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Linear Regression with Prediction

data {
int<lower = 0> K; int<lower = 0> N;
matrix[N, K] x; vector[N] vy;
int<lower = 0> N_p; matrix[N_tilde, K] x_p;
}
parameters {
vector[K] beta; real<lower = 0> sigma;
}
model {
y ~ normal(x * beta, sigma);
}

generated quantities {
vector[N_p] y_p = normal_rng(x_p * beta, sigma);

}



Stan Language



Stan is a Programming Language

- Not a graphical specification language like BUGS or JAGS

- Stan is a Turing-complete imperative programming lan-
guage for specifying differentiable log densities

- reassignable local variables and scoping
- full conditionals and loops

- functions (including recursion)

- With automatic “black-box” inference on top (though even
that is tunable)

- Programs computing same thing may have different effi-
ciency



Basic Program Blocks

data (once)
- content: declare data types, sizes, and constraints

- execute: read from data source, validate constraints

parameters (every log prob eval)
- content: declare parameter types, sizes, and constraints

- execute: transform to constrained, Jacobian

model (every log prob eval)
- content: statements defining posterior density

- execute: execute statements



Derived Variable Blocks

transformed data (once after data)
- content: declare and define transformed data variables

- execute: execute definition statements, validate constraints

transformed parameters (every log prob eval)
- content: declare and define transformed parameter vars
- execute: execute definition statements, validate constraints

generated quantities (once per draw, doubTle type)

- content: declare and define generated quantity variables;
includes pseudo-random number generators
(for posterior predictions, event probabilities, decision making)

- execute: execute definition statements, validate constraints



Model: Read and Transform Data

- Only done once for optimization or sampling (per chain)

Read data
- read data variables from memory or file stream

- validate data

- Generate transformed data
- execute transformed data statements

- validate variable constraints when done



Model: Log Density

Given parameter values on unconstrained scale
Builds expression graph for log density (start at 0)

Inverse transform parameters to constrained scale
- constraints involve non-linear transforms

- e.g., positive constrained x to unconstrained y = logx

account for curvature in change of variables
- e.g., unconstrained y to positive x = log™' (y) = exp(y)

- e.d., add log Jacobian determinant, log I% exp(y)l =y

Execute model block statements to increment log density



Model: Log Density Gradient

Log density evaluation builds up expression graph
- templated overloads of functions and operators

- efficient arena-based memory management

Compute gradient in backward pass on expression graph
- propagate partial derivatives via chain rule
- work backwards from final log density to parameters

- dynamic programming for shared subexpressions

Linear multiple of time to evaluate log density



Model: Generated Quantities

- Given parameter values
Once per iteration (not once per leapfrog step)

May involve (pseudo) random-number generation
- Executed generated quantity statements

- Validate values satisfy constraints

- Typically used for
- Event probability estimation

- Predictive posterior estimation

Efficient because evaluated with double types (no autodiff)



Variable Transforms

Code HMC and optimization with R" support

- Transform constrained parameters to unconstrained

lower (upper) bound: offset (negated) log transform
lower and upper bound: scaled, offset logit transform
simplex: centered, stick-breaking logit transform
ordered: free first element, log transform offsets

unit length: spherical coordinates

covariance matrix: Cholesky factor positive diagonal

correlation matrix: rows unit length via quadratic stick-
breaking



Variable Transforms (cont.)

Inverse transform from unconstrained R”
Evaluate log probability in model block on natural scale

- Optionally adjust log probability for change of variables
- adjustment for MCMC and variational, not MLE
- add log determinant of inverse transform Jacobian

- automatically differentiable



Variable and Expression Types
Variables and expressions are strongly, statically typed.
Primitive: int, real
Matrix: matrix[M,N], vector[M], row_vector[N]

Bounded: primitive or matrix, with
<lower=L>, <upper=U>, <lower=L,upper=U>

- Constrained Vectors: simplex[K], ordered[N],
positive_ordered[N], unit_Tength[N]

- Constrained Matrices: cov_matrix[K], corr_matrix[K],
cholesky_factor_cov[M,N], cholesky_factor_corr[K]

- Arrays: of any type (and dimensionality)



Integers vs. Reals

- Different types (conflated in BUGS, JAGS, and R)
- Distributions and assignments care
- Integers may be assigned to reals but not vice-versa

- Reals have not-a-number, and positive and negative infin-
ity

- Integers single-precision up to +/- 2 billion

- Integer division rounds (Stan provides warning)

- Real arithmetic is inexact and reals should not be (usually)
compared with ==



Arrays vs. Vectors & Matrices

Stan separates arrays, matrices, vectors, row vectors
- Which to use?
- Arrays allow most efficient access (no copying)
- Arrays stored first-index major (i.e., 2D are row major)

Vectors and matrices required for matrix and linear alge-
bra functions

Matrices stored column-major (memory locality matters)

