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All experimenters know that human and animal subjects do not respond uniformly to experimental treatments.
Yet theories and findings in experimental psychology either ignore this causal effect heterogeneity or treat it
as uninteresting error. This is the case even when data are available to examine effect heterogeneity directly,
in within-subjects designs where experimental effects can be examined subject by subject. Using data from
four repeated-measures experiments, we show that effect heterogeneity can be modeled readily, that its
discovery presents exciting opportunities for theory and methods, and that allowing for it in study designs is
good research practice. This evidence suggests that experimenters should work from the assumption that
causal effects are heterogeneous. Such a working assumption will be of particular benefit, given the increasing
diversity of subject populations in psychology.
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All organisms within a population show intrinsic heterogeneity.
They vary from one another to some degree in structure and function.
Darwin, in The Origin of Species (1865), considered this heterogene-
ity an essential basis for natural selection and evolutionary change.
That heterogeneity exists in phenotypic features such as size, shape,
color, and symmetry, is therefore neither surprising nor unnatural. It is
true for microorganisms, plants, and animals; and humans are no
exception.

In much experimental work, however, heterogeneous responses to
treatments are regarded as random error—background noise that

obscures the signal of an experimental effect. This view can be traced
to terminology present in classic works on experimental design such
as Fisher’s Statistical Methods for Research Workers (R. A. Fisher,
1925) and The Design of Experiments (R. A. Fisher, 1935). The
deeper roots of this terminology lie in the research topics that engaged
statistical pioneers such as Gauss and Laplace in the 17th century
(Hald, 1998; Stigler, 1986). Because their work dealt with problems
of astronomical measurement (such as determining the exact position
of stars through repeated measurements), it was natural to label
variation in measurements as error, or chance deviations from a true
value. To this day, the view that average values are truth and varia-
tions around the average are error is deeply ingrained in experimental
disciplines in the biological and social sciences.

It is typical practice to focus on averages within experimental
conditions rather than variability (except indirectly through signifi-
cance tests). This approach can make sense if that variability can be
attributed to nuisance factors such as measurement error, irregularities
in application of the experimental procedure (treatment error), or
fleeting states of participants (e.g., momentary lapses in attention). If,
however, the variability includes true differences between participants
in responses to experimental conditions, then there can be lost oppor-
tunities for understanding the phenomenon, and perhaps most impor-
tantly, for constructing adequate theories. There may also be unde-
sirable consequences for research practice. Failures to incorporate
causal effect heterogeneity can result in false conclusions about the
efficacy of experimental treatments.

What Is Causal Effect Heterogeneity?

These differences in experimental effects form the central con-
cept of this paper, that is, causal effect heterogeneity: variation
across experimental units (e.g., people) in a population in the size
and/or direction of a cause-effect link. Although it is often ne-
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glected in theory and research in experimental psychology, it has
become a fundamental concept in modern treatments of causality
beginning with Rubin (1974) and increasingly in social research
(see, e.g., Angrist, 2004; Brand & Thomas, 2013; Gelman & Hill,
2007; Imai & Ratkovic, 2013; Molenaar, 2004; Western, 1998;
Xie, 2013). In this literature, causes are defined as within-subject
comparisons among experimental conditions, and they are as-
sumed to vary in size across subjects in a population.

In typical between-subjects experimental designs, where one
observation is obtained on each subject, causal effect heterogene-
ity, if present, cannot be distinguished from noncausal sources
such as measurement error and treatment error. However, within-
subjects repeated-measures designs, in which causal inference
involves comparing subjects with themselves in other experimen-
tal conditions, offer unique opportunities to examine this hetero-
geneity directly. Most repeated-measures experiments conducted
in cognitive psychology, social psychology, and other areas pro-
vide sufficient data to allow for individual-specific experimental
effects. Conceptualizing an experimental effect as variable rather
than constant opens the door to theory development.

Causal Effect Heterogeneity in Experimental
Psychology

Beginning with Estes (1956), one can find influential papers that
draw attention to causal effect heterogeneity and how conventional
models based on group averages provide an inadequate account of
psychological processes (see also, Estes & Maddox, 2005; Lee &
Webb, 2005; Whitsett & Shoda, 2014). Despite this prior work—
and with notable exceptions discussed below—experimental psy-
chology has generally neglected this topic. A prevailing assump-
tion appears to be that causal effect heterogeneity is either absent
or, if present, is irrelevant to theories of psychological processes.

A contributing factor to this neglect has been the traditional
reliance of experimental psychologists on repeated-measures anal-
ysis of variance (ANOVA) to analyze within-subjects effects.
Repeated-measures ANOVA, at least as it is implemented in
popular software, makes it difficult, if not impossible, to estimate
causal effect heterogeneity.1 Linear mixed models are needed to do
so (McCulloch, Searle, & Neuhaus, 2008). Mixed models have
their roots in biostatistics (e.g., Henderson, 1953). Broadly appli-
cable and flexible versions of mixed models emerged in the 1970s
and 1980s in the form of new computer algorithms and software
(Fitzmaurice & Molenberghs, 2009), and their use has grown
exponentially since then. Mixed models are also known as multi-
level, mixed-effects, or hierarchical regression models (Gelman &
Hill, 2007; Maxwell, Delaney, & Kelley, 2018; Raudenbush &
Bryk, 2002; Snijders & Bosker, 2011).

Papers advocating the use of mixed models, whether based on
frequentist (Baayen, Davidson, & Bates, 2008; Hoffman &
Rovine, 2007; Locker, Hoffman, & Bovaird, 2007) or Bayesian
(Lee & Webb, 2005; Rouder & Lu, 2005) principles, have pointed
the way forward for experimentalists. Two areas in experimental
psychology that routinely use these models are experimental lin-
guistics (for which Baayen et al., 2008, has been a major influence)
and the field known as cognitive modeling that has its roots in
mathematical psychology (Busemeyer & Diederich, 2010; Lee &
Wagenmakers, 2014).

Beyond these exceptions, though, only a small fraction of cur-
rent work in experimental psychology takes causal effect hetero-
geneity into account adequately. Of the papers appearing in Issues
1–6 of the Journal of Experimental Psychology: General in 2017
that used repeated-measures designs (50 total), nearly two thirds
(62%) used repeated-measures ANOVA to model their data. Of the
38% of papers using mixed models, only nine indicated whether
individual-specific effects (random slopes) were estimated.2 Im-
portantly, only two papers reported on the estimates themselves.

Aims

This paper has three broad aims. The first is to convince exper-
imentalists in psychology to change their metatheory of causal
processes from a one-size-fits-all view to one that allows for
subject-level heterogeneity. We will show how causal effect het-
erogeneity, when present, has important and exciting implications
for theory development and empirical testing.

The second aim is to provide the field with an accessible
guide on how to estimate, display, and draw theoretical impli-
cations from causal effect heterogeneity. Although the guide is
intended for future work, it also can be used for exploration of
the many existing repeated-measures data sets that have the
ability to shed light on causal heterogeneity were they modeled
appropriately.

A third aim is to show that attention to causal effect heteroge-
neity will lead to better research practice. In doing so, we will
show how experimentalists can use mixed-models for repeated-
measures data in new and fruitful ways. In addition to presenting
opportunities for theory, adequately modeling heterogeneity can
help protect researchers against underpowered studies, illusory
findings, and replication failures. A salient example of the problem
of illusory findings is a retracted Psychological Science paper by
C. I. Fisher, Hahn, DeBruine, and Jones (2015), whose primary
experimental effect was undermined once causal heterogeneity
was modeled properly.

Because our primary concern is with theory formulation and
testing, we advocate models that are adequate for this task, that
are readily available, and that are easy to use. Some causal
processes in experimental work will no doubt require the more
sophisticated tools that are now becoming available, but in our
view, the bulk of the benefits can be obtained using simpler
approaches.

In sum, the goal of this paper is to demonstrate the utility for
theory, methods, and practice of incorporating causal effect heter-
ogeneity in repeated-measures experimentation. To do so, we will
address four specific questions:

1 When there are no missing repeated measurements, and there are
multiple trials for each cell of the within-subjects design, results of
repeated-measures ANOVA can be used to estimate effect heterogeneity
(Keppel & Wickens, 2004; Maxwell et al., 2018). When faced with missing
trials in a cell, however, researchers often aggregate over trials and use
cell-means as input into repeated-measures ANOVA software, thereby
making it impossible to assess effect heterogeneity.

