
abline(), 4,156
Academy Awards example, 288
additivity assumption, 154
age adjustment, 31-33
age as regression input, 196, 197
age-period-cohort example, 32
Akaike information criterion (AIC), 175, 180
always-taker, 422, 423, 439, 449
Alzheimer's disease, 23
analytic calculations and simulation, 144
arm (R package), 475
arsenic example, 232-238, 242-249, 279, 283, 379
as.matrix(), 113
assignment variable in regression discontinuity, 433, 434
assumptions, 14, 153-156
additivity, 154
causal inference, 155, 350-355
equal variance of errors, 154
failures, 155
independence of errors, 154
linearity, 154
normality of errors, 154
of regression analysis, ranked in importance, 153155
reliability, 23-25
representativeness, 25, 154
validity, 23-25, 153
autoregression, 166-168
available-case analysis, 324
average predictive comparison, 249-252, 261
average treatment effect (ATE), 342-344, 348, 358361, 372, 397-399, 418, 420
balance, see causal inference, imbalance
Bangladesh, see arsenic example
baseline factor level, 138
basketball, 44, 47
bayes_R2(), 171, 491
bayes_sim(), 229
Bayesian additive regression trees (BART), 466, 471
Bayesian inference, 15-16, 106-107, 109, 113-129, 228-230
bayesplot (R package), 475, 492
beauty and sex ratio, see sex ratio example
beauty and teaching evaluations example, 151, 213
Beck Depression Inventory, 24
before-after studies, 27, 341, 357, 367-370
beta-binomial regression, 272
bias, 55, 346-347, 385
binary data, 217
binned averages, 241
binned residuals, 253-255, 259
graph, 253
binomial distribution, 43, 69
compared to Poisson, 268
naive application of, 46-47
binomial regression, 287
births, 68-71
black box, 376
bootstrapping, 73-76
limitations, 75
with structured data, 75
brm(), 272, 278, 284, 285, 430
brms (R package), 264, 430, 492
building generalized linear models, 232-237, 242-247, 283-285
building linear regression models, 199-206
bypass example, 452
caliper matching, 409
categorical variables
as regression inputs, 196
ordered or unordered, 273
causal inference, $5,10-11,134,155,246,496$
adjusting for post-treatment variable, don't do it, 369, 442, 445
assumptions, 350-355, 380, 386
average treatment effect (ATE), 342-344, 348, 358-361, 372, 397-399, 418, 420
balance, see imbalance
basics, 339-342
causes of effects, 415, 446
challenges of interpreting regression coefficients, 84-85, 373-374
complier average causal effect (CACE), 422
conditional average treatment effect (CATE), 343
conditional independence, 389
confounding covariate, $317,380,384-386,392$, 393, 395-396, 438
constructed observational study, 405, 417, 418
continuous treatment, 342
counterfactual, $394,399,414,423$, see also potential outcomes
difference-in-differences, 442-445, 449
direct and indirect effects, 377-379
effect of the treatment on the controls and treated, 398
effects of causes, 415, 446
exclusion restriction, 422-423
fixed effects, 440-442, 449
fundamental problem, 340-342, 377, 379
fuzzy regression discontinuity, 434
hypothetical example, 339-340
ignorability, 388-389, 413, 417, 418, 422-423, 431, 444
imbalance, 344, 347, 358, 388, 391-397, 411413
graph, 393, 395, 396, 402, 403
individual treatment effect, 342-344
infinite regress of causation, 415
instrumental variables, 421-432, 438, 449-450, 454
adjusting for covariates, 428
assumptions, 422-423, 427-428, 431-432
derivation, 423-428
identifiability, 427-428, 430
standard error, 429
two-stage least squares, 428-430
Wald estimate, 426, 428
weak instruments, 431
intent-to-treat (ITT) effect, 421, 423, 426, 428
intermediate outcomes, 374-379
local average treatment effect (LATE), 416, 426
mapping a hypothetical intervention, 414
mapping your study to an ideal controlled experiment, 415-416
matching, 399-405
propensity score, 399-405, 407, 417, 418
mediation, 374, 377-379
model extrapolation, 385, 392, 394
monotonicity, 422-423
multilevel model, 342, 440
multiple treatments, 342, 413, 415
natural experiment, 431
observational study, 7, 383-416
overlap, 344, 388, 391-397, 411-413, 416, 438
graph, 392, 393, 396, 403
paths, 376-379
population average treatment effect (PATE), 343, 348
post-treatment variable, do not adjust for, 374379
poststratification, 342, 370, 372, 397-399
potential outcomes, 339-342, 356, 358, 363-364, $375,377,379,383,384,388,414,418,423$
close substitutes, 341
interpreting regression coefficients, 134
predictive comparison, 383, 384
principal stratification, 378
