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Abstract 

We examined the evidence for heterogeneity (of effect sizes) and explored the 

association between heterogeneity and effect size in a sample of 37 effect sizes from ten pre-

registered multi-lab direct replication projects in psychology. We found limited heterogeneity; 

only 7/37 (19%) effects had significant heterogeneity, and most effects (32/37; 86%) were 

most likely to have zero to small heterogeneity. Power to detect small heterogeneity was low 

for all projects (mean 36%), but good to excellent for medium and large heterogeneity. Our 

findings thus show little evidence of widespread heterogeneity in direct replication studies in 

psychology, implying that citing heterogeneity as a reason for non-replication of an effect is 

unwarranted unless predicted a priori. We also found a strong correlation between observed 

effect size and heterogeneity in our sample (r = .78, suggesting that heterogeneity and 

moderation of effects is implausible for a zero average true effect size, but increasingly 

plausible for larger average true effect size. 
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Heterogeneity in direct replications in psychology and its association with effect size 

Empirical research is typically portrayed as proceeding in two stages. First, belief in the 

existence of an effect is established. Second, the effect's generalizability is examined by 

exploring its boundary conditions (Simons, Shoda, & Lindsay, 2017). In the first stage, 

inferential statistics are used to minimize the risk that a discovery is due to sampling error. In 

the second stage, one may ask to what extent the effect depends on a particular choice of four 

contextual factors; the 1) sample population, 2) settings, 3) treatment variables and 4) 

measurement variables (e.g., Campbell & Stanley, 2015). This extent is often explored 

through replications of the original study that are either as similar as possible to the original 

(called 'direct' or 'exact' replications) or with some deliberate variation on conceptual factors 

(so-called 'conceptual' or 'indirect' replications; Zwaan, Etz, Lucas, & Donnellan, 2017), and 

once sufficient studies have accumulated through meta-analysis. In meta-analysis, the 

heterogeneity of an effect size (henceforth referred to as heterogeneity) is a measure of an 

effect's susceptibility to changes in these four factors. An effect strongly dependent on one or 

more of the four factors, unless controlled for, should exhibit high heterogeneity. In this paper 

we examine the heterogeneity in replication studies in psychology, focusing on direct 

replications, and explore a proposed relationship between effect size and heterogeneity. 

Heterogeneity is of concern for several reasons. First and foremost, unaccounted for 

heterogeneity can have practical consequences not to be ignored. This is readily evident for 

medicine, where in the case of heterogeneity an intervention, such as a medication, that is 

successful for some may have direct negative health consequences for others. The same is true 

of mental health interventions in psychology, but heterogeneity can also have major 

consequences for topics such as child development, education, and business performance, 

where research often impacts policy recommendations. Thus, heterogeneity should be no less 

of a concern for psychologists than for medical practitioners. 
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Second, unaccounted for heterogeneity is an indication of incomplete theory, since it 

suggests that a theory is unable to predict all contextual factors of importance to its claims. As 

such, heterogeneity might imply previously unknown predictors, so called 'hidden moderators' 

(Van Bavel, 2016), the discovery of which can be seen as an opportunity for theoretical 

advancement (Simons et al., 2017; Tackett, McShane, Bockenholt, & Gelman, 2017). 

Third, the possibility of heterogeneity can create controversy in the interpretation of 

replication results. The proclamation of a 'failure' to replicate an effect is sometimes taken to 

suggest that the original finding was merely a false positive, due to 'p-hacking' (Simmons, 

Nelson, & Simonsohn, 2011) or publication bias (Inzlicht, Gervais, & Berkman, 2015). 

Unsurprisingly, some researchers take offense (e.g., Baumeister, 2016), interpreting such 

implications as attacks on their abilities as researchers. An alternative explanation for non-

replication, often espoused by the original authors (e.g, IJzerman, Szymkow, & 

Parzuchowski, 2015; Strack, 2016), is that the effect is more heterogeneous than (perhaps 

implicitly) claimed originally. Such explanations may be valid or not, but even if valid, an 

effect is typically of less general interest the more specific circumstances it requires to appear. 

To attenuate the risk of heated discussions on the (non)existence of an effect, original authors 

are recommended to consider pre-specifying the degree of heterogeneity that would make 

even them lose interest in the effect (e.g., by declaring 'constraints on generality' (Simons et 

al., 2017). To conclude, heterogeneity or its absence provides vital information for the 

implementation of research in practice, the advancement of theory, and the interpretation of 

research outcomes. 

Heterogeneity also affects meta-analytic techniques used to statistically summarize 

findings on a certain topic. Heterogeneity alters the interpretation of meta-analytic estimates 

as either the true effect size (under homogeneity) or the average of the true effect sizes (under 

heterogeneity), though one may question the usefulness of interpreting the average true effect 
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size in the presence of heterogeneity (Simonsohn, 2017), just as it may be questionable to 

interpret an average main effect in the context of an interaction effect (Aiken, West, & Reno, 

1991). In addition, techniques that attempt to correct for publication bias in their estimate tend 

to fail in the presence of heterogeneity (McShane, Böckenholt, & Hansen, 2016; van Aert, 

Wicherts, & van Assen, 2016; van Assen, van Aert, & Wicherts, 2015), which is problematic 

considering the supposedly widespread publication bias in psychology (Cooper, DeNeve, & 

Charlton, 1997; Franco, Malhotra, & Simonovits, 2014, 2016) ).  

It is a commonly believed that heterogeneity is the norm in psychology. In support of 

this notion, recent large scale reviews of meta-analyses in psychology (Stanley, Carter, & 

Doucouliagos, 2017; Van Erp, Verhagen, Grasman, & Wagenmakers, 2017) report median 

heterogeneity levels that can best be described as 'large' (see next paragraph; Higgins, 2003). 