2 The paper by Akdoğan & Balcı (2017) did compute individual-specific
effects and report the range and standard deviation of these effects. How-
ever, these effects do not appear to have been derived from mixed models,
but rather from models run on data from each individual.
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1. How can causal effect heterogeneity be estimated?
(Study 1)

2. When is the heterogeneity sufficiently large to have im-
plications for theory or sufficiently small to be ignorable?
(Studies 2 and 3)

3. Can theoretically relevant variables explain the observed
heterogeneity, and what are the implications of the het-
erogeneity for further experimental investigations?
(Study 1, revisited)

4. Is the heterogeneity ephemeral or enduring? What does this
imply for theory and for future experiments? (Study 4)

Study 1: Estimating Causal Effect Heterogeneity

As noted, most data sets from repeated-measures experiments
are suitable for examining causal effect heterogeneity. We begin
by illustrating how heterogeneity can be estimated for a specific
research question. For this and for subsequent questions, in the
online supplemental materials we provide data, analysis code in R
and SPSS, and outputs for researchers to explore and to serve as
templates to follow in their own work. Data and analysis code can
also be accessed via our Github repository: https://github.com/
kzee/heterogeneityproject.

Effect of Stimulus Valence on Reaction Time (RT) for
Self-Descriptive Traits

Our first example dataset comes from a conceptual replication
of Study 1 of Scholer, Ozaki, and Higgins (2014), in which
participants were presented with positively and negatively va-
lenced trait words and asked to indicate whether each of the words
was self-descriptive. Response time for each word was measured.
A straightforward prediction is that participants will be faster to
endorse positive self-descriptions, given that people are motivated
to maintain a positive self-view (Leary & Baumeister, 2000;
Yamaguchi et al., 2007). We chose this hypothesis because we
wanted to examine possible heterogeneity in a robust and well-
documented effect.

Participants. Seventy-five students from Columbia Univer-
sity participated for one course credit or $5. The sample size was
nearly triple that used in the original study on which it was based.
Thirteen were excluded for failing an attention check, leaving a
sample of 62 participants.

Procedure. Procedures were approved by the Columbia Uni-
versity Institutional Review Board (IRB); procedures for other
studies were approved by the IRBs of the institutions where those
data were collected. After giving consent, participants were led to
individual cubicles to begin the experimental task, which was
administered on a computer with PsychoPy (Peirce, 2007). Partic-
ipants completed the Regulatory Focus Questionnaire (Higgins et
al., 2001), additional individual difference measures that we will
not discuss further, and general demographic questions.3 Next,
participants completed a computerized task measuring the trait
valence effect. Finally, participants were debriefed, compensated,
and thanked.

Each trial began with a fixation point that appeared for 1 s,
followed by a trait word. Twenty words were of positive valence

(e.g., “talented,” “disciplined”), and 20 were of negative valence
(e.g., “boring,” “impulsive”). The participants’ task was to indicate
whether they possessed the trait or not, as quickly as possible, by
pressing a designated key on the keyboard. The trait word disap-
peared when the response was made, and 2 s later the next trial
began. The first six trials served as a practice phase, followed by
40 experimental trials. Each trait appeared once, in random order
for each participant. The computer recorded the response latency
(i.e., the time elapsed between the appearance of the word and the
key press) as well as the yes/no response (i.e., whether the word
was endorsed as self-relevant or not). See the online supplemental
materials for details of a pilot study conducted to determine the
trait words.

Mixed model analysis and visualization. As is common with
RT data, we used the natural log transformation to remove skew-
ness (although using raw RT scores did not change the results).
Only trials containing words endorsed as self-relevant were in-
cluded in the analyses, in accordance with procedures used by
Scholer et al. (2014). There were three participants who did not
endorse any negative words. Thus, analyses drew on data from 59
participants. On average, participants endorsed 22 words as self-
relevant, 62% of which were positively valenced. There was a
substantial range, however, with participants endorsing as few as
13 words as self-relevant and as many as 28 words. To examine
our hypothesis of valence effects on logRT, we used a statistical
model where, for each subject, valence was the single experimen-
tal manipulation and RT in log-milliseconds was the outcome. This
model allowed us to examine whether people, on average, respond
faster when endorsing positive versus negative self-relevant traits,
while also allowing us to examine the variability in this effect.4

Syntax and output for this analysis are shown in the online sup-
plemental materials.

Statistical model. Our analysis approach is similar to a stan-
dard repeated-measures ANOVA with a single within-subjects
factor with repeated trials within factor levels (see Maxwell et al.,
2018, for a description of classic repeated-measures ANOVA).5

Rather than using repeated-measures ANOVA, however, we use a
mixed or multilevel modeling approach. As noted earlier, mixed

3 Our primary construct of interest was regulatory focus, given prior work
showing the implications of promotion focus and endorsement of positive
words using this paradigm (Scholer et al., 2014). We also included measures
of two other constructs that could explain some of the variability in RTs to
endorse positive and negative traits: regulatory mode orientations (locomotion
and assessment) and self-esteem. Regulatory mode orientations were measured
using the Regulatory Mode Questionnaire (Kruglanski et al., 2000), which
consists of 12 items measuring locomotion and 12 items measuring assess-
ment. Self-esteem was measured using Rosenberg’s (1965) 10-item measure.
However, as determined a priori based on earlier work, we were primarily
interested in promotion focus. Thus, measures of regulatory mode and self-
esteem will not be discussed further. The Promotion Focus subscale of the
Regulatory Focus Questionnaire consists of six items rated along a scale
ranging from 1 (never or seldom) to 5 (very often).

4 For more information about treating time or temporal ordering of
stimuli as random effects, see Chapter 4 of Bolger & Laurenceau (2013).
For more on treating stimuli as random effects, see Judd, Westfall, &
Kenny (2012).

5 Because our dataset is unbalanced (only self-relevant traits were analyzed), a
repeated-measures ANOVA would require that the RTs for trials (stimuli) within
valence condition be aggregated, leading to just two observations per subject. Such
a data set would obscure any causal effect heterogeneity.
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models can reveal the existence and size of causal effect hetero-
geneity.

Our model specifies that in the population, a typical subject’s
RT to endorse self-relevant traits is a function of trait valence, but
it also allows subjects to vary in the strength and even the direction
of the causal effect. Because it is a generalization of repeated-
measures ANOVA, it provides the usual test statistics reported in
a repeated-measures analysis (on condition main effects and con-
trasts), and in the case of no missing data on Y, it gives identical
results (Maxwell et al., 2018).

Distributions and Parameterization. We describe the model
in terms of the distribution of Y rather than the more conventional
linear equation for Y. The two descriptions are interchangeable, but
the distribution form makes it easier to see the assumptions of the
model (Stroup, 2012). There are three distributions. The first
specifies the distribution of trial-level logRT, and it has parameters
for subject-level means and valence effects. The second and third
specify between-subjects distributions for these subject-specific
mean and valence effect parameters:

logRTij � N(�j � �jXij, ��) (1)

In Equation 1 above, the logRT observed for subject j for the
stimulus in trial i is drawn from a normally distributed population
with a subject-specific mean function and a subject-general stan-
dard deviation. The subject-specific mean function is composed of
a parameter �j, the subject’s grand-mean logRT (the subject’s
overall level or random intercept in the language of mixed mod-
els), and a parameter �j, the subject’s causal effect of valence (the
random slope). Specifically, �j is subject j’s difference in logRT
between positively and negatively valenced stimuli, where stimu-
lus valence Xij is coded �0.5 if the stimulus is negative and 0.5 if
the stimulus is positive. The common standard deviation, �ε, refers
to the (residual) variation in logRT scores within each valence
condition within each subject. The distributions of the subject-
specific parameters are presented in Equations 2 and 3:

�j � N(�, ��) (2)

�j � N(�, ��) (3)

In Equation 2, the subject-specific levels (random intercepts),
�j, are specified to be normally distributed around mean � that
represents the population average logRT and standard deviation ��

that represents heterogeneity (i.e., between-subjects variability) in
levels. In the language of mixed models, the mean � is called a
fixed effect and �� is the standard deviation of a random effect of
subjects (McCulloch et al., 2008).