propensity score matching, 399-405, 407, 417, 418
propensity score weighting, 417
randomized encouragement, 421
randomized experiment, 389
cluster-randomized, 349
completely randomized, 388, 389
matched pairs, $140,349,352,366$
randomized blocks, 140, 347-349, 351, 352, 360, 366
regression discontinuity, 432-438, 445, 449, 452
sample average treatment effect (SATE), 343, 348
selection bias, 383
selection model, 417
selection on observables, 389 , see also ignorability
sensitivity analysis, 417
simultaneous causality, 416
sketch, 364
stable unit treatment value assumption (SUTVA), 350, 353-354, 356
structural equation model, 432
subclassification, 397-398, 416
support of the data, 385
treatment interaction, 370-371, 398, 436-438
treatment variable, 414
using regression, 363-382
varying-intercept model, 440-442
weighting, 397, 398, 409-411
causal statements and causal questions, 448
causes of effects, 415, 445-448
cbind(), 143, 156
censored data, 323,458
imputation for, 332-333
picture, 332
centering, 137, 185-187
interactions and, 243
Central Limit Theorem, 41-42, 77
child care example, 374-379, 394-397, 399, 416, 430
children with HIV, 297-300
children's test scores, 151, 185-187
Chile schools example, 433-440
choice models, 287, 288
classical inference, 14-15
cleaning data, 485-488
cluster sampling, 311
cluster-randomized experiment, 349
co-op election example, 63-65
cockroaches, see roaches example
$\operatorname{coef}(), 82,98,156$
collinearity, 146, 198
colochos, xv
colors, 156
combining inferences from multiple imputations, 326
common causal support, 416
communication, 23
comparing distributions, 45
comparing two surveys, 296
comparisons as regression models, 99-102
comparisons, graphs as, 31
compatibility interval, 111
complete-case analysis, 324
compliance, 380, 421
complier, 422, 431, 439, 449
complier average causal effect (CACE), 422, 450
compound model
imputing a variable that can be positive or zero, 329-330
simulation of, 70, 72, 285-286, 329-330
computing, 16-17, 109-111, 467-470, 475-492, 495
conditional average treatment effect (CATE), 343
conditional independence, 389
confidence interval, 51-53, 58
continuous data, 53
coverage, 52, 77
discrete data, 54
for proportion when $y=0$ or $n, 52,67$
proportions, 52
confounding covariate, $317,380,384-386,392,393$, 395-396, 438
Congress example, 140-144, 287, 335, 381
constructed observational study, 405
constructive choice model, 279-283
contaminated data, 278
contamination model, 283
continuous and discrete predictors, 196
continuous probability simulation, 77
controlled experiment, 415
correlated error, 459
correlation, 43, 48, 169, 179, 187-189
cost-benefit analysis, 78, 280, 311-312
count data, 263, 264, 266, 272
count data and binary data, 272
counterfactual, see causal inference
counterfactual and predictive interpretations of regression, 134
coverage example, 51
coverage of confidence intervals, 52, 77, 98, 295
cows example, 381
criminology, 291
cross validation, 172-180, 230-232, see also leave-one-out cross validation
crossover trials, 341
Current Population Survey, 417
curve(), 37, 476
cutpoints, 274, 276
ordered logit or probit, 274
data matrix, 145
data subsetting, 495
data.frame(), 82
dead salmon, 61
death penalty, 54, 271, 332-333
decision analysis, 129
arsenic example, 279-283
decline effect, 311
deep learning, 466
default prior distribution, 124
defier, 422, 423, 439
degrees of freedom, 53, 110, 168, 169, 175
dependent variable, why we avoid the term, 145
design analysis, 291-312
after the data have been collected, 304
for continuous outcomes, 297-300
for proportions, 293-297
for regression coefficients, 300
graph, 292
inherently speculative, 299
unequal sample sizes, 296
design of sampling and experiments, 291-312
deterministic or random imputation, 327, 329, 334
deviance, 174, 230-232
diagnostics, 156-180
external validation, 171
residuals, 161, 253
simulation-based, 69-78, 288
diarrhea, zinc, and HIV, 297-300
difference-in-differences, 442-445, 449
different software example, 492
discrete and continuous predictors, 196, 260
discrete probability simulation, 76
distance metrics, 406
distance to the nearest safe well, 234
distribution, 40-45, 47
binomial, 43
comparing, 45
exponential, 124
logistic, 226
lognormal, 43
negative binomial, 263
normal, 41-43, 145
Poisson, 44, 263, 265
t, 53, 278
$\chi^{2}, 53$
divide-by-4 rule, for interpreting logistic regression, 220