In comparison, the median heterogeneity estimate in medicine (Ioannidis, Patsopoulos, & 

Evangelou, 2007) would be considered 'small' by the same standard. It may simply be that 

effects in psychology are more heterogeneous than those of medicine. However, meta-

analyses in psychology also typically include more studies than those in medicine, and it 

could be that they tend to include studies from a much broader spectrum, that is, varying on 

more contextual factors (sample population, settings, treatment variables, measurement 

variables) or varying more on these four factors. The median number of studies (effects) per 

meta-analysis in the psychology sample of Van Erp et al. (2017) was 12, whereas in medicine 

it is only 3 (Davey, Turner, Clarke, & Higgins, 2011). It is difficult to separate these 

explanations (intrinsically more heterogeneity, or psychology including studies from a 

broader spectrum?). To facilitate doing so, in this paper we focus on meta-analyses of only 

direct replications, which are exempt from the potential problem of including too disparate 

studies. Moreover, by only including pre-registered multi-lab studies we avoid the issue of 

publication bias, which can have a large and unpredictable effect on the assessment of 

heterogeneity (Augusteijn, van Aert, & van Assen, 2018). 
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In reference to meta-analyses of direct replications, several authors (McShane et al., 

2016; Tackett et al., 2017) have argued that if we were to expect heterogeneity to be absent or 

minimal anywhere, it would be in pre-registered multi-lab projects with a common protocol 

(such as Klein et al., 2014). They further argue that the fact that heterogeneity has been 

reported even under such circumstances is an indication of widespread heterogeneity in 

psychology. However, even in the case of multi-lab direct replication projects, studies will 

still vary on two contextual factors (sample population and settings) and if we believe an 

effect is sensitive to changes in these two factors we might also expect to find some 

heterogeneity. 

 

Assessing heterogeneity can be problematic due to its inherent uncertainty. 

Heterogeneity is often measured by the I2 index (Higgins, 2003; Higgins & Thompson, 2002), 

which allows comparison of estimates across meta-analyses and has an intuitive 

interpretation. It can be interpreted as the percentage of variability in observed effect sizes in 

a meta-analysis that is due to heterogeneity amongst the true effect sizes (that is, sensitivity to 

contextual factors) rather than sampling variance, and ranges from 0-100%. More formally, 

𝐼2 =  𝜏̂2 / (𝜏̂2 +  𝜎̂2), where 𝜏̂2 is the estimated between-studies variance and 𝜎̂2 is an 

estimate of the ‘typical’ within-studies variance, and I2 is set to zero if negative. Higgins 

(2003) tentatively defined I2-values of 25, 50, and 75% as small/medium/large heterogeneity 

respectively, labels we also use in this paper. An alternative index of heterogeneity, though 

lacking the intuitive interpretation of I2, is H2 (Higgins & Thompson, 2002). This index 

ranges from zero to infinity, with higher values signaling more heterogeneity, with a value of 

1 indicating homogeneity. 

Tests of heterogeneity typically have low statistical power in many practical situations 

(Huedo-Medina, Sánchez-Meca, Marín-Martínez, & Botella, 2006; Jackson, 2006). This 

Quantifying heterogeneity 
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complicates the discussion of heterogeneity, because while I2 always provides an estimate of 

heterogeneity, this estimate is often accompanied by wide confidence intervals (Ioannidis et 

al., 2007). For example, Ioannidis reports that in a large set of Cochrane meta-analyses, all 

meta-analyses with I2 point estimates of 0% had upper 95% confidence intervals that 

exceeded I2 estimates of 33%, exceeding what Higgins (2003) defined as 'small' 

heterogeneity. In addition, under homogeneity I2 has a central chi-square distribution (von 

Hippel, 2015), a distribution that is right-skewed with more than 40% of observations falling 

above the expected value (for all k > 4). In other words, even in the absence of true 

heterogeneity, a meta-analysis of 5 or more studies will have an I2 point estimate above zero 

in more than 40% of cases. Heterogeneity estimates may thus be congruent with a wide range 

of true heterogeneity levels. Despite exhortations to the contrary (Ioannidis et al., 2007), it 

remains common to omit confidence intervals in the reporting of I2. In consideration of such 

uncertainty and the prevalent belief that heterogeneity is the norm in psychology, we examine 

the existing evidence for heterogeneity in psychology using a sample of pre-registered multi-

lab direct replication projects. 

 

Effect size is likely associated with heterogeneity. Intuitively, it makes sense to believe 

that if there is no meta-analytic effect there is nothing to moderate (i.e., no heterogeneity). 

However, a null or near null effect size estimate may arise from failure to consider contextual 

factors ('hidden moderators'; Van Bavel, 2016) and does not by itself imply the absence of 

heterogeneity. A large meta-analytic effect size on the other hand, can be expected to be 

associated with more heterogeneity. To illustrate, consider a meta-analysis of say, the 

correlation between neuroticism and procrastination (e.g., Steel, 2007). Each included study 

would need to measure the two variables somehow, possibly the same way across studies in 

the meta-analysis. However, because of individual differences and differences in study 

Association between effect size and heterogeneity 
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samples, measurement reliabilities may differ across studies either due to sampling variance 