In Equation 3, the subject-specific causal effects of valence
(random slopes) are specified to be normally distributed around
mean � that represents the population average causal effect and
standard deviation �� that represents heterogeneity in causal ef-
fects. Note that the model also allowed for a correlation between
the heterogeneous levels (intercepts; �js) and heterogeneous
causal effects (slopes; �js); this was omitted from the equations
presented above to simplify the exposition, but it is included in the
analysis.

The software syntax required to estimate the model in R and
SPSS is provided in the online supplemental materials. Although
in the body of the paper we present conventional Frequentist
parameter estimates, in the online supplemental materials we pres-

ent equivalent Bayesian versions based on noninformative priors
(for R software only).

Results

Table 1 summarizes the key estimates of interest, namely, of the
population parameters from Equations 2 and 3.6 Estimates are
indicated by the use of a caret or hat symbol (ˆ) over each
parameter. We will focus on the heterogeneity of the causal effect
of valence (bolded). The typical subject (�̂) is �0.16 logRT units
(approximately 150 ms) faster at responding to positively valenced
words than to negatively valenced words. The 95% confidence
interval (CI95) ranges from �0.21 to �0.12 logRT, which is
evidence of a robust effect in the population.7 The heterogeneity
parameter, the standard deviation of the subject-level causal ef-
fects, is 0.13, which is almost as large as the average causal effect.

We saw that Equation 3 specified that each subject in the
population had his or her own causal effect of valence, and that
these effects were normally distributed in the population with
fixed-effect mean � and random-effect standard deviation ��.
With sample estimates of these parameters in hand, we are in a
position to calculate a 95% heterogeneity interval (HI95) for the
valence effect, which captures the range of experimental effects
that can be expected in the population. It ranges from �0.41 to
0.09 (�0.16 � 1.96 � 0.13; see Table 1) and shows that a
once-size-fits-all view of the valence causal effect is a mistaken
one. At the lower extreme, the model predicts that there are
subjects whose causal effects are more than twice that of the
average subject, whereas at the higher extreme there are those with
no effect or a small reversal.

The HI95 for the distribution of the valence effect should not be
confused with the CI95 for the mean of that distribution, �. The
HI95 concerns predicted subject-to-subject variability in the causal
effect in the population (using the current sample estimates). The
CI95 for the valence effect, by contrast, concerns sample-to-sample
variability in estimates of the average causal effect in the popula-
tion. Both intervals are important, but they answer different ques-
tions. The question of how much subjects differ in a causal effect
in the population is quite distinct from the question of how pre-
cisely estimated the causal effect for the average person is.

Mixed models of repeated-measure data usually provide two
types of output. The first are estimates of population parameters
for fixed (constant) and random (varying) effects. These are the

6 Values in all tables draw on results from models run in R. SPSS results
may vary slightly due to rounding. We focus mostly on parameter estimates
and confidence intervals in this paper; additional summaries such as t tests
and p values can be found in the online supplemental materials.

7 Note that the 95% confidence refers not to this specific interval but to
the long-run performance of the procedure of creating confidence intervals
in hypothetical replications of the study (Morey, Hoekstra, Rouder, Lee, &
Wagenmakers, 2016). Nonetheless, this specific interval is evidence as to
the location of the population effect, even if it does not have a probability
interpretation (Mayo, 2018). Readers wishing to have a probability inter-
pretation of parameter intervals should examine the Bayesian versions of
all analyses in the online supplemental materials. With noninformative
priors on all model parameters (see Gelman et al., 2013), the 95% posterior
credibility interval for the equivalent effect ranges from �0.21 to �0.12
logRT units. In general, we find the frequentist and Bayesian estimates and
intervals to be very similar numerically, and in the body of the paper we
note cases where they diverge substantially.
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fundamental mixed-model results, as discussed above. The second
type are predictions of effects for each subject in the sample. In
frequentist mixed models (the approach taken here) these are
called empirical-Bayes (EB) predictions or sometimes best linear
unbiased predictions (McCulloch et al., 2008; Rabe-Hesketh &
Skrondal, 2004). In Bayesian mixed models, they are called hier-
archically shrunken estimates (e.g., Kruschke, 2015).

Visual displays of both the population estimates and sample
predictions can greatly increase understanding of causal effect
heterogeneity. Figure 1 shows a strip plot where the x-axis displays
a range of values for the causal effect of valence. First, the
population results: The vertical red line (labeled A) in the center is
the fixed effect of valence, the model’s best guess as to where the
population average effect lies. We saw in Table 1 that this value
is �0.16. The area between the vertical red lines (labeled C) to the
left (�0.41) and right (0.09) shows the 95% population heteroge-
neity interval (HI95) for the causal effect already seen in Table 1.
Next, the sample predictions: the blue dots represent each subject
in the sample, and the blue dashed lines are the 2.5th and 97.5th
percentiles for the causal effects in the sample (B). Whichever
interval we choose to focus on, we can see substantial heteroge-
neity in the experimental effect.

A second useful visualization involves overlaying the subject-
level predictions on subjects’ observed data. Figure 2 is a panel
plot showing several subjects’ raw data for logRT as a function of
valence, with the model-predicted values for each subject. Each
fitted line corresponds to a valence-effect data point in the afore-
mentioned strip plot. The panels are ordered by the size of the
model-predicted valence effect. We display five subjects: the
two subjects with the steepest negative slopes, the two subjects
with the flattest slopes, and the subject at the median. Note the
range of valence effects across subjects. The subject on the far
left shows a predicted causal effect that is approximately 2.4 times
larger than the subject in the middle panel (�0.39/�0.16). Note also
that for subjects in the two rightmost panels the predicted
effects are approximately zero whereas the subjects’ raw data
seem to suggest a reversal effect. This discrepancy is an exam-
ple of shrinkage toward the mean, and it is justified by the small
number of observations in the positive valence conditions for
these subjects. We discuss this shrinkage in the next section.8

Advantages of Mixed Modeling Approach

We have just seen how a mixed-modeling approach allows us to
estimate and display causal effect heterogeneity. One might ask,
though, whether the model-predicted effects are any better than

simply calculating the valence effect for each subject separately
(and running a one-sample t-test for each subject). This alternative
approach, however, can give the mistaken impression of more
heterogeneity than exists in the population. Consider the case of a
single subject in our study. The mean difference between the
subject’s responses across conditions is, in itself, an unbiased
estimate of the subject’s causal effect. Its true value is uncertain to
some extent, however, because we used only a limited number of
trials within each condition. That uncertainty is indexed by the
standard error of the subject’s mean difference, and one can think
of it as a form of measurement error.

Now consider viewing the effect for a sample of subjects, each
of whose experimental effect is uncertain. Just as one would see
with a set of error-prone measurements, the observed variation will
be the sum of the true variation and the error variation, and will
always show an upward bias. In our example, the subject-by-
subject valence effect heterogeneity must be adjusted downward
(“shrunken”) in order for it to be a valid estimate of true population
heterogeneity. Mixed models provide a way of accomplishing this,
and the adjustments needed for the current study are shown in
Figure 3. The top row of Figure 3 shows individual-specific
observed differences in logRT as a function of valence.9 The
bottom row shows the subject-specific shrunken estimates from
the mixed model. The more uncertain a subject’s raw mean dif-
ference, the more it is shrunken toward the estimated population
mean. As noted in the previous section, the two participants whose
raw data show a pronounced reversal effect are pulled closer to the
group average in their model-predicted values (see the two right-
most participants in Figure 2 and in the top row of Figure 3). These
were described above as EB estimates, or hierarchically shrunken
estimates (for further detail, see Gelman & Hill, 2007; Maxwell et
al., 2018; Raudenbush & Bryk, 2002; Snijders & Bosker, 2011).

However, even if the sample estimates are shrunken such that
reversals are weak or do not occur in the sample, the model can
indicate whether reversals are likely in the population. A useful
way of visualizing the latter is to display the population heteroge-
neity distribution implied by the model’s estimates of the popula-
tion mean (�0.16 units) and SD (0.13 units). As show in Figure 4,

8 The two rightmost panels in Figure 2 would suggest that the subjects
who showed the weakest valence effects also endorsed relatively few
positive words. We ran additional versions of this analysis to rule out the
possibility that number of words endorsed or asymmetry in endorsement
played a role in our results. See the online supplemental materials.