dividing by two standard deviations, 186-187
dummy variable, see indicator
dynamic graphics, 33
earnings
height and, 183, 284
logarithmic models, 189-195
mixed discrete/continuous data, 283-284
earnings example, $74,84-85,91,189-195,284$
econometrics and biostatistics, 417
education as categorical input variable, 245
effect size, why more important than sample size, 293
effects of causes, 415,446
effects, why this term can be misleading, 84-85
efficiency, 352
elasticity, 195, 213
election fraud, 63-65
elections, 4, 62, 93-99, 101, 120, 140-144, 257, 335, 454
elections and economy example, 4, 93-99, 113, 115, 120, 469
Electric Company example, 6, 312, 364-372, 379, 386-394
graph of data, 365
elephants, 24,39
encouragement design, 358
ensemble learning, 466
equal variance of errors, 154
error rate, 255
where it can mislead, 255
estimands and estimates, 50
examples, 4, 476
Academy Awards, 288
age-period-cohort, 32
arsenic, 232-238, 242-249, 279, 283, 379
beauty and teaching evaluations, 151,213
bypass, 452
child care, 374-379, 394-397, 399, 416, 430
Chile schools, 433-440
co-op election, 63-65
Congress, 140-144, 287, 335, 381
coverage, 51
cows, 381
death penalty opinions, 54
different software, 492
earnings, 74, 84-85, 91, 189-195, 284
elections and economy, 4, 93-99, 113, 115, 120, 469
Electric Company, 6, 312, 364-372, 379, 386394
fake K-fold CV, 179
fake midterm and final, 88-89, 306-310
flight school, 90
gay marriage, 198, 467, 472
girl births, 68
golf, 461-464, 471
health expenditure, 25
height and weight, 42, 117-119, 136-139, 484488
helicopter, 17-18
Human Development Index, 21-22
imputation, 322, 335
incentives, 373-374
intro class, 161
kid IQ, 131-135, 151, 156, 161, 185
LaLonde, 287, 417
logistic priors, 229
logit graphs, 241
mesquite bushes, 200-206
metabolic rate, 39-40
mile run, 37-38, 482
names, 27-28, 34
NES, 149, 217, 237, 257, 287
Newcomb, 163-165
parabola, 488-489
peacekeeping, $7-8$
Pearson and Lee, 85-88
Pew, 23
Poisson, 265, 266
pollution, 212
poststratification, 313-316, 320-322
predicting student grades, 206-210
probability of a tied election, 45-47, 144
probability simulation, 69
pyth, 181
$R^{2}, 170$
residuals, 158
restaurant, 489-490
risky behavior, 286, 288
roaches, 268-270, 284-285
rodents, 239
sample size, 302-304
scalability, 470
Sesame Street, 357, 422, 428
sex ratio, 121-122, 125-128, 304-306
simple causal, 10-11
simplest, 82, 99
stents, 45
storable votes, 274-278, 286
unemployment, 166-168
exclusion restriction, 422, 423, 431, 439
exercise time, 45
expectation, 41
experimental benchmark, 405
experimental design, 291-312, 347-350
explained variance, see R^{2}
exploratory data analysis, 30
exponential distribution, 124
exponential growth and decline, 38
exposure, analogue to treatment in observational studies, 386, 414
exposure, in Poisson or negative binomial regression, 267-268
expression(), 248
external validity, 171, 354, 380
extra-virgin olive oil, 23
extrapolation, 5, 6, 354
F test, why we do not use it, 147
factor variable, 198
fake K-fold CV example, 179
fake midterm and final example, 88-89, 306-310
fake-data simulation, 76, 82-83, 91, 97-99, 101, 102, $150,161-163,176,181,239,242,265$, 302-304, 312, 320-322, 334, 358, 494, 496
feeling thermometer, 227
file-drawer effect, 61
fit many models, 495
fitting the wrong model, 181
fixed effects, 440-442, 449
why we avoid the term, 440
flight school example, 90
forcing variable, see assignment variable
forking paths, 61, 67
forward and reverse causal inference, 445-448
functions in R, 72, 326-328
fundamental problem of causal inference, 340-342, 377, 379
fuzzy regression discontinuity, 434, 438
connection to instrumental variables, 438
gain score, 369,380
garden of forking paths, 61
Gaussian process, 465
gay marriage example, 198, 467, 472
General Social Survey, 261, 288
generalized least squares, 148
generalized linear model, 263-288
beta-binomial, 272
binomial, 270-272, 287
building, 283-285
cutpoints, 274
logistic, 217-261
logistic-binomial, 263, 270-272
multinomial logit and probit, 264, 273-278, 286, 287
negative binomial, 263-270, 286 exposure, 267-268
ordered logistic, 264, 273-278, 286, 287
Poisson, 263-270, 286
compared to binomial, 268
exposure, 267-268
probit, 264, 272-273
probit or logit, 272
robit as robust alternative, 278-279
robust, 264
simulation, 247-286
thresholds, 274
Tobit, 284, 286, 287
generative model, 50
genetic algorithms, 466