(that the sample happens to be more or less homogeneous) or to differences in contextual 

factors (e.g., sampling population, measurement variables). This means that even if the 

underlying true effect size is the same, the observed correlation between the two variables will 

differ between studies (see also Schmidt & Hunter, 2015). Keeping measurement reliabilities 

constant, differences in observed effect sizes will increase with the underlying true effect size, 

resulting in more variability being ascribed to heterogeneity. More formally, an observed 

correlation 𝑟𝑥𝑦 can be expressed as the product of the true correlation or effect size, 𝜌𝑥𝑦, 

multiplied by the square root of the measurement reliabilities for X (𝑅𝑥𝑥′) and Y (𝑅𝑦𝑦′): 𝑟𝑥𝑦 =

𝜌𝑥𝑦 × √𝑅𝑥𝑥′ × √𝑅𝑦𝑦′. As such, keeping constant study differences in √𝑅𝑥𝑥′ × √𝑅𝑦𝑦′ while 

increasing true effect size 𝜌𝑥𝑦 increases the observed differences between studies, thereby 

increasing heterogeneity of observed effect sizes (see Table 1). We therefore explore with a 

meta-meta-analysis if a positive association exists between effect size and heterogeneity in the 

sample of pre-registered multi-lab replication projects in psychology. 

Table 1. 

Effect size ρxy and its heterogeneity as a function of true effect size and measurement 

reliability.   

 ρxy  = 0 ρxy= .3 ρxy = .5 

√𝑅𝑥𝑥′ × √𝑅𝑦𝑦′.  = .6 0 0.18 0.30 

√𝑅𝑥𝑥′ × √𝑅𝑦𝑦′.  = .7 0 0.21 0.35 

√𝑅𝑥𝑥′ × √𝑅𝑦𝑦′.  = .8 0 0.24 0.40 

Note. Values in cells are observed effect sizes arising from the true effect size ρxy and 

measurement reliabilities √𝑅𝑥𝑥′ × √𝑅𝑦𝑦′.Code to reproduce table: osf.io/kf6pt/ 

 

 The pre-registered multi-lab replication projects 
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Table 2 lists the ten replication projects, with a total of 37 primary outcome variables, 

we used to examine heterogeneity and the correlation between effect size and heterogeneity in 

psychology. As all ten projects were (relatively) large-scale and pre-registered, our dataset 

arguably represents the best, least biased, meta-analytic data currently available in 

psychology. To better interpret the heterogeneity estimates we also estimate power of each 

project to find zero/small/medium/large heterogeneity. Consequently, our analyses will 

provide information on how two contextual factors (sample population and settings) may 

affect consistency or heterogeneity of effects in psychology, and on the precision of its 

estimate. 
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Table 2. 

Pre-registered multi-lab replication projects 

RP Paper k Countries Effects Participants 

ML1 Klein, R. A., Ratliff, K. A., Vianello, M., Adams, R. B., Jr., Bahník, S., Bernstein, M. J., . . . Nosek, B. A. 

(2014). Investigating variation in replicability: A “many labs” replication project. 

36 10 16 5975 

ML3 Ebersole, C. R., Atherton, O. E., Belanger, A. L., Skulborstad, H. M., Allen, J. M., Banks, J. B., … & Brown, 

E. R. (2016). Many Labs 3: Evaluating participant pool quality across the academic semester via replication. 

21 2 10 2845 

RRR1 Alogna, V. K., Attaya, M. K., Aucoin, P., Bahník, S., Birch, S., Birt, A. R., … & Buswell, K. (2014). 

Registered replication report: Schooler and engstler-schooler (1990). 

32 10 1 4117 

RRR2 Alogna, V. K., Attaya, M. K., Aucoin, P., Bahník, S., Birch, S., Birt, A. R., … & Buswell, K. (2014). 

Registered replication report: Schooler and engstler-schooler (1990). 

23 8 1 2442 

RRR3 Eerland, A., Sherrill, A. M., Magliano, J. P., Zwaan, R. A., Arnal, J. D., Aucoin, P., … & Crocker, C. (2016). 

Registered replication report: Hart & Albarracín (2011). 

12 2 3 1187 

RRR4 Hagger, M. S., Chatzisarantis, N. L., Alberts, H., Anggono, C. O., Batailler, C., Birt, A. R., … & Calvillo, D. 

P. (2016). A multilab preregistered replication of the ego-depletion effect. 

23 10 1 2872 

RRR5 Cheung, I., Campbell, L., LeBel, E. P., Ackerman, R. A., Aykutoglu, B., Bahník, S., … & Carcedo, R. J. 

(2016). Registered Replication Report: Study 1 from Finkel, Rusbult, Kumashiro, & Hannon (2002). 

16 5 2 2071 

RRR6 Wagenmakers, E. J., Beek, T., Dijkhoff, L., Gronau, Q. F., Acosta, A., Adams Jr, R. B., … & Bulnes, L. C. 

(2016). Registered Replication Report: Strack, Martin, & Stepper (1988). 

17 8 1 1894 

RRR7 Bouwmeester, S., Verkoeijen, P. P., Aczel, B., Barbosa, F., Bègue, L., Brañas-Garza, P., … & Evans, A. M. 

(2017). Registered Replication Report: Rand, Greene, and Nowak (2012). 

21 12 1 3596 

RRR8 O’Donnell, M., Nelson, L., McLatchie, N. M., & Lynott, D. J. (2017). Registered Replication Report: 

Dijksterhuis & van Knippenberg (1998) 

23 13 1 4493 

Note. For studies with several effects the number of participants is the average across effects, rounded to the closest whole number. Participant 

numbers are those used for primary analyses by original authors (i.e., after exclusions). RP = Replication Project, k = no. primary studies, ML = 

Many Labs, RRR = Registered Replication Report. Code to reproduce table: osf.io/kf6pt/ 
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Method 

All code and data for this project are available on the Open Science Framework (OSF) 

at osf.io/4z3e7/. We refer directly to relevant files on the OSF using brackets and links in the 

sections below. We ran all analyses using R version 3.4.3 (R Core Team, 2017). 