9 Note that a participant who endorsed only one negative trait was not
included in this visualization.

Table 1
Summary of Multilevel Model Output for Trait Valence Effect, in LogRT Units (Study 1)

Population effect

Parameter
estimates

95% Heterogeneity
interval

Mean SD 2.5% 97.5%

Intercept: �j 6.87 .16 6.54 7.19
CI95 [6.82, 6.91] [.13, .20]

Slope (causal effect): �j �.16 .13 �.41 .09
CI95 [�.21, �.12] [.08, .17]

Note. Bold type indicates heterogeneity of the causal effect of valence. CI95 � 95% confidence interval.
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the model predicts that 11% of the population can be expected to
show reversals.

Armed with knowledge about the existence and magnitude of
heterogeneity, we are now in a better position to communicate our
findings. An example of how one might communicate both the
average causal effect and the heterogeneity in that effect in a
write-up is presented in the online supplemental materials. In
addition, this heterogeneity calls for a theoretical account of its
existence and magnitude. What can explain why some participants
respond faster to positive traits while others show no difference or
even the reverse pattern? Later in the paper we will consider a
motivational explanation of the heterogeneity. We will examine
whether subject differences in promotion focus, a relatively stable
individual tendency to eagerly pursue ideals and aspirations (Hig-
gins, 1998), can explain some of the between-person heterogeneity
we found in the trait valence causal effect. However, regardless of
whether an investigator can account for it or not, the heterogeneity
we observed is fundamental to understanding these experimental
results.

Studies 2 and 3: Is Causal Effect Heterogeneity
Noteworthy or Ignorable?

We have presented results in which the extent of causal effect
heterogeneity was considerable enough to undermine the idea of a
common, uniform causal process even though we could be confi-
dent that the effect existed for the average subject in the popula-
tion. Not all experimental phenomena, however, can be expected
to show heterogeneity. In this section, we provide two examples,
one in which the heterogeneity is noteworthy, and one in which it
is not. We also provide guidelines for determining whether the
degree of heterogeneity is sufficient to qualify conclusions of
repeated-measures experiments.

Noteworthy: Face-Orientation Effects

Study 2 used data from a study by Sklar and colleagues (2017)
investigating nonconscious processing speed, specifically the ef-
fects of spatial orientation on how quickly participants responded

AB BC C

0.4 0.3 0.2 0.1 0.0 0.1

Trait Valence Effect (logRT units)

Figure 1. Study 1: Strip plot of model predictions of the trait valence effect for each person in the sample. The
black line (A) shows the average (fixed) effect, an estimate of the population mean. The blue dashed lines (B)
show the upper and lower bounds of the interval containing 95% of the effects in the sample. The red solid lines
(C) show the upper and lower bounds of the interval containing 95% of the effects in the population (the
population heterogeneity interval, HI95). See the online article for the color version of this figure.
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Figure 2. Study 1: Panel plots showing several subjects’ raw data for log RT as a function of trait valence,
together with the model-predicted values for these subjects. Values above each plot are the size of the valence
effect for that subject. See the online article for the color version of this figure.

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

606 BOLGER, ZEE, ROSSIGNAC-MILON, AND HASSIN

http://dx.doi.org/10.1037/xge0000558.supp


to faces presented using continuous flash suppression (Sklar et al.,
2017). During the study, participants completed trials in which a
face appeared on the screen in one of three orientations: upright,
90°, and upside-down. Participants indicated the orientation of the
face, and RTs were measured. For simplicity, we will focus on the
upright versus upside-down conditions only (.5 � upright, �.5 �
upside-down). Our analyses drew on data from 21 participants. As
this study and the remaining studies involve secondary analyses of
existing data sets, sample sizes were not determined with the
present research question in mind. On average, participants com-
pleted 121 trials (range � 118–126), yielding 2,544 observations
total. Trials were roughly equally distributed across the two con-
ditions for each participant. Data are again analyzed in logRT
units. R and SPSS syntax and output are available in the online
supplemental materials.

As summarized in Table 2, the average person is �0.20 logRT
units faster at responding to an upright versus an upside-down face
(CI95: [�0.26, �0.14]), with a heterogeneity estimate of 0.11 SD

units. This heterogeneity estimate is just over half the size of the fixed
effect estimate. We regard this as substantial: these estimates imply
that the HI95, the 95% population heterogeneity interval for the causal
effects, ranges from �0.42 to 0.02 logRT units. A person at the lower
bound shows an effect of face orientation twice as large as that of the
average person, whereas a person at the lower bound shows essen-
tially no effect. The model’s predictions for the actual participants in
the sample, as shown in the strip plot (Figure 5) and panel plots
(Figure 6), mirror these population predictions.

Another way to assess the importance of the heterogeneity effect
is to compare statistical indicators of model fit for a model with a
random slope for face orientation and one without. The results
from the comparison suggest that the addition of the random effect
substantially improves the fit of the model to the data, 	2(2) �
27.9, p 
 .001. Practically speaking, this test enables us to con-
clude that a model allowing for heterogeneity in intercepts and
slopes fits the data significantly better than a model allowing for
heterogeneity in intercepts only.

Model Predictions

Observed Effects

−0.50 −0.25 0.00 0.25
Valence Effect

Figure 3. Study 1: Comparison of observed (top-row) and model-predicted (bottom row) trait valence effects
for each subject in the sample. The solid black line is the model-predicted average effect. The thin gray line is
the zero point, where a subject is equally fast to endorse positive and negative traits. The red solid lines show
the model-predicted the 95% heterogeneity interval in the population (see Footnote 9). See the online article
for the color version of this figure.

−0.50 −0.25 0.00 0.25

Trait Valence Effect (logRT units)

Proportion of population with faster RTs to positive words = 0.89

Figure 4. Study 1: Distribution of subject-specific trait valence effects in the population (based on model
estimates). Eleven percent of the population are predicted to show reversals in the valence effect (faster response
times to negative words). See the online article for the color version of this figure.
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We have now seen evidence of heterogeneity in a second example
dataset. The results suggest that focusing exclusively on the mean
causal effect, and ignoring the causal heterogeneity distribution, will
result in an inaccurate picture of the phenomenon. Further empirical
work and theorizing is needed to understand why people differ sub-
stantially in the face orientation effect. Furthermore, we now know
that future studies of the face orientation effect may need to recruit
larger samples, as larger samples are required to conduct adequately
powered studies when effects are heterogeneous (Bolger & Lau-
renceau, 2013; Snijders & Bosker, 2011).

Ignorable: Math Priming Effects

Although we believe that causal effect heterogeneity is wide-
spread in psychological processes, we acknowledge that in partic-
ular instances or in certain areas of research, it may be sufficiently
small to be ignored. The next repeated-measures experiment, pub-
lished as Experiment 6 in a paper by Sklar and colleagues (2012),
is such an instance. Heterogeneity was not a focus of the experi-
ment, and the analyses were conducted using repeated-measures
ANOVA on aggregated data. Here, our goal is to present a sim-
plified analysis of some of their data using a mixed-model ap-
proach to examine heterogeneity in the math priming effect. Thus,
this is not a direct reproduction of the analyses and results dis-
cussed in the original paper.

Our Study 3 dataset consisted of 17 participants, each of whom
completed up to 74 trials (range � 67–74 trials, as trials with no
response were omitted prior to analysis). A total of 1,214 obser-
vations were available for analysis, which represents an average of
71 trials/participant. The study examined participants’ RTs to
pronouncing simple numbers depending on whether subjects were
subliminally primed with equations that yield this number (“con-
gruent”) or not (“incongruent”).10 The original results showed a
substantial congruency effect, indicating that simple subtraction
operations are processed and solved nonconsciously. For consis-
tency with other studies in this paper, we report analyses using
logRTs. The dataset along with R and SPSS syntax are available in
the online supplemental materials; excerpted portions of syntax
and output are also available in the online supplemental materials.