geometric mean and standard deviation, 43
ggplot2 (R package), 475
girl births example, 68
glm(), xiv
goals of regression, 9-13, 18
golf example, 461-464, 471
goodness-of-fit, see model checking
grades, predicting, 161
graphics, 21-23, 25-31, 33, 156-163, 482-484, 493
alternative displays of the same data, 365
as comparisons, 31
finding unexpected patterns, 31
jittering, 132
R, 33
residual plot, 160
scatterplot with regression lines superimposed, 135, 156-163
showing fitted models, 31
why, 30
graphing a line, 37-38
guessing on a multiple-choice test, 283
gun control, 8-9, 17
Hamiltonian Monte Carlo, 468-469
handedness, 196
Hawthorne effect, 354, 356
health expenditure example, 25
height, $72,77,85,90$
earnings and, 183, 284
logarithmic models, 189-195
mixture model for, 41
parents and children, 188
weight and, 169, 212
height and weight example, 42, 117-119, 136-139, 484-488
helicopter example, 17-18
heteroscedasticity, 154, 283
hierarchical model, 350, 440, 460
hist(), 69, 328
history of regression, 85-87, 90
holding other predictors constant, difficulty of, 133
homoscedasticity, 154, 283
horror movie, 269
horseshoe prior for sparse regression, 179, 208-210, 460
hot-deck imputation, 330
Human Development Index example, 21-22, 34
hypothesis testing, 57-68, 147
moving beyond, 66-67

I(), 330
ideal-point model, 288
identifiability, 146
categorized predictors and, 146, 198
instrumental variables, 427-428, 430
likelihood and, 146
linear regression, 146, 198
logistic regression, 227-228, 256-259
idiosyncratic transformation, 213
ifelse(), 327, 479
ignorability, 323, 333, 350-352, 386, 388-389, 413, 417, 422
imbalance, see causal inference
imputation, 322-335
impute(), 328
incentives example, 373-374
income and voting, 217-222, 237
incremental cost-effectiveness ratio, 78
incumbency, 381, 454
congressional elections, 141
independence of errors, 154
independent variable, why we avoid the term, 145
index variable, 197
indicator variable, 99-101, 132, 136-139, 197
default, reference, or baseline condition, 198
individual treatment effect, 343
Inf, 478
Infant Health and Development Program, see child care example
inference, see statistical inference
influence, 107-108, 111
instrumental variables, see causal inference
intent-to-treat (ITT) effect, 426, 428
interactions, 134-136, 151, 185-187, 193, 360
centering the input variables, 243
compared to main effects, 301-302
graphing, 245
logistic regression, 242-247
sample size and, 300-304, 312
smoking and cancer, 10,136
treatment effects, 370-371, 398
when to look for, 136
intercept, $86,95,133,135$
intermediate outcome, see causal inference
internal validity, 354
interpreting regression coefficients, 95, 205, 243, 244
interquartile range (IQR), 201
intro class example, 161
inverse estimated probability of treatment weighting, 409-411, 420
invlogit() and logit(), 217
iterative regression imputation, 331
iteratively weighted least squares, 228
Jacobian, 202-203
Jamaica childhood intervention, 15, 17
jittering, 132, 234
K-fold cross validation, 178-179
kid IQ example, 131-135, 151, 156, 161, 185
knitr (R package), 475

LaLonde example, 287, 417
lasso prior for sparse regression, 210, 460
latent-data formulation for logistic regression, 226-228, 274
Latinos, hypothetical survey of, 310
weighted, 147-148
leave-one-out cross validation, 112, 172-178, 201-206, 232, 235-236, 244
loo (R package), 475
legislative redistricting, 27
level of a factor variable, 198
library(), 476
likelihood
function, 146
logistic regression, 228
surface, 105-106
linear predictor, 116, 219, 223
linear regression, 131-214
assumptions, 153-161
compared to principal component line, 187-188
correlation and, 187-189
counterfactual interpretation, 134
diagnostics, 153-161
displaying several, 148-149
general principles for building models, 199
interactions, 134-136
interpreting coefficients, 133-136
interactions, 135-136
missing-data imputation, 326-330
multiple predictors, 131-152
notation, 145-146
picture of matrix, 145
prediction, 171-172, 200-206
predictive interpretation, 134
sample size and power calculations, 300
simulation, 142-144
statistical inference, 144-147
transformation, 183-214
validation, 171-172
weighted, 147-148
linear transformation, 42-43, 48, 54, 137, 183-185, 193-194, 227, 234, 243, 245, 276
linearity assumption, 154
link function, 263
$\operatorname{lm}()$, compared to stan_glm(), xiv, 16, 109-112