We downloaded and collated summary data from the ten pre-registered multi-lab 

replication projects in psychology (Table 2). The ten projects constitute all multi-lab direct 

replication projects (according to ww.curatescience.org) with public data available at the time 

of collection. Data from all ten projects were available on the Open Science Framework 

(osf.io) and downloaded between 2018/02/01 and 2018/03/31. Although some projects (e.g. 

RRR4) reported results from several outcome variables, we only included primary outcome 

variables as stated in accompanying publications, resulting in a total of 37 effects. For each 

effect we extracted (osf.io/3bmvc/) summary data (e.g., means and standard deviations) at the 

level of the lab as specified by the original authors for their primary analysis (i.e., typically 

after exclusions). We extracted information on the country of each lab, whether participants 

were physically in the lab for the study, total number of participants per lab, type of effect 

size, and additional information related to each effect (see codebook; osf.io/uhq4r/). Extracted 

data were in a variety of formats: Excel (Many labs 1, RRR1 & RRR2), CSV (Many labs 3, 

RRR3, RRR4, RRR5, RRR6) and as PDF tables (RRR7, RRR8). In two cases (RRR5 and 

RRR6) it was necessary to download the raw data to extract summary data. Although a 

particular lab may have participated in several projects, the lab indicator was typically not the 

same across projects. Even so, we kept the original lab indicators to facilitate comparing 

observations in our dataset with the original datasets. Finally, we collated the summary data 

for all effects into one dataset for analysis (osf.io/456fz/). 
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To examine heterogeneity of each of the 37 effects, we computed meta-analytic 

estimates for all 37 effects in our dataset (Table 3). We ran all analyses as specified by the 

replication authors (osf.io/kf6pt/). The effect size of the original study, which was the focus of 

the replication effort, was not included in these meta-analyses. All effects were estimated with 

random-effects models and the Restricted Maximum Likelihood (REML) estimator using the 

R-package metafor (Viechtbauer, 2010), though with a variety of outcome variables: 

correlations (r), standardized mean differences (SMD), raw mean differences (MD), and risk 

differences (RD). ML1 transformed effect sizes measured as odd ratios into standardized 

mean differences when meta-analyzing under the assumption that responses followed logistic 

distributions (Sánchez-Meca, Marín-Martínez, & Chacón-Moscoso, 2003; Viechtbauer, 

2010). Two projects (RRR5 and RRR7) used the Knapp and Hartung adjustment of the 

standard errors (Knapp & Hartung, 2003) and ML3 correlations were corrected for bias 

(Hedges, 1989; Viechtbauer, 2010). After estimating effect sizes, ML3 transformed 

correlations into eta-squared for reporting, which we did not.  

For each effect we estimated I2 and its 95% confidence interval. Both were estimated 

with metafor, which uses a general expression for I2 (equation 9 in Higgins & Thompson 

2002) and estimates its confidence intervals using the Q-profile method (Jackson, Turner, 

Rhodes, & Viechtbauer, 2014). 

In order to facilitate interpretation of our results, we estimated type I error and power of 

the Q-test of heterogeneity (Cochran, 1954) for each of the 37 effects under 

zero/small/medium/large heterogeneity (I2 = 0/25/50/75% respectively). In addition, we 

approximated the probability density function of I2 across effects at each of these four 

heterogeneity levels and compared them with the observed frequency distribution of the 

observed I2 estimates of the 37 effects. Hence, five distributions of I2 were obtained; four 

simulated and one observed. To do so we simulated results of I2 for each effect given its 
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number of studies (K), sample sizes of those studies (vector 𝑁𝑘), and each of the four 

heterogeneity levels (osf.io/gbf4u/). We directly simulated the distribution of I2 for 

correlation, standardized mean difference, and mean difference effect size measures, but not 

for risk differences. We treated risk differences as mean differences using the study sample 

sizes to compute study precision, because treating them as risk differences would require 

strong assumptions on the probability of success in both treatment groups, assumptions which 

would greatly affect the outcomes of the simulation. For the same reason we treated the four 

effects of ML1 which were measured as odds ratios (and then transformed into standardized 

mean differences) as standardized mean differences. 

As our concern was heterogeneity, for convenience we set the true effect size to zero in 

our simulations of heterogeneity. This should not affect the results for correlations or mean 

differences, as estimates of effect size and heterogeneity for these measures are unrelated (i.e., 

changing the value of one estimate does not directly affect the formula and value of the other 

estimate). For standardized mean differences we expect negligible effects on the results, 

because while these estimates of effect size are positively correlated to their standard errors, 

the within study variance 𝜎2 was kept constant across studies. As a sensitivity analysis we 

also ran all analyses assuming 'medium' effect sizes (Cohen, 1988) and indeed found the same 

average power at the different heterogeneity levels, see Appendix A (osf.io/bsjhu/). 

In case the observed effect size was a correlation, one run of a simulation proceeded as 

follows. First, we randomly sampled K= 37 Fisher-transformed true correlations 𝜌𝑖 from a 

normal distribution with mean 0 and heterogeneity (variance) 𝜏2. Fisher's z-transformation is 

a normalizing correlation transformation that ranges from negative infinity to positive infinity, 

though except for extreme correlations it stays within the -1 to 1 range (Fisher, 1915; 1921). 