As summarized in Table 3, the effect of congruence on logRT
is �0.023 units, CI95 [�0.040, �0.005]. This effect shows essen-
tially no causal effect heterogeneity: the SD estimate of 0.0004
units is less than 0.002 times the mean value. Consistent with this
estimate, the HI95 for the congruence effect is extremely narrow,
from �0.024 to �0.022. The predictions for the sample, displayed
in Figures 7 and 8, are in a similar range. Using the model

comparison approach described on the previous page, the inclusion
of a random slope parameter had a negligible contribution to
model fit, 	2(2) � .002, p � .999. In this case, we can confidently
conclude that the priming effect is essentially the same across
subjects.11,12

While one could argue that a mixed-model approach in this case
adds nothing beyond what could be found using a repeated-
measures ANOVA, note that we now have evidence for the ab-
sence of heterogeneity in this causal effect. This knowledge will
have important implications for power calculations for future
studies using the same manipulation and replication attempts by
other laboratories (Kenny & Judd, 2019). One should bear in mind,
of course, that these results are population-specific. Studies of a
different population might show substantial causal effect hetero-
geneity.

How to Decide if Causal Effect Heterogeneity Matters

In these examples, we used three criteria to decide whether the
causal heterogeneity in an experimental effect was sufficiently large
to warrant attention. The first was the uncertainty interval, that is,

10 More details about the study methods and data processing (e.g.,
exclusion criteria) can be found on pages 119614 and 9617-8 of Sklar et al.
(2012). The experiment also involved a between-subjects manipulation of
presentation time (1,700 ms vs. 2,000 ms). For simplicity, we do not
include presentation time in our analyses. In other words, the analysis
presented here examines the congruence effect across both presentation
time conditions. Including presentation time in the model had a negligible
effect on the heterogeneity results. Also note that the original Sklar et al.
(2012) paper analyzed data in milliseconds, but the analysis presented here
is in log milliseconds.

11 Some work (see papers by Haaf, Rouder, and colleagues) suggests a
potential relationship between effect size and the amount of variation in
people’s responses to an experimental manipulation; they point to the case
where effect reversals are not justified by theory or logic. In such cases,
one would expect a floor effect on the distribution of effects, which would
imply that smaller average effects would be accompanied by smaller
heterogeneity. If effect reversals were to be expected for some proportion
of the population, then one would not expect effect size and heterogeneity
to be proportional (see Miller & Schwarz, 2018, for a relevant discussion).

12 Note that the default output for the Bayesian version of this analysis
suggested a different (larger) estimate for heterogeneity in the congruence
effect compared to the frequentist model presented here. We performed
follow-up analyses to understand the reason for this difference. We found
that the difference was due to a highly skewed posterior distribution for this
effect. When interpreting the results using the modal (most likely) value for
this parameter, we again arrived at the conclusion that there is an ignorable
level of heterogeneity in this experimental effect. Details are provided in
the statistical code for R (see the online supplemental materials).

Table 2
Study 2: Summarized Multilevel Model Output for Face Orientation Effect, in LogRT Units

Population effect

Parameter
estimates

95% Heterogeneity
interval

Mean SD 2.5% 97.5%

Intercept: �j 5.11 .28 4.56 5.66
CI95 [4.98, 5.24] [.21, .39]

Slope (causal effect): �j �.20 .11 �.42 .02
CI95 [�.26, �.14] [.06, .16]

Note. CI95 � 95% confidence interval.
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whether the CI95 for the heterogeneity parameter included (or was
very close to) zero. The face orientation confidence interval suggested
0 heterogeneity was unlikely, whereas the math priming confidence
interval suggested 0 heterogeneity was plausible (see Table 3). The
second criterion was the comparative model fit, that is, whether the
model fit was improved by allowing for heterogeneity. We saw clear
evidence that it was for the face orientation data, but it was not for the
math priming data. The third was the relative size of the heterogeneity
effect in relation to the fixed effect (the effect for the average subject).
For the face orientation data, its relative size was 0.50; for the math
priming data, it was approximately 0.02.

We suggest that as a rule of thumb, causal effect heterogeneity is
noteworthy if its SD is 0.25 or greater of the average (fixed) effect.
Such heterogeneity implies that the HI95 includes effect values that lie
between 0.5 and 1.5 times the effect for the average person. Thus an
individual at the 2.5th percentile of the distribution has an effect size
that is half that of the average person, and an individual at the 97.5th
percentile has an effect size that is 1.5 times that of the average
person. Note that these calculations assume, as we have in Equation
3 above, that the population of causal effects is normally distributed.
Other distributions are also possible (e.g., Rouder & Haaf, 2018).

Using this 0.25 threshold, we conclude that the level of heteroge-
neity in the face orientation data is noteworthy. The random effect of

orientation, with an SD of 0.5 times the fixed effect, implies that the
HI95 ranges from 0 to 2 times the fixed effect. In contrast, for the math
priming data, the SD of 0.002 times the fixed effect implies that the
HI95 ranges from 0.96 to 1.04 times that effect. Clearly, based on our
threshold this level of heterogeneity is ignorable.

Although we find this relative size criterion to be a useful heuristic,
there may be cases in which, based on the goals of the research,
researchers may decide to apply stricter or more liberal cutoffs.

There are also other approaches that can be used to assess
whether heterogeneity is noteworthy (e.g., using Bayes factors; see
Rouder, Morey, Speckman, & Province, 2012, for an exposition of
Bayes factors in linear and mixed models).

Study 1, Revisited: Explaining Causal Effect
Heterogeneity

As we have argued, discovering causal effect heterogeneity,
even without knowing its sources, can be a contribution to under-
standing a phenomenon. Features such as its relative size, whether
some subjects showed reversals of sign, and whether the popula-
tion studied was demographically or culturally homogeneous can
have important implications for next steps in a research program.
However, if it is the case that researchers included theoretically

−0.4 −0.3 −0.2 −0.1 0.0 0.1

Face Orientation Effect (logRT units)

Figure 5. Study 2: Strip plot of model predictions of the causal effect of face orientation for each person in the
sample. The black line is the average (fixed) effect, the blue dashed lines show the 95% sample heterogeneity
interval, and the red solid lines show the 95% population heterogeneity interval. See the online article for the
color version of this figure.
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Figure 6. Study 2: Panel plots showing several subjects’ raw data for logRT as a function of face orientation,
together with the model-predicted slopes for each subject. Values above each plot are the size of the valence
effect for that subject. See the online article for the color version of this figure.
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relevant background measures (e.g., individual differences, demo-
graphics, etc.) in a given experiment, the mixed-model analysis
above can be expanded to include these measures as explanatory
variables.

This section presents an example that draws on existing theo-
retical knowledge to elucidate the origins of the heterogeneity
demonstrated in our first experimental example, in which we found
both a robust causal effect of trait valence for the average person
(a fixed effect in the language of mixed models) as well as
substantial heterogeneity of this effect (a random effect). This kind
of heterogeneity can be thought of as a “stand-in” for theoretically
relevant explanatory variables. What theories might help us ac-
count for why some people respond much faster when endorsing
positive (vs. negative) traits and why others respond equally
quickly regardless of valence?

Drawing on regulatory focus theory (Higgins, 1998), we test the
prediction that a chronic (stable) promotion-focused motivational
orientation, which involves eagerly pursuing ideals and aspira-
tions, will predict faster endorsement of positively valenced traits.
The purpose of this demonstration, as in the demonstration of the
overall valence effect, is not to reveal new insights about regula-
tory focus theory (it is already known, e.g., that promotion focus is
associated with faster RTs; Förster, Higgins, & Bianco, 2003).
Rather, the purpose of the example is to show how a theoretically-
derived variable can be used to help explain existing causal effect
heterogeneity.

If we consider a generic between-subjects predictor Z (e.g.,
promotion), that is a linear predictor of heterogeneity in the grand
mean �j and the causal effect heterogeneity effect �j, then Equa-
tions 2 and 3 become:

�j � N(�0 � �1Zj, ��) (4)

�j � N(�0 � �1Zj, ��) (5)

We will focus on �j, the causal effect heterogeneity outcome. If
Z is mean-centered, then �0 is the causal effect for the average
person (an intercept term), and �1 is the effect of Z on the
heterogeneity (a slope term). The coefficient �1 captures the extent
to which the heterogeneity effect differs as Z differs by one unit.
With Z taken into account, the standard deviation �� is now no
longer the total variation but rather the residual variation in het-
erogeneity. It can be interpreted as how much heterogeneity re-
mains unexplained. To investigate the potential explanatory role of
promotion, we estimate the same model as in Study 1, but now we
add promotion focus (mean-centered) as a between-subjects pre-
dictor of the heterogeneity, accomplished by allowing promotion

to interact with valence.13 For R and SPSS code and output, see the
online supplemental materials.