local average treatment effect (LATE), 416, 426
loess(), 465, 467
log score, 174-179, 230-232
$\log (), 189$
log-log transformation, 194, 212, 213
$\log 10(), 192$
logarithmic transformation, 38-40, 43, 68, 189-195, 212, 254
even when not necessary, 195
interpreting coefficients, 190, 192
picture, 190
why base e and not base 10, 191-192
logistic curve, 218
logistic distribution, close to normal with standard deviation 1.6, 227, 273, 286
logistic priors example, 229
logistic probability density function, 226
logistic regression, 217-261
binned residual plot, 259
choice models in one and multiple dimensions, 280-282
compared to probit, 272, 281, 287
divide-by-4 rule for interpreting coefficients, 220
graphing, 218, 234, 236, 239, 241-242, 245, 259
graphing data and fitted curve, 219
identifiability, 227-228, 256-259
inference, 221
interactions, 242-247
interpreting coefficients, 220-222, 235, 238
latent-data formulation, 226-228
logit and logit ${ }^{-1}$ functions, 219
missing-data imputation, 326-330
odds ratio, 220-221
pictures, 218
predictive comparison, 220, 249-252
propensity score, 401, 407
separation, 256-259
simulation, 247
standard error, 221
two predictors, 235-237
using Stan, 461
well-switching in Bangladesh, 232-237
logistic-binomial regression, 263, 270-272
overdispersion, 271
logit, see logistic regression
logit graphs example, 241
logit() and invlogit(), 217
lognormal distribution, 43
loo(), 172, 177-178, 475
loo_predict(), 174
looking at the data, 488
loops, 479
lurking variable, 385
machine learning, 464-467
mad sd, 73
$\operatorname{mad}(), 73$
Mahalanobis distance, 407
many predictors, 459-460
MASS (R package), 179, 285
matched pairs experiment, 140, 349, 352, 366
matching, see causal inference
matching(), 401, 402
maternal IQ, 132
matrix notation, 145-146
matrix of simulations, 143, 248
maximum likelihood, 105-107, 110, 111, 146, 229230
logistic regression, 228
mean, 41
mean imputation, 325
mean(), 186
measurement, 23-25
measurement error, 49, 458, 471
median, 73
median absolute deviation, 73, 113
mediation, see causal inference
mesquite bushes example, 200-206
messy data in R, 484-488
metabolic rate example, 39-40
mice, external validity of studies on, 23
midterm and final exams, 161-163
mile run example, 37-38, 482
millimeters, inches, and miles, 183
missing at random (MAR), 323, 333 impossibility of verifying, 323
missing completely at random (MCAR), 323
missing data, 322-335, 355, 458-459, 478 in R, 322
missing-data imputation, 322-335 available-case analysis, 324
complete-case analysis, 324
congressional elections, 142
deterministic or random, 327, 329
iterative, 331
many variables, 330-332
matching, 330
models, 322-324
multiple imputation, 326-335
simple methods, 324-325
topcoding, 327
mixed discrete/continuous data, 283-284, 329
model checking, 12-13, 33, 494, 496 using simulation, 163-168
model error, 49
model extrapolation, 385, 392, 394
model selection, 180
monotonicity assumption for instrumental variables, 422, 423, 439
Monte Carlo, 468
mortality rates, 31-33
mothers and children, 85-88, 151, 185-187
multilevel model, 350, 440, 460
multinomial logit and probit regression, 264, 273-278, 286, 287
storable votes, 274-278
multiple comparisons, 66
multiple imputation, 326-335
combining inferences, 326
multiplicative model, 189
multivariate imputation, 330-332
mvrnorm(), 179
NA, 151, 478
names example, 27-28, 34
naming inputs, 192
NaN, 478

National Election Study, 149
National Longitudinal Survey of Youth, 131, 405
National Supported Work program, 417
natural experiment, 431
natural log, 191-192
negative binomial regression, 263-270, 286
exposure, 267-268
interpreting coefficients, 267
zero-inflated, 284-285
NES example, 149, 217, 237, 257, 287
never-taker, 422, 423, 439, 449
Newcomb example, 163-165
noncompliance, 355
nonidentifiability, see identifiability
nonlinear modeling, 460-464, 471
nonparametric regression, 464-467
nonresponse weighting, 325
normal distribution, 41-43
estimated regression coefficients, 221
notation, 145
regression errors, 154
normality of errors, 154
not missing at random (NMAR), 323
notation for regression models, 81, 144-147
observational study, 7, 383
observed measurements, generalizing from, 3
odds ratio, 220-221
offset in Poisson or negative binomial regression, 267, 287
omitted variable bias, 385
omniscience, 357
open data, 66
optimal design, 312
optimizing in R and Stan, 488-490