Second, for each of the K true Fisher-transformed correlations we sampled one Fisher-

transformed observed correlation from a normal distribution with mean 𝜌𝑖 and variance 
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1/(𝑁𝑖 − 3). Finally, we fitted a random-effects meta-analysis with REML and estimated I2 

for that run. In the simulations, we varied the between-studies standard deviation 𝜏 between 

0.000 and 0.50 in increments of 0.005, and used 1,000 runs at each step to approximate the 

distribution of I2 at that value for true heterogeneity. 

For mean differences (and hence also for risk ratios) we assumed a within-study 

variance of one for both treatment and control groups, 𝜎𝑐
2 = 𝜎𝑡

2 = 1. For each run we then set 

the population mean of the control condition to 0 and sampled K treatment population means 

𝜇𝑘 from 𝑁(0, 𝜏2). Subsequently, K sample means for both control and treatment conditions 

were sampled, with 𝑥𝑐 ∼ 𝑁(0,1/𝑛𝑐) and 𝑥𝑡 ∼ 𝑁(𝜇𝑘, 1/𝑛𝑡), where 𝑛𝑡 and 𝑛𝑐 were the 

observed treatment and control sample sizes for each study. Group variances were sampled 

using 𝑠𝑐
2 ∼ 𝜒2(𝑛𝑐 − 1)/(𝑛𝑐 − 1) and 𝑠𝑡

2 ∼ 𝜒2(𝑛𝑡 − 1)/(𝑛𝑡 − 1). Finally, we fitted a 

random-effects meta-analysis with REML and estimated I2 for that run. For standardized 

mean differences (and odds ratios) we proceeded identically, except that in the final step we 

asked metafor to transform the effect size into a standardized mean difference in fitting the 

random-effects model. As with correlations, the distribution of I2 was approximated for values 

of 𝜏 from 0 to .5 in steps of .005, using 1,000 runs at each step. 

To approximate the statistical power of all 37 effects at zero, small, medium, and large 

heterogeneity we continued as follows. For each of the 37 effects we selected the values of 𝜏 

which yielded the average value of I2 in the simulations closest to 25 (small), 50 (medium), 

and 75 (large). For these values of 𝜏 and for 𝜏 = 0 (homogeneity) we again ran 10,000 

simulations, and for each run I2 was calculated and the Q-test of heterogeneity was performed, 

yielding estimates of type I error (in case of homogeneity) and power (for heterogeneity) for 

each of the 37 effects. We considered a result significant when p ≤ 0.05 for the Q-test. The 

distributions of I2 for zero, small, medium, large heterogeneity, which we compared to the 

observed distribution of 37 effect sizes, was generated by pooling the 37 distributions of 
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10,000 I2 values in each category of heterogeneity. Hence these I2 distributions can be 

considered a mixture distribution of 37 distributions, using equal weights across all 37 effects. 

To examine the correlation between effect size and I2 across all 37 effects we converted 

all effect sizes to a common metric. We first converted all effect sizes into correlations 

(osf.io/h9pft/) and used the R-package metafor to estimate I2 and meta-analytic effects 

expressed as Fisher-transformed correlations (osf.io/zuwpg/). In doing so, we fitted random-

effects models with metafor's default REML estimator. For mean differences we calculated 

the pooled standard deviation, (Borenstein, 2009, p. 226), standardized the effect size and 

converted it to a correlation (p. 234) with a correction factor for unequal sample sizes (p. 

234). In one case (RRR8), we first had to convert reported standard errors into pooled 

standard deviations (p.224). For risk differences and odds ratios we first added 1/2 to a cell if 

it was empty to avoid dividing by zero, next calculated the logarithmic odds ratio (p. 266), 

converted this to Cohen's d (p. 232) and then finally to a correlation. All formulas used are 

presented in Appendix B (osf.io/h4vfx/). Since I2 is set to zero for the majority of cases under 

homogeneity (i.e., truncated), we also correlated effect size with the closely related 

heterogeneity estimate H2 (Higgins & Thompson, 2002) as a sensitivity analysis 

(osf.io/zuwpg/). To avoid truncation of 𝐻2 we computed it as Q/(𝐾 − 1), where Q is the Q-

test statistic and K is the number of studies, although this expression is most appropriate when 

using the DerSimonian-Laird estimator of between-study variance rather than REML as we 

do (Higgins & Thompson, 2002). To describe the association between effect size and 

heterogeneity we report both Pearson’s product moment correlation and, as the association 

may be nonlinear, Spearman’s rank order correlation. For these statistics we also report 95% 

bootstrap confidence intervals using the percentile method (osf.io/zuwpg/).  
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Results 

Table 3 presents the meta-analytic effect size estimates and I2 with confidence intervals 

for each of the 37 included effects, as well as simulated type I error and statistical power for 

zero, small, medium, and large true heterogeneity. 
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Table 3. 

Heterogeneity across primary effects and statistical power of ten multi-lab replication projects, ordered with respect to estimated heterogeneity 

        Statistical power 

        Level of heterogeneity 

RP Effect k Effect type Effect size estimate I2 (%) I2  95% CI Zero Small Medium Large 

ML1 Anchoring 3 – Everest 36 SMD 2.41 91.29 [86.61, 95.23] 0.04 0.46 0.91 1.00 

ML1 Allowed vs. forbidden 36 SMD 1.93 75.56 [60.32, 85.46] 0.05a 0.47a 0.91a 1.00a 