The mixed-model results indicate that those with higher promo-
tion scores show a greater tendency to be faster to endorse positive
versus negative traits: � �0.13 logRT units, t(60) � �2.89, p �
.005, CI95 [�.22, �.04]. Thus the �0.16 logRT speed advantage
of the typical subject is increased to �0.16 – 0.13 � �0.29 logRT
for those one unit above the mean on promotion.

To what extent does promotion explain the heterogeneity in the
valence effect? To answer this question, we must first compute the
total heterogeneity variance implied by our model with promotion
focus. This is akin to calculating the total variance in a regression
or ANOVA model using the following formula (Kutner, Nach-
tsheim, Neter, & Li, 2005):

V(�j) 	 �1
2V(Zj) � ��

2 (6)

where V(�j) is the total heterogeneity variance, �1
2 is the square of

the regression coefficient linking the covariate Z to the total
heterogeneity (in our example, promotion focus orientation), and
��

2, the residual variance in heterogeneity after taking promotion
focus orientation into account.

Unlike in linear models such as regression and ANOVA, vari-
ance explained in mixed models does not necessarily increase with
the addition of predictor variables. Once more variables have been
introduced, the model can take this new information into account
and provide a revised estimate of variance explained. This is why
it is necessary to compute the implied total heterogeneity from a
model after including a relevant predictor.

The heterogeneity (in variance units) of the valence slope in the
model including promotion is .013. Using Equation 6 above, we
can calculate that the implied total heterogeneity is .017. From
there, we can compute the proportion of heterogeneity explained
by promotion as 1 � �̂�

2/V(�j); i.e., 1 minus the total heterogeneity
divided by the residual heterogeneity. In this case, 1 – (.013/.017)
tells us that promotion focus accounts for 23% of the between-
person heterogeneity in the causal effect.

13 Prevention focus is also an important motivational orientation and,
given that it was measured in the study, we also performed an analysis that
included valence, promotion focus, prevention focus, and all possible
interaction terms. There was an interaction of valence and prevention
focus, but it was only marginally significant. Moreover, given that the main
effect of valence and the promotion by valence interaction were essentially
unchanged, for brevity we presented the simplified model with promotion
focus only.

Table 3
Study 3: Summarized Multilevel Model Output for Math Priming Effect, in LogRT Units

Population effect

Parameter
estimates

95% Heterogeneity
interval

Mean SD 2.5% 97.5%

Intercept: �j 6.48 .17 6.15 6.81
CI95 [6.40, 6.56] [.12, .16]

Slope (causal effect): �j �.022 .0004 �.023 �.021
CI95 [�.040, �.005] [0, .0229]

Note. CI95 � 95% confidence interval.

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

610 BOLGER, ZEE, ROSSIGNAC-MILON, AND HASSIN

http://dx.doi.org/10.1037/xge0000558.supp


In Figure 9, we provide a visualization of this effect. The top
panel shows the residual heterogeneity (both population estimates
and sample predictions) for the model when we include promotion
as a predictor. The bottom panel shows the implied total hetero-
geneity from that model. As expected, the implied total heteroge-
neity is clearly larger than the residual heterogeneity. In Figure 10,
we show how participants’ scores on promotion focus predict the
implied random effects.

Study 4: Is Causal Effect Heterogeneity Ephemeral or
Enduring?

Causal effect heterogeneity can be a function of physical and
psychological states that subjects bring to the experimental situa-
tion and that endure over the course of the experiment. Such states
(e.g., being hungry) might be unlikely to recur were the subjects to
be brought back for a second experimental session. But as we have
just shown, heterogeneity can also be at least partially attributable
to more stable aspects of participants, such as their motivational
orientation. If the causal heterogeneity is due, in part, to temporally
stable characteristics, it follows that the heterogeneity itself should
show some temporal stability. In this section, we will investigate
this idea in a novel methodological way by examining the temporal
stability of causal heterogeneity over the course of a week.

To do this, in Study 4, we involve data from the Scholer and
colleagues (2014) paper, in which a sample of Japanese partici-
pants completed the trait valence task described in Study 1. How-
ever, these researchers administered the trait valence task on two
separate occasions, one week apart. At Times 1 and 2, participants’
RTs to endorse 40 positive and negative traits as self-relevant were
measured.14 Our examination drew on a sample of 21 participants.
The average participant endorsed 20 traits as self-relevant at each
time point (Time 1 range � 12–26; Time 2 range � 11–26). A
total of 850 observations were used for our analysis.

In their paper, Scholer and colleagues (2014) used a repeated-
measures ANOVA and found main effects of valence on RT at
each time point. The focus of our analysis, however, will be a
question not addressed by Scholer and colleagues (2014): the
temporal stability of heterogeneity in the valence effect. Thus, we
expanded our modeling approach to simultaneously estimate
causal effect heterogeneity at Times 1 and 2 and their correlation.
The R code and output of the analysis are provided in the online
supplemental materials.15

Results

Table 4 summarizes estimates of the valence effects and their
heterogeneity at each time point. In this table, the reader will note
that the average causal effect of the valence manipulation
was �0.14 logRT at Time 1 and �0.19 logRT at Time 2; the
causal effect heterogeneity was 0.19 SD logRT units at Time 1 and
0.27 logRT units at Time 2. Although these changes in level and
heterogeneity of the valence effect are worthy of scrutiny, our
focus here is on temporal stability. Are those participants showing
relatively large valence effects at Time 1 the same people showing
relatively large effects at Time 2?

The answer to this question is yes, and the extent of this
stability, displayed in Figure 11, is striking. There is a very close
correspondence between a subject’s relative positions at each time
point. The data points are the predictions for each subject and the
ellipse is the population 95% confidence ellipse. The correlation
between the causal effect heterogeneity distributions at Times 1
and 2 is 0.95.16

Thus, heterogeneity in this context seems to be attributable to
more enduring tendencies, such as promotion focus or other vari-
ables, and not to temporary states of participants that endure only
over the course of a single experimental session. In other words,
this result demonstrates for the trait-valence effect there is almost
no evidence that this causal heterogeneity is ephemeral.

Given that this level of temporal stability is an estimate from a
particular study with a small sample, this result needs to be
examined in further studies. It is also important to note that
temporal stability may not hold for other heterogeneous experi-

14 In the Scholer et al. (2014) paper, there was a between-subjects
experimental induction of regulatory focus (promotion or prevention) prior
to the Time 2 trait valence task. A version of the analysis with this
between-subjects manipulation included resulted in minimal changes to the
results. This makes sense when one considers that due to random assign-
ment each participant had an equal chance of being assigned to the
promotion or prevention induction, regardless of the size of their Time 1
trait valence effect.

15 Due to the additional complexity involved in this analysis, statistical
code and output are provided in R only.

16 We also performed additional analyses to better understand temporal
stability in the trait valence effect. In one analysis, we ran t-tests treating
each participant as their own sample. In another analysis, we examined
temporal stability using Bayesian estimation. In both cases, the correlations
between Time 1 and Time 2 subject-specific effects were noticeably lower,
in the .7–.8 range. See the online supplemental materials.

−0.02 −0.01 0.00

Math Prime Congruence Effect (logRT units)

Figure 7. Study 3: Strip plot of model predictions of the causal effect of math prime congruency for each
person in the sample. The black line is the average (fixed) effect, the blue dashed lines show the 95% sample
heterogeneity interval, and the red solid lines show the 95% population heterogeneity interval. See the online
article for the color version of this figure.
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mental effects. The stability may also decline appreciably as the
time delay between experimental sessions increases. Nevertheless,
this novel approach is useful for assessing the degree to which
heterogeneity is attributable to relatively stable tendencies of sub-
jects rather than their temporary psychological and physical states.