optimizing setting for stan_glm(), 16, 109, 470
options(), 30
ordered and unordered categorical outcomes, 273, 277
ordered logistic regression, 264, 273-278, 286, 287
outcome variable, 4
outlier, 178
outliers in binary data, 278
overdispersion, 266, 271
simulation, 285
overestimates, published results tend to be, 62, 293
overfitting, 104, 175
overlap, see causal inference
ovulation and voting, 62, 66
p-hacking, 61, 67
p-values, see hypothesis testing
packages in R, 475
paired comparisons, 140, 366
Panel Study of Income Dynamics, 417
parabola example, 488-489
parameters, 50
partial pooling, 119, 128
partisan bias, 27
party identification, 23, 315
paste(), 478
pch, 156
peacekeeping example, 7-8, 17
Pearson and Lee example, 85-88
Pew example, 23
phase diagram for decision analysis, 282
plm (R package), 440, 449
plogis(), 217
plot(), 156, 483
plots of replicated datasets, 164-166
plotting a series of regressions, 149
plotting the data and fitted model, 156-163
pnorm(), 96
point prediction, 115-116, 223
Poisson distribution, 44
Poisson example, 265, 266
Poisson regression, 263-270, 286
checking using simulation, 268-269
compared to binomial, 268
exposure, 267-268
interpreting coefficients, 267
zero-inflated, 284-285
political ideology, 23, 149
political party identification, 148-149
polling, $6,54,120,149,222,257,314-320$
pollution example, 212
population average treatment effect (PATE), 343, 348
Portugal students example, 206-210
post-treatment outcomes, 445
posterior predictive check, 163-168, 180
posterior simulations, 113-115
posterior uncertainty, 117, 247
posterior_epred(), 116, 223, 315
posterior_linpred(), 116, 223
posterior_predict(), 116, 224
poststratification, 313-322, 370, 372, 397-399
poststratification example, 313-316, 320-322
potential outcome, see causal inference
power analysis, 291-312
2.8 standard errors, 295
classical, 293-300
for continuous outcomes, 297-300
for proportions, 293-297
for regression coefficients, 300
general concerns, 294
graph, 292, 296
inherently speculative, 299, 300
picture, 295
unequal sample sizes, 296
power-law growth and decline, 38-40
pre-test, 363-364, 367-370, 380
sketch, 364
pre-treatment variables, 352
predict(), 115-116, 223, 401
predicting student grades example, 206-210
prediction, 12, 95, 96, 102, 113-129, 142, 151, 171172, 199-206, 222
interpreting regression coefficients, 134
prediction error, 174
predictive check, see posterior predictive check
predictive comparison, 220, 249-252, 259
formula, 249
graph, 250
interactions, 252
predictive comparison in causal inference, 383, 384
predictive comparison in regression, see average predictive comparison
predictive distribution, 115-119, 224
predictive simulation, 128, 143, 163-168, 247-286
binomial distribution, 248
generalized linear models, 247-286
latent logistic distribution, 248
linear regression, 142-144, 151
model checking and, 163-168
predictors, 4, 144
presidential elections, 93-99, 217-222
principal component line, 187, 188
principal stratification, 379
prior distribution, 109-110, 123-127, 129, 259
default, 124
for regression with many predictors, 206-210
horseshoe, 208-210, 460
informative, 125-128
lasso, 210, 460
sex ratio example, 125
uniform, 123
weakly informative, 124-125, 208
prior information, 14, 15, 62, 119-121, 229
sex ratio example, 121
prior_summary(), 491
probability, see distribution
probability modeling, 45-47
probability models, simulation of, 69-72
probability of a tied election, 45-47, 144
probability simulation example, 69
probit regression, 264, 272-273, 286, 287
compared to logit, 272, 281
profile likelihood, 257, 258
programming in R, 488-492
programming in Stan, 461-464, 492
propagating uncertainty, 56, 77, 113-119, 247-249
propensity score, see causal inference
psychology, 62
publication bias, 59, 305
pyth example, 181
Q-Q plots, why we do not recommend, 155
qlogis(), 217
quantile(), 73
quick tips, 493-496

R, 16-17, 475-492
abline(), 4, 156
arm package, 475
as.matrix(), 113
bayes_R2(), 171, 491
bayes_sim(), 229
bayesplot package, 475, 492
brm(), 272, 278, 284, 285, 430
brms package, 430, 492
cbind(), 143, 156
coef(), 82, 98, 156
colors, 156
curve(), 37, 476
data types, 477
data.frame(), 82
digits, 30
expression(), 248
functions, 72, 326-328, 477, 488
getting started, 475
ggplot2 package, 475
glm(), xiv
graphics, 33, 482-484
hist(), 69, 328
I(), 330
ifelse(), 327, 479
impute(), 328
Inf, 478
invlogit(), 217, 248