ML1 Anchoring 2 – Chicago 36 SMD 2.00 75.36 [61.11, 87.15] 0.05 0.44 0.92 1.00 

ML1 Anchoring 4 – Babies 36 SMD 2.53 64.67 [45.67, 83.33] 0.05 0.47 0.92 1.00 

ML1 Quote Attribution 36 SMD 0.31 52.05 [24.63, 76.25] 0.04 0.43 0.91 1.00 

ML1 Anchoring 1 – NYC 36 SMD 1.21 40.23 [10.62, 73.94] 0.05 0.45 0.92 1.00 

ML1 IAT correlation math 35 R 0.39 40.05 [3.93, 64.97] 0.05 0.40 0.91 1.00 

RRR3 Grammar on intentionality 12 MD -0.25 38.06 [0.00, 85.72] 0.06 0.22 0.68 0.97 

ML3 Subjective Distance interaction 21 R 0.02 33.51 [0.00, 76.78] 0.05 0.33 0.83 0.99 

ML1 Gender math attitude 35 SMD 0.57 28.06 [0.00, 67.34] 0.05 0.44 0.90 1.00 

ML3 Credentials interaction 21 R 0.02 24.03 [0.00, 73.82] 0.05 0.30 0.81 1.00 

ML1 Gambler’s Fallacy 36 SMD 0.61 22.85 [0.00, 69.16] 0.05 0.44 0.91 1.00 

ML1 Imagined Contact 36 SMD 0.12 20.60 [0.00, 62.50] 0.05 0.44 0.91 1.00 

ML1 Low vs. high category scales 36 SMD 0.88 19.20 [0.00, 49.95] 0.04 0.46 0.92 1.00 

RRR8 Professor priming 23 MD 0.14 17.32 [0.00, 64.77] 0.05 0.34 0.83 1.00 

ML1 Norm of reciprocity 36 SMD -0.36 17.21 [0.00, 47.51] 0.05 0.43 0.91 1.00 

ML3 Metaphor 20 R 0.14 13.03 [0.00, 57.02] 0.05 0.32 0.80 0.99 

RRR1 Verbal overshadowing 1 32 RD -0.03 12.23 [0.00, 46.51] 0.06a 0.38a 0.90a 1.00a 

ML1 Sunk Costs 36 SMD 0.29 9.18 [0.00, 45.93] 0.05 0.44 0.91 1.00 

RRR7 Intuitive-cooperation 21 MD -0.39 2.80 [0.00, 39.28] 0.05 0.32 0.83 1.00 

ML3 Availability 21 R 0.04 0.51 [0.00, 56.09] 0.05 0.34 0.83 1.00 
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Table 3 continued.          

RP Effect k Effect type Effect size estimate I2 (%) I2 95% CI Zero Small Medium Large 

ML1 Gain vs. loss framing 36 SMD -0.66 0.01 [0.00, 55.57] 0.05a 0.43a 0.91a 1.00 a 

ML3 Power and Perspective 21 SMD 0.03 0.01 [0.00, 57.17] 0.05 0.32 0.81 0.99 

RRR3 Grammar on intention attribution 12 MD 0.00 0.00 [0.00, 70.62] 0.06 0.24 0.70 0.96 

ML3 Conscientiousness and persistence 21 R 0.02 0.00 [0.00, 61.42] 0.05 0.29 0.79 1.00 

RRR3 Grammar on detailed processing 12 MD -0.10 0.00 [0.00, 54.49] 0.06 0.24 0.70 0.97 

RRR5 Commitment on neglect 16 MD -0.05 0.00 [0.00, 53.18] 0.06 0.28 0.74 0.99 

ML3 Warmth Perceptions 21 SMD 0.01 0.00 [0.00, 47.10] 0.04 0.37 0.91 1.00 

RRR4 Ego depletion 23 SMD 0.00 0.00 [0.00, 46.91] 0.05 0.32 0.85 1.00 

ML1 Flag Priming 36 SMD 0.02 0.00 [0.00, 36.23] 0.05 0.43 0.90 1.00 

ML1 Money Priming 36 SMD -0.02 0.00 [0.00, 33.18] 0.05 0.44 0.91 1.00 

RRR2 Verbal overshadowing 2  23 RD -0.15 0.00 [0.00, 32.36] 0.06a 0.31a 0.83a 1.00a 

ML3 Weight Embodiment 20 SMD 0.03 0.00 [0.00, 29.97] 0.05 0.35 0.84 1.00 

RRR6 Facial Feedback hypothesis 17 MD 0.03 0.00 [0.00, 25.13] 0.06 0.27 0.77 0.99 

ML3 Elaboration likelihood interaction 20 R 0.00 0.00 [0.00, 18.62] 0.05 0.31 0.83 0.99 

RRR5 Commitment on exit 16 MD -0.06 0.00 [0.00, 17.44] 0.06 0.27 0.77 0.99 

ML3 Stroop effect 21 R 0.41 0.00 [0.00, 13.61] 0.05 0.29 0.80 0.99 

Note: Effects were estimated in metafor using REML. The following effects are odds ratios transformed into standardized mean differences: 

‘Allowed vs. forbidden’, ‘Gain vs. loss framing’, ‘Norm of reciprocity’, ‘Low vs. high category scales’. RP = Replication Project, k = no. primary 

studies, Estimate = Point estimates of effect sizes, I2 95% CI = 𝐼2 95% confidence interval. Statistical power was simulated, where Zero = simulated 

type 1 error, and the other headers represent simulated power under small/medium/large heterogeneity (𝐼2 = 25/50/75%) respectively. SMD = 

Standardized Mean difference (Hedge’s g), MD = Mean Difference, RD = Risk Difference, r = correlation. Code to reproduce table: osf.io/kf6pt/ 

a Odds ratio or risk difference simulated as (standardized) mean difference
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There is limited evidence for widespread heterogeneity across the examined effects. Of 

the 37 effects, 4/37 (11%) have I2 estimates that best correspond to large heterogeneity (I2 = 