Summary

We have stressed the importance of working from the metatheo-
retical position that experimental effects in psychology are heter-
ogeneous. In Study 1, we showed striking causal effect heteroge-

neity, which would be completely invisible using standard
repeated-measures ANOVA. Not all phenomena show marked
heterogeneity, however, and Studies 2 and 3 were intended to
distinguish cases where heterogeneity was noteworthy from where
it was not. We introduced three assessment criteria, namely, the
heterogeneity’s uncertainty interval, its contribution to model fit,
and its size relative to the average causal effect. Further, we
demonstrated how the observed heterogeneity in our first example
was attributable, in part, to a relatively stable motivational orien-
tation. In the Study 4 dataset, we discovered that causal effect
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Figure 8. Study 3: Panel plots showing several subjects’ raw data for log RT as a function of prime
congruency, together with the model-predicted values for each subject. Values above each plot reflect the size
of the valence effect for that subject. See the online article for the color version of this figure.

0.4 0.2 0.0

Random Effects Predicted by Promotion Model
(Residual Heterogeneity)

0.4 0.2 0.0

Trait Valence Effect (logRT units)

Implied Random Effects Predicted without Promotion
(Implied Total Heterogeneity)

0.4.44

Im

0.0

romotion

Figure 9. Study 1, revisited: Strip plot of predictions of the trait valence effect for each person in the sample
for a model with promotion focus as an explanatory variable. The top panel shows the residual causal
heterogeneity for this model; the bottom panel shows the implied total heterogeneity were the explanatory
influence of promotion focus to be removed. The black line is the average (fixed) effect, the blue dashed lines
show the 95% sample heterogeneity interval, and the red solid lines show the 95% population heterogeneity
interval. See the online article for the color version of this figure.

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

612 BOLGER, ZEE, ROSSIGNAC-MILON, AND HASSIN



heterogeneity showed remarkable stability across two sessions one
week apart. Thus, in this example at least, heterogeneity was not
just a fleeting effect of subjects’ states at the time of the experi-
ment (e.g., fatigue), nor was it an unintended idiosyncrasy of the
experimental session. Rather, it reflected something more enduring
about how they reacted to the experimental manipulation.

Discussion

We have promoted a way of thinking about experimental effects
that is largely absent from experimental psychology but one that
holds much promise: Causal effects can vary across individuals in
a population (Aim 1). Further, we have shown how using mixed
models and graphical displays offer a novel method for experi-
menters to discover hitherto-unknown heterogeneity in their ef-

fects (Aim 2). We have also shown how a concern for causal effect
heterogeneity leads to better research practices (Aim 3). When
present, causal effect heterogeneity presents opportunities for the-
ory, methods, and research practices in experimental psychology,
as we will discuss below.

Opportunities for Theory

Modeling heterogeneity presents an important opportunity for
theory development. This need can be especially pertinent if the
heterogeneity is sufficiently strong that null effects or reversals are
observed. If one assumes that these are not due to failures of
experimental control or fleeting states of participants, perhaps the
theory needs to accommodate subpopulations that differ in the
causal process.

Table 4
Study 4: Summarized Multilevel Model Output of Joint Analysis of Time 1 (T1) and Time 2 (T2)
Trait-Valence Effects, in LogRT Units

Population effect

T1 parameter
estimates

T1 95% heterogeneity
interval

Mean SD 2.5% 97.5%

Intercept: �j 7.05 .19 6.67 7.44
CI95 [7.0, 7.1] [.14, .23]

Slope (causal effect): �j �.14 .19 �.50 .23
CI95 [�.13, �.01] [.08, 012]

T2 parameter
estimates

T2 95% heterogeneity
interval

Intercept: �j 7.00 .22 6.58 7.43
CI95 [6.9, 7.1] [.20, —]

Slope (causal effect): �j �.19 .27 �.72 .34
CI95 [�.17, �.02] [.13, .14]

Note. CI95 � 95% confidence interval.
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Figure 10. Study 1, revisited: Scatterplot showing the relationship between promotion focus and the implied
random effects predicted by the model, with 95% population ellipse, is displayed in the left panel. A distribution
of the implied population effects is displayed in the right panel, along with the mean (black line) and 95%
population limits (horizontal red lines). The blue dots in the right panel are the implied random effects for the
sample. See the online article for the color version of this figure.
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For example, in the face-orientation experiment, it is not clear
what factors can explain why some participants respond much
faster to upright faces versus upside-down faces, whereas others
respond equally fast to each. But knowing that the face orientation
effect is substantially heterogeneous invites further experiments
that manipulate or hold constant explanatory variables such as
visual acuity, racial similarity to that of the displayed faces,
motivation for the task, and so forth. For the trait valence exper-
iment, by contrast, theory suggested that the motivational orienta-
tion of promotion focus explained heterogeneity in the causal
effect, and in fact, our mixed-model results estimated that it
accounted for 23% of the heterogeneity.

Sometimes, though, there may be no available explanation
for the heterogeneity, and an adequate explanation will require
theoretical or methodological breakthroughs that are years or
decades away. In this sense, observed heterogeneity can act as
a placeholder for future theories and explanatory variables and
provide an important qualifier of the generalizability of average
causal effects.

Moreover, although we focused on causal effect heterogeneity,
the same metatheoretical stance can be applied to other types of
relationships between variables to enrich theory. For example,
individuals may differ not only in the extent to which they show an
experimental effect but also in the extent to which they vary in
mediating processes (Vuorre & Bolger, 2018).

Opportunities for Methods

Although in many cases heterogeneity may reflect meaningful
differences between individuals, one spurious source of effect
heterogeneity can be uncontrolled variation in experimental pro-

cedure across subjects. Some subjects may be in sessions con-
ducted in summer heat whereas others may not. When multiple
experimenters are used in a single experiment, some may put
subjects at ease whereas others may not. These are sources that
good experimental procedures are meant to minimize. Thus, when
experimenters observe effect heterogeneity, it may not be due to
true causal differences but rather can be diagnostic of insufficient
experimental control. If so, it can lead to salutary revisions in
experimental procedures.

Even if procedures are tightly controlled and the tasks and
stimuli are valid, experimentalists may view the presence of causal
effect heterogeneity as a sign that they should alter their approach.
That is, they may change their manipulations or stimulus sets such
that the causal effects they produce are homogeneous. Tasks, for
example, that evoke different cognitive operations in different
subjects, may be replaced with tasks that evoke more homoge-
neous responses. Such a change might call for alterations in the
theory underlying the choice of experimental stimuli. In these
cases, the theoretical validity of homogeneity-inducing manipula-
tions or stimuli would need to be demonstrated.

Finally, causal effect heterogeneity can be used to create more
efficient experimental designs. If one can understand sources of
causal effect heterogeneity (e.g., motivational orientations, as
shown earlier) then one could preselect participants for whom an
experimental effect is known to be large, thereby allowing one’s
sample sizes to be smaller and one’s studies more cost-effective
(Shrout & Rodgers, 2018). This approach, however, can be criti-
cized for reducing the diversity of samples and limiting general-
izability (Tackett et al., 2017).

Implications for Best Research Practices

We view mixed models as an essential tool for analyzing
repeated-measures experimental data. Moreover, we believe that
repeated-measures ANOVA has outlived its usefulness. We are far
from the first to make this point. In 2005, statistician Charles
McCulloch wrote an article entitled ‘Repeated Measures ANOVA:
RIP?’ urging researchers to switch to the mixed-modeling software
that was becoming widespread at the time (McCulloch, 2005). Yet
even a cursory look through current journals in experimental
psychology will show that repeated-measures ANOVA still pre-
dominates in analyses of repeated-measures experiments (as noted
in the introduction). When there are no missing repeated measure-
ments, repeated-measures ANOVA produces correct tests of av-
erage causal effects (Maxwell et al., 2018), but we submit that it is
a theoretically impoverished account of the data. Even if experi-
menters wish to focus solely on average causal effects, this ap-
proach should ideally be justified by a mixed-model analysis
showing that causal heterogeneity is minor and ignorable.