knitr package, 475
library(), 476
$\operatorname{lm}()$, xiv, 16, 109-111
loess(), 465, 467
$\log (), 189$
$\log 10(), 192$
$\operatorname{logit}(), 217$
loo package, 172, 475
loo(), 172, 177-178
loo_predict(), 174
loops, 479
$\operatorname{mad}(), 73$
MASS package, 179, 285
matching(), 401, 402
mean(), 186
messy data, 484-488
mvrnorm(), 179
NA, 151, 478
NaN, 478
optimizing in, 488-490
optimizing setting for stan_glm(), 16, 109, 470
options(), 30
packages, 475
paste(), 478
pch, 156
plm package, 440, 449
plogis(), 217
$\operatorname{plot}(), 156,483$
pnorm(), 96
posterior_epred(), 116, 223, 315
posterior_linpred(), 116, 223
posterior_predict(), 116, 224
predict(), 115-116, 223, 401
prior_summary(), 491
programming, 488-492
qlogis(), 217
quantile(), 73
rbinom(), 69, 72, 248
rbounds package, 417
rbrms package, 264
read.csv(), 482
read.fwf(), 485
read.table(), 4, 181, 482
reading data, 481
replicate(), 72
rnegbin(), 285
rnorm(), 72, 97, 260
rowMeans(), 372
rowSums(), 143
rpois(), 72
rprojroot package, 476
rstan package, 475
rstanarm package, xiv, 82, 264, 475, 476, 490492
RStudio, 475
runif(), 248, 477
sample(), 68, 70, 326, 477
sd(), 186
se(), 98
seq(), 477
shinystan package, 492
stan_gamm4(), 467
stan_glm(), xiv, 16, 82, 109-111, 218
stan_polr(), 276
subscripting, 480
subset option in stan_glm(), 330
sum(), 143
survey package, 404,475
table(), 488
working directory, 481
writing data, 482
$R^{2}, 84,168-171,193,491$
Bayesian, 170
example, 170
graph, 169
radon, 11, 17
random imputation, 326, 327, 329
randomization, 78, 346-347, 357, 381
distribution, 346
randomized blocks experiment, 140, 347-349, 351, 352, 360, 366
randomized experiment, 345-355
limitations, 350-355
randomized-encouragement design, 421
ratio of parameters, 78
rats, 39, 239
rbinom(), 69, 72, 248
rbounds (R package), 417
read.csv(), 482
read.fwf(), 485
read.table(), 4, 181, 482
reading data in $\mathrm{R}, 481$
redistricting, 27
regression, see linear regression, logistic regression, generalized linear models
why learn, 4-5
regression discontinuity, see causal inference
regression to the mean, 85-91, 187-189
regularization, 459-460
reliability, 23-25, 34
replicate(), 72
replicated datasets, plotted, 164-166
replication, 148-149, 493
replication crisis in science, 62, 67, 293
representativeness, 25,154
researcher degrees of freedom, 61, 67
residual standard deviation, 84, 104, 168-171
models of, 283
residual sum of squares, 103
residuals, 145, 253
binned, 253
graph, 161-163, 172, 253
graph vs. predicted values, not vs. observed values, 162, 163
standard deviation of, 169
residuals example, 158
restaurant example, 489-490
retrospective observational study, 415
risky behavior example, 286, 288
rnegbin(), 285
rnorm(), 72, 97, 260
roaches example, 268-270, 284-285
robit regression, 278-279, 287
generalization of logit and probit, 279
picture, 278
robust regression, 264, 278-279, 286
rodents example, 239
rowMeans(), 372
rowSums(), 143
rpois(), 72
rprojroot (R package), 476
rstan (R package), 475
rstanarm (R package), xiv, 82, 264, 475, 476, 490-492
RStudio, 475
runif(), 248, 477
sample average treatment effect (SATE), 343, 348
sample mean, 53
sample size calculation, 102, 291-312
2.8 standard errors, 295
classical, 293-300
for continuous outcomes, 297-300
for proportions, 293-297
for regression coefficients, 300
general concerns, 294
inherently speculative, 299, 300
interactions, 300
picture, 295, 296
unequal sample sizes, 296
sample size example, 302-304
sample to population, generalizing from, 3
sample(), 68, 70, 326, 477
sampling distribution, 50, 53, 102, 346-347, 357, 361
sampling model, 49
sampling with replacement, 74,477
sampling, design for, 291-312
scalability example, 470
scaling of predictors, 183, 211
scatterplot, 21-22, 25-27
data and regression lines superimposed, 135
sd(), 186
se(), 98
secret weapon, 148-149, 213, 493
pictures, 54, 149, 222
selection bias, $15,25,59,62,91,305,308,323,344$, 374, 383-385, 389, 417
simulation, 309
selection on observables, 389, see also ignorability sensitivity, 391
separation in logistic regression, 256-259
seq(), 477
Sesame Street example, 357, 421-426, 428, 449
sex ratio example, 121-122, 125-128, 304-306
shinystan (R package), 492
significance, see statistical significance
significant digits, 29, 30, 34
simple causal example, 10-11
simplest example, 82, 99
simulation, 69-78, 129, 142-144, 151, 288
combined with analytic calculations, 144