75%), 4/37 (11%) to medium heterogeneity (I2 = 50%), 9/37 (24%) to small heterogeneity (I2 

= 25%) and 20/37 (54%) to zero heterogeneity (I2 = 0%). However, despite a relatively large 

number of studies and total sample size for most projects (see Table 2), Table 3 shows very 

wide confidence intervals (spanning 50% or more) for many effects. The lower bound I2 

confidence interval excludes zero for only 7/37 effects (19%; Table 3), all part of the ML1 

project. The percentage of heterogeneity estimates larger than 0 (25/37; 68%, two effects had 

I2 < .005 and are rounded down in Table 3) suggests heterogeneity for at least some effects, as 

this percentage is higher than the expected frequency of non-zero estimates under 

homogeneity (46%, or about 17/37), based on the chi-square distribution and average k across 

projects. 

 

Figure 1 shows how estimated I2 varies across all 37 effects as a function of true 

heterogeneity (averaged across all simulation runs). Figure 1 makes clear that I2 is particularly 

sensitive to changes in heterogeneity for small heterogeneity, and that estimates of I2 may 

differ considerably across projects for the same value of true heterogeneity. This can largely 

be attributed to differences in the sample sizes of the studies incorporated in a meta-analyses 

(with larger sample sizes resulting in larger estimates of I2). For example, the cluster of lines 

at the bottom all belong to RRR3, the replication project with the lowest average sample size 

per study (99; see Table 2). Since the between studies variance is not measured on the same 

scale when using different effect size measures, estimates are not directly comparable across 

effect types. 

I2 estimates and confidence intervals 

I2 and power 
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Figure 1. Result of simulation relating I2-values to between studies standard deviation. 

Each line represent one of 37 effects. Tau is not directly comparable across effect size 

measures. Code to reproduce figure: osf.io/zuwpg/ 

Estimated type I error and power for zero/small/medium/large heterogeneity are shown 

for each effect in Table 3. In all cases the type I error is approximately nominal, as compared 

to the expected 5% error rate. Power to detect small heterogeneity was low, ranging from 24% 

to 47%, with an average of 36%. Power to detect medium heterogeneity was generally very 

good, with an average of 85% power, but goes down to as low as 68 - 69% for several effects 

with low K (i.e., effects from RRR3). Power to detect strong heterogeneity was excellent 

across the board. To conclude, even though for most projects the number of included studies 

(median 23) and number of participants (median 102 per study) was relatively large, only 

power to detect medium or larger heterogeneity was good to excellent, whereas power to 

detect small heterogeneity was unacceptably low. Hence, even large multi-lab projects 

struggle to distinguish zero from small heterogeneity. 
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Figure 2 shows the distribution of I2 at different heterogeneity levels and a histogram of 

the observed effects. The shortest bars in the histogram correspond to the heterogeneity 

estimate of one effect and taller bars correspond to more than one effect. The considerable 

overlap of the theoretical (simulated) probability density functions illustrates why sufficient 

power can be difficult to achieve, and why confidence intervals for I2 are often wide. In 

particular, the dispersion of the distribution under small heterogeneity is illustrative of the low 

power to be expected under such circumstances. Given the histogram of observed effect sizes 

and densities of the distributions (height of the curves), the majority of observed effects are 

most likely to have zero or zero to small heterogeneity. Only for five effects there seems to be 

substantial evidence that they originate from medium (two) or large true effect size 

heterogeneity, as they fall outside the dominant densities of lower true effect size 

heterogeneity. 

 

Figure 2. Simulated I2 densities across 37 effects for zero, small, medium, and large 

heterogeneity according to the definitions of Higgins (2003), and a histogram of the observed 
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I2 estimates for the 37 effects. Each simulated density consists of approximately 370,000 

estimates. Code to reproduce figure: osf.io/zuwpg/ 

 

Larger estimated effect sizes appear to be associated with higher heterogeneity 

estimates. In Table 3, the four effects with highest I2 estimates also have the largest effect size 

estimates. Our data show a strong correlation between I2 and (absolute) effect size (r = .78 p < 

.001, 95% bootstrap CI [.59, .90]), see Figure 3). The closely related, but unbounded, 

heterogeneity estimate H2 provides a similar result (r = .72; p < .001, 95% bootstrap CI [.47, 

.89]). Excluding Anchoring effects (the 1st, 3rd, 4th, and 6th largest effect sizes) as robustness 

check results in an only slightly lower correlation for I2 (r = .71 p < .001, 95% bootstrap CI 

[.21, .89]). Spearman’s rank-order correlation is also strong for I2; r = .70, p < .001, 95% 

bootstrap CI [.49, .85]. 

I2 and effect sizes 
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Figure 3. The correlation between a) I2 and effect size and b) H2 and effect size for 37 

effects from ten pre-registered multi-lab replication projects. Shaded bands represent 95% 

confidence intervals. Code to reproduce figure: osf.io/zuwpg/ 
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Discussion 

We examined the evidence for widespread heterogeneity in psychology and the 

correlation between effect size and heterogeneity, in a sample of ten pre-registered multi-lab 

replication projects in psychology. These ten projects examined a total of 37 primary outcome 

variables and arguably represent the best, least biased, meta-analytic data currently available 

in psychology. To aid interpretation we also estimated power of each project to find 

zero/small/medium/large heterogeneity as defined by Higgins (2003) and approximated the 

distributions of I2 under these four heterogeneity levels. Our results showed that by far most 

effects in our sample likely had zero (81% of confidence intervals included zero 

heterogeneity) to small heterogeneity, that power to distinguish between zero and small 

heterogeneity was low for all projects, and that heterogeneity was strongly correlated with 

effect size in our sample. 