- Are not assignable to each other, but there are conversion
functions



“Sampling” Increments Log Prob

- A Stan program defines a log posterior
- typically through log joint and Bayes’s rule

- Sampling statements are just “syntactic sugar”
- A shorthand for incrementing the log posterior
- The following define the same* posterior

-y ~ poisson(lambda);
- increment_log_prob(poisson_log(y, lambda));

- * up to a constant

- Sampling statement drops constant terms



What Stan Does



Full Bayes: No-U-Turn Sampler

- Adaptive Hamiltonian Monte Carlo (HMC)
- Potential Energy: negative log posterior

- Kinetic Energy: random standard normal per iteration

- Adaptation during warmup
- step size adapted to target total acceptance rate

- mass matrix (scale/rotation) estimated with regularization

- Adaptation during sampling
- simulate forward and backward in time until U-turn

- discrete sample along path prop to density

(Hoffman and Gelman 2011, 2014)



Adaptation During Warmup

1

Iteration

() initial fast interval to find typical set
(adapt step size, default 75 iterations)

(I1) expanding memoryless windows to estimate metric
(adapt step size & metric, initial 25 iterations)

(1) final fast interval for final step size
(adapt step size, default 50 iterations)




Posterior Inference

Generated quantities block for inference:
predictions, decisions, and event probabilities

Extractors for samples in RStan and PyStan

Coda-like posterior summary
- posterior mean w. MCMC std. error, std. dev., quantiles
- split-R multi-chain convergence diagnostic (Gelman/Rubin)

- multi-chain effective sample size estimation (FFT algorithm)

Model comparison with approximate or exact leave-one-
out cross-validation



MAP / Penalized MLE

Posterior mode finding via L-BFGS optimization
(uses model gradient, efficiently approximates Hessian)

Disables Jacobians for parameter inverse transforms
Models, data, initialization as in MCMC

Standard errors on unconstrained scale

(estimated using curvature of penalized log likelihood function)

Standard errors on constrained scale
(sample unconstrained approximation and inverse transform)

From Bayesian perspective, Laplace approximation to pos-
terior



“Black Box” Variational Inference

Black box so can fit any Stan model

Multivariate normal approx to unconstrained posterior
- covariance: diagonal (aka mean-field) or full rank

- like Laplace approx, but around posterior mean, not mode

Gradient-descent optimization

- ELBO gradient estimated via Monte Carlo + autodiff
Returns approximate posterior mean / covariance

Returns sample transformed to constrained space



Stan as a Research Tool

Stan can be used to explore algorithms
Models transformed to unconstrained support on R”"

Once a model is compiled, have
- log probability, gradient, and Hessian
- data I/O and parameter initialization
- model provides variable names and dimensionalities

- transforms to and from constrained representation
(with or without Jacobian)



Under Stan’s Hood



Euclidean Hamiltonian Monte Carlo

- Phase space: g position (parameters); p momentum
- Posterior density: 1T(q)
- Mass matrix: M
- Potential energy: V(q) = —logm(q)
- Kinetic energy: T(p) = %pTM‘lp
- Hamiltonian: H(p,q) =V (q) + T(p)
- Diff eqs:
dq _ oH dp _  OH

a ~ “op dt ~—  9q



Leapfrog Integrator Steps

- Solves Hamilton’s equations by simulating dynamics

(symplectic [volume preserving]; €3 error per step, €2 total error)
- Given: step size €, mass matrix M, parameters g
- Initialize kinetic energy, p ~ Normal(0,I)

- Repeat for L leapfrog steps:
_€9V(a)

p [half step in momentum]

q < q+eM'p [full step in position]

[half step in momentum]



Reverse-Mode Auto Diff

Eval gradient in (usually small) multiple of function eval
time
- independent of dimensionality

- time proportional to number of expressions evaluated
Result accurate to machine precision (cf. finite diffs)
Function evaluation builds up expression tree
Dynamic program propagates chain rule in reverse pass

Reverse mode computes Vg in one pass for a function
f:RN -~ R



Autodiff Expression Graph
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Autodiff Partials

var H value I partials
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Autodiff: Reverse Pass

var operation adjoint \ result

dig = 0 dapg =0

[Z510) = 1 ayp = 1

dg += a10><(1) a9:1

az += g X (1) a; =1

ag += ag X (—1) ag = —1

as += ag X (1/v3) as=-1/v3
dg += a; X (—0.5) ag = —0.5
as += ag X (2vs) as = —Vs

ay += as X (1/vs3) as = —vs/v3
as += as X (=v4v3%) | az = —1/v3 + vsvyv3 2
a += as x (1) ay = —vs/vs
az += as x (=1) a; = Vvs/vs



Stan’s Reverse-Mode

Easily extensible object-oriented design

Code nodes in expression graph for primitive functions
- requires partial derivatives
- built-in flexible abstract base classes

- lazy evaluation of chain rule saves memory

- Autodiff through templated C++ functions

- templating each argument avoids needless promotion



Stan’s Reverse-Mode (cont.)