comparing simulated to actual data, 163-168
compound model, 70, 72, 285-286, 329-330
coverage of confidence intervals, 98
displaying uncertainty in a fitted model, 247
fake-data, 76, 97-99, 101, 102, 150, 161-163, 176, 320-322, 358, 494, 496
generalized linear models, 247-286
how many draws are needed, 152
logistic regression, 247
matrix of simulated parameters and predictions, 143, 248
nonlinear predictions, 140-144
overdispersed models, 285
posterior predictive check, 163-168
predictive, 247-286
probability models, 69-72
regression inferences, 142-144
replicated datasets, plotted, 164-166
simultaneous-equation model, 459
smoking and cancer, 10, 136
Social Indicators Survey, 322-332, 335
speed of light, 164
spline, 465
sports, $44,47,461-464$
square root transformation, 328
stable unit treatment value assumption (SUTVA), 350, 353-354, 356
Stan, 283, 468-470, 475, 476
building models in, 460-464
editing code from brms, 492
getting started, 476
optimizing in, 488-490
stan_gamm4(), 467
stan_glm(), xiv, 16, 82, 109-111, 218
why we use it, xiv, 109
stan_polr(), 276
standard deviation, 41, 53
standard error, 51, 52
for a proportion, 51
standardizing predictors, 184-187, 211, 247
statistical error, 57-60
statistical inference, 50-60, 144-147
3 challenges of, 3
graph of uncertainty, 221
standard error, 221
statistical significance, 57-62, 221, 244, 493
problems with, 60-63
sample size and power, 294
statistical significance filter, 59, 62, 305
stents example, 45
storable votes example, 274-278, 286
data and fitted curves, 275
structural equation model, 432, 449
subclassification, 416
subscripting in R, 480
subset option in stan_glm(), 327, 330
subsetting data, 495
sum of squares in least squares estimation, 104
$\operatorname{sum}(), 143$
superpopulation, 49
surly people, 323
survey (R package), 404, 475
survival analysis, 458
switches, 167
symbols on graphs, 27
t distribution, 53, 278, 286
t regression, 278-279
t test, why we do not use it, 147
table(), 488
tables, displaying, 30, 34
teaching evaluations and beauty, 151, 213
test scores in Chile, 433-440
test summary
graphical, 164-166
numerical, 63, 165, 269
threats to validity, 354
thresholds for ordered logit or probit, 274
tied election, probability of, 45-47, 144
time series, checking a fitted model, 166-168
Tobit regression, 284, 286, 287
topcoding for missing-data imputation, 327
traffic accidents, 264-267
transformation, 183-214, 496
idiosyncratic, 196, 213
linear, 42-43, 48, 183-185
$\log -\log , 212,213$
logarithmic, 43, 68, 189-195, 212, 254
square root, 195, 328
treatment, see causal inference
treatment to control group, generalizing from, 3
tree model, 466
true values in fake-data simulation, 97
twins, 70
two-sided test, 57
two-stage least squares, see causal inference, instrumental variables
two-stage model for mixed discrete/continuous data, 283, 329
type 1 and 2 errors, 58-59
type M and S errors, 59, 67, 292, 305
unbiased estimation, 55, 346-347
uncertainty interval, 51, 68, 73, 111
uncontested elections as missing data, 142, 335
underdispersion, 266
unemployment example, 166-168
unequal variances, see heteroscedasticity
unexpected patterns in graphs, 31
unexplained variance, see R^{2}
United Nations, 7-8, 17
unordered categorical regression, 278
utility theory, 280
validation, 171-172
validity, 23-25, 34, 153
value function, 279
value of a statistical life, 381
variance, 41
explained and unexplained, 84, 168-171
models of, 283
varying-intercept model, 440-442
vector-matrix notation, 36-37, 145-146
Vietnam War draft lottery, 431, 449
visual and numerical comparisons of replicated to actual data, 167
vote share, 96-97
voting and income, 217-222, 237
Wald estimate for instrumental variables, 426, 428
weak instruments, 425, 431, 449
weakly informative prior, 208, 259
weight
age and, 211
example of a lognormal distribution, 43
height and, 212
weighted average, 35-36, 47, 54, 108-109, 314, 397, 398
formula for Bayesian inference, 119
weighted least squares, 147-148
weighted regression, three models for, 147-148
well-switching in Bangladesh, see arsenic example
why ask why, 445-448
winner's curse in low-power studies, 292
within-person controls, 442
workflow, 3-496
working directory in R, 481
writing data in $\mathrm{R}, 482$
$\chi^{2}, 53,65$
Xbox survey, 6, 316-320
z-score, 150, 184
zero-inflated negative binomial or Poisson regression, 284-285
zinc and HIV, 297-300