In addition to most effects showing no or small heterogeneity, the effects that showed 

evidence for medium to large heterogeneity were primarily effects that might have been 

expected to be sensitive to changes in sampling population. That is, save two effects 

(Anchoring - Everest and IAT correlation math), all other effects that demonstrated 

heterogeneity were related to the US. They either asked questions about the US (anchoring 

effects), persons related to the US (Quote attribution) or issues that are well-known to 

generate strong debate in the US (i.e., free speech; allowed vs. forbidden). Although ML1 

tested US vs. non-US as a moderator of heterogeneity and found very small effect sizes, these 

are all effects for which heterogeneous responses also within the US would be unsurprising 

(e.g., someone living close to Chicago is more likely to know the population of Chicago). We 

must note, however, that this observation is based on our ad hoc reasoning, and exploratory 

analyses. 
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Our finding that heterogeneity appears to be small or non-existent except where it might 

have been expected, is an argument against so called 'hidden moderators', or unexpected 

contextual sensitivity. Indeed, our results imply that effects cannot simply be assumed to vary 

extensively "across time, situations and persons" (Iso-Ahola, 2017, p. 14) and that we should 

not expect "minor, seemingly arbitrary and even theoretically irrelevant modifications in 

procedures" (Coyne, 2016, p. 6) to have large impact on effect estimates. That is, our results 

imply that citing heterogeneity as a reason for non-replication of an effect is unwarranted 

unless predicted a priori (Simons et al., 2017). We cannot and do not generalize our 

conclusions to conceptual replications, as these studies may vary from original studies in 

aspects that are expected to yield different effect sizes, anticipated by theory. 

In view of the fact that most effects in our sample likely had zero to small 

heterogeneity, the lack of power to distinguish between these two heterogeneity levels is of 

concern. That heterogeneity is small is not the same as being negligible, as even small 

heterogeneity may have consequences for implementing interventions, the advancement of 

theory, and the interpretation of research outcomes including replication studies. A suggestion 

to double the already very impressive number of participating labs and individuals of the 

largest replication projects in our sample seems unrealistic. The good news is that sufficient 

power to detect large and medium heterogeneity is realistically achievable for many meta-

analyses. We therefore conclude that large (preferably preregistered) multi-lab studies are 

very valuable for increasing understanding of psychological phenomena. 

Heterogeneity amongst the studied effects was strongly associated with effect size. 

There are thus both good theoretical reasons, related to the measurement reliability of 

estimates, and empirical reasons to expect larger effect sizes to exhibit comparatively more 

heterogeneity when using observed effect sizes in a meta-analysis. This creates challenges in 

disentangling the roots of heterogeneity. Consequently, for researchers who wish to examine 
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heterogeneity to further theory development, it may be desirable to endeavor to account for 

measurement reliability in the effects that are aggregated in meta-analyses. We recognize that 

not all measurements (e.g., behavioral) admit adjusting for reliability as easily as 

questionnaires, meaning a correlation between effect size and heterogeneity could at times be 

difficult to control for. Nonetheless, the extensive use of different scales in psychology means 

that for many meta-analysts there should be little reason not to control for measurement 

reliability when aggregating results. Controlling for measurement error, however, introduces 

the problem into the analysis that estimates of measurement reliability are themselves 

imprecise, which will affect the study effect size estimates and thereby the estimated overall 

effect size and heterogeneity. 

There are some limits to the generalizability of claims based on the data in our study. 

For one, the included effects are neither a representative nor random sample of effects in 

psychology and as such do not support making strong claims about average heterogeneity 

levels in psychology. More particularly, we only considered meta-analyses that varied two 

contextual factors (sample population and settings) that may cause heterogeneity, keeping 

constant two other ones (treatment and measurement variables), which may have resulted in 

both lower heterogeneity estimates as well as a stronger relationship between effect size and 

heterogeneity estimates in our paper. Relatedly, the relatively small number of effects in our 

sample means the association between heterogeneity and effect size might be an artifact of the 

data, although exclusion of the rather extreme anchoring effects from our analysis only 

slightly reduced the correlation between effect size and heterogeneity. Finally, we should 

stress that while our results point towards most effects having zero to small heterogeneity, 

many confidence intervals are very wide and congruent with a large range of actual 

heterogeneity. 
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Our results and the limitations of our data provide some guidance in directions of future 

research. To fully establish whether zero to small heterogeneity is the standard for direct 

replications in psychology, as suggested by our results, it would be desirable to examine 

heterogeneity in a larger sample of meta-analyses of direct replications than the 37 examined 

here. We are enthusiastic about the possibilities to do so in the near future, thanks to the many 

ongoing multi-lab initiatives in psychology (Registered Replication Reports, Many Labs 2, 

ManyBabies, the Psych Science Accelerator). Relatedly, a larger sample of effects would 

enable testing whether the correlation between heterogeneity and effect size is generally as 

strong as what we found in our sample. Moreover, it may be worthwhile to attempt to 

disentangle the contribution of reliability to this correlation from other aspects of 

measurement that are likely to contribute, such as range restrictions (Schmidt & Hunter, 

2015). 

To conclude, in the arguably best meta-analytic data currently available in psychology, 

most effects likely had zero to small heterogeneity, and heterogeneity was strongly correlated 

with effect size. Despite a relatively large number of studies and participants in each meta-

analysis, power was too low to distinguish between zero and small heterogeneity in all cases. 

Our results suggest little reason to believe heterogeneity is widespread in psychology. 
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