- Arena-based memory management
- specialized C++ operator new for reverse-mode variables

- custom functions inherit memory management through base
Nested application to support ODE solver

- Adjoint-vector product formulation for multivariates
- avoids N2 memory cost of storing Jacobian

- minimizes autodiff nodes and virtual function calls



time / Stan's time

Stan’s Autodiff vs. Alternatives
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Stan is fastest (and uses least memory)

- among open-source C++ alternatives
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Forward-Mode Auto Diff

Evaluates expression graph forward from one independent
variable to any number of dependent variables

Function evaluation propagates chain rule forward

In one pass, computes a%f(x) for a function f : R — RN

- derivative of N outputs with respect to a single input



’
Stan’s Forward Mode
- Templated scalar type for value and tangent
- allows higher-order derivatives
Primitive functions propagate derivatives

No need to build expression graph in memory

- much less memory intensive than reverse mode

- Autodiff through templated functions (as reverse mode)



Second-Order Derivatives

- Compute Hessian (matrix of second-order partials)

2
H = ——
b aXian

f(x)

- Required for Laplace covariance approximation (MLE)
- Required for curvature (Riemannian HMC)
- Nest reverse-mode in forward for second order

- N forward passes: takes gradient of derivative



Third-Order Derivatives

- Required for Riemannian HMC
- Gradients of Hessians (tensor of third-order partials)

93
aXian axk

f(x)

- N2 forward passes: gradient of derivative of derivative



Third-order Derivatives (cont.)

- Gradient of trace of Hessian times matrix
- Vtr(HM), or
- needed for Riemannian Hamiltonian Monte Carlo

- computable in quadratic time for fixed M



Jacobians

- Assume function f : RN — RM

Partials for multivariate function (matrix of first-order par-
tials)

0
o= L r(x
Jii = 5 fi®)
Required for stiff ordinary differential equations
- differentiate coupled sensitivity autodiff for ODE system
- Two execution strategies

1. Multiple reverse passes for rows

2. Forward pass per column (required for stiff ODE)



Autodiff Functionals

Functionals map templated functors to derivatives

- fully encapsulates and hides all autodiff types
- Autodiff functionals supported

- gradients: O(1)

- Jacobians: O(N)

- gradient-vector product (i.e., directional derivative): O(1)
- Hessian-vector product: O(N)

- Hessian: O(N)

- gradient of trace of matrix-Hessian product: O(N?)
(for SoftAbs RHMC)



Diff Eq Derivatives

- Need derivatives of solution w.r.t. parameters

- Couple derivatives of system w.r.t. parameters
0 0 8y>
(at Y 3t 30

- Calculate coupled system via nested autodiff of second

term
0 oy

30 at

- Based on Eigen’s Odeint package (RK45 non-stiff solver)



Stiff Diff Eqs

- Based on CVODES implementation of BDF (Sundials)
- CVODES builds-in efficient structure for sensitivity

- More nested autodiff required for system Jacobian

- algebraic reductions save a lot of work



Variable Transforms

Code HMC and optimization with R" support

- Transform constrained parameters to unconstrained

lower (upper) bound: offset (negated) log transform
lower and upper bound: scaled, offset logit transform
simplex: centered, stick-breaking logit transform
ordered: free first element, log transform offsets

unit length: spherical coordinates

covariance matrix: Cholesky factor positive diagonal

correlation matrix: rows unit length via quadratic stick-
breaking



Variable Transforms (cont.)

Inverse transform from unconstrained R”
Evaluate log probability in model block on natural scale

- Optionally adjust log probability for change of variables
- adjustment for MCMC and variational, not MLE
- add log determinant of inverse transform Jacobian

- automatically differentiable



Parsing and Compilation

- Stan code parsed to abstract syntax tree (AST)

(Boost Spirit Qi, recursive descent, lazy semantic actions)

C++ model class code generation from AST
(Boost Variant)

C++ code compilation
Dynamic linking for RStan, PyStan

Moving to OCaml—nearly complete
- much cleaner and easier to manage than the C++

- optimize by tranforming intermediate representations

Next: tuples, ragged arrays, lambdas (closures)



Coding Probability Functions

Vectorized to allow scalar or container arguments
(containers all same shape; scalars broadcast as necessary)
- Avoid repeated computations, e.g. logo in

Sn_1 log Normal (v, [u, o)

= TN -logv2m —logo — %

log Normal(y|u, o)

recursive expression templates to broadcast and cache
scalars, generalize containers (arrays, matrices, vectors)

traits metaprogram to drop constants (e.g., —log+/21
or log o if constant) and calculate intermediate and return

types



seconds / 10000 calls

Stan’s Autodiff vs. Alternatives

Stan is fastest and uses least memory

- among open-source C++ alternatives we