Replication failures, a topic of great current concern (Shrout &
Rodgers, 2018), can be due to failures to take causal effect heter-
ogeneity into account. Replication studies from more heteroge-
neous populations will be less likely to detect true effects, even if
the true average effect size is identical in each population (Bolger
& Laurenceau, 2013; Maxwell et al., 2018; Snijders & Bosker,
2011). An important practical implication of greater heterogeneity
is that larger sample sizes are needed to maintain adequate power.
Because they estimate the size and range of heterogeneity, mixed-
model analyses can identify replication failures due to differences
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Figure 11. Study 4: Scatter plot of the model predictions of the trait
valence effects for each participant in the sample at Time 1 and Time 2,
together with a 95% population ellipse. See the online article for the color
version of this figure.
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in heterogeneity. Power calculations for mixed-model analyses
(see, e.g., Bolger & Laurenceau, 2013) will allow experimentalists
to more effectively plan their future studies. In short, in today’s
research climate experimentalists can no longer afford to be vague
or agnostic about the presence and size of causal effect heteroge-
neity.

We suspect that causal effect heterogeneity is present to some
degree in all experimental effects, whether these are demonstrated
in between- or within-subjects designs. In between-subjects de-
signs, of course, there is no way to assess this heterogeneity
without having a manipulation or measured variable that reveals it.
But if, as has been argued by Rubin and others (Imbens & Rubin,
2015; Morgan & Winship, 2014; Rubin, 1974), a single causal
effect in a between-subjects experiment is equal to an average
causal effect in a within-subjects experiment, then experimentalists
should consider this in interpretations of between-subjects results.
Consider the difference between interpreting a causal effect of 0.5
units as uniform across a population versus as an average of
heterogeneous causal effects across that population. Thus, even in
between-subjects designs, working from the assumption of heter-
ogeneity alters the inferences drawn about the process being stud-
ied.

Limitations and Future Directions

We have limited ourselves to models that treat causal effect
heterogeneity as a continuous random variable with a parametric
distribution, specifically a Gaussian. Generalizations to other con-
tinuous distributions are well known and can be implemented in
popular software (Gelman & Hill, 2007; Rabe-Hesketh & Sk-
rondal, 2012; Vonesh, 2012). There are reasons to suspect, how-
ever, that some forms of heterogeneity are best modeled as cate-
gories or classes. An important paper by Lee and Webb (2005) on
cognitive processes treated heterogeneity as involving discrete
classes where everyone within a class showed the same causal
effect. Models of this sort can be further expanded to include
continuous heterogeneity with classes, an approach often called
mixture modeling (e.g., Bartlema, Lee, Wetzels, & Vanpaemel,
2014). Using Bayesian modeling, Haaf and colleagues have pro-
posed a flexible combination of discrete classes with and without
further continuous between-subjects variation (Haaf & Rouder,
2017, 2018; Thiele, Haaf, & Rouder, 2017).

We have also limited ourselves to examining subject-level ran-
dom effects only. It is well known that mixed models for repeated-
measures data should also allow for stimulus-level random effects
so that inferences can be made to a population of stimuli rather
than to the exact stimuli used in a particular experiment (Clark,
1973). Suitable mixed-models analyses for doing so have been
advocated for experimentalists (e.g., Baayen et al., 2008; Judd et
al., 2012; Rouder & Lu, 2005). In the online supplemental mate-
rials, we present an example of a mixed model with both forms of
random effects. None of the results reported in this paper change
appreciably when random effects of stimuli are modeled. There are
undoubtedly, however, situations in which modeling variability
due to stimuli may change causal effect estimates.

Though it is not frequently the case with experimental data,
heterogeneous (random) effects in mixed models can sometimes
be difficult to estimate using the frequentist methods used in
this paper. Models with maximum likelihood estimation of

random effects can fail to converge in cases where the effects
are not substantial, are poorly estimated, or involve complex
models with multiple correlated random effects (see a discus-
sion in Hox, 2010). In these cases, Bayesian estimation will
often succeed in producing valid estimates and tests (Gelman,
2005), although more work is needed to compare random effect
estimates obtained using Bayesian versus maximum likelihood
methods. For syntax and output for Bayesian versions of our
mixed-model analyses, see the online supplemental materials.
None of the results presented in this paper were substantially
different when Bayesian methods were used.

Also, as noted earlier, examples of sophisticated Bayesian anal-
yses of effect heterogeneity are worth considering. For the inter-
ested reader, we recommend a classic paper by Rouder and Lu
(2005) and recent work by Haaf and Rouder (Haaf & Rouder,
2017, 2018; Rouder & Haaf, 2018). Broader guidance on Bayesian
mixed models can be found in Gelman et al., 2013; Gelman & Hill,
2007; Kruschke, 2015; Kruschke & Liddell, 2018; Lee & Wagen-
makers, 2014; and McElreath, 2016. For additional examples of
how Bayesian approaches can be used to allow for and investigate
heterogeneity in both experimental and nonexperimental studies,
see papers by Vuorre and Bolger (2018) and Doré & Bolger
(2018), respectively.

Perhaps the most sophisticated—and radical—approach to het-
erogeneity can be found in the work of Molenaar and colleagues.
They question the a priori assumption that there are any common-
alities in causal processes across subjects. They argue that biolog-
ical and social units fail to show the thermodynamic property of
ergodicity. Ergodic processes are those where the regularities of
multiple units at a single point in time mirror the regularities of any
single unit over multiple points in time. Therefore, nonergodic
processes, they claim, must be examined unit by unit before any
inference about commonalities or differences can be made. Thus,
their empirical approach is to initially treat each experimental
subject as unique and determine with the help of within-subject
variation the extent to which subjects can be compared and on
what dimensions to do so (Molenaar, 2004; Molenaar & Campbell,
2009). To the extent to which this view is correct, there is more
complexity to causal effect heterogeneity than is allowed for in this
paper.

Finally, we caution that there are many areas of experimental
psychology (beyond the exceptions discussed earlier) where causal
effect heterogeneity has simply not been explored. This can be
viewed as a limitation, but it can also be viewed as an opportunity.
Consider the vast numbers of existing repeated-measures data sets
where heterogeneity has not been modeled. Without investigators
having to collect any additional data, exciting new findings in
diverse areas of experimental psychology may be waiting to be
discovered.

Conclusions

In order to develop adequate theories of psychological pro-
cesses, we believe it is advisable to work through all stages of the
research process from the assumption that experimental effects are
heterogeneous. When planning an experiment, expected causal
effect heterogeneity should be taken into account when determin-
ing sample size (of subjects and of trials per subject), and when
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incorporating explanatory variables as additional manipulations or
as measured variables.

When analyzing repeated-measures data, mixed models are
uniquely able to distinguish true causal effect heterogeneity
from spurious sources operating at the subject level such as
sampling error or measurement error. When interpreting and
communicating results, the presence or absence of heterogene-
ity should be featured in causal statements. If heterogeneity is
absent, then claims can refer to a universal causal process
across the population studied (e.g., “the experimental effect was
0.3 units”). If present, then claims will need to take into account
the range of causal effects across a population (e.g., “the
experimental effect for the average person was 0.3 units, but
some people showed no effect and others showed an effect
twice as strong”). In either case, these interpretations will be a
crucial guide to next steps taken by experimenters in their
theory development and in their research plans.

Societies across the globe are becoming more diverse than
ever before. Greater diversity will likely lead to greater heter-
ogeneity of experimental effects and require greater richness
and realism in our theoretical explanations (Simons, Shoda, &
Lindsay, 2017). Theories and models of experimental data that
accommodate heterogeneity are therefore more necessary than
ever. Related fields from political science to systems biology to
precision medicine have already embraced the notion of causal
heterogeneity. We believe it is time for experimental psychol-
ogy to follow suit.

Context of the Research

Some of the ideas in the paper draw on earlier work by Niall
Bolger on personality-based causal heterogeneity in stress and
coping processes (Bolger, 1990; Bolger & Schilling, 1991;
Bolger & Zuckerman, 1995; Bolger & Romero-Canyas, 2007);
from work on how to incorporate causal heterogeneity in anal-
yses of intensive longitudinal data (Bolger, Davis, & Rafaeli,
2003; Bolger & Laurenceau, 2013); and from a program of
research on social support processes in in experimental and
naturalistic settings (Bolger, Zuckerman, & Kessler, 2000;
Bolger & Amarel, 2007).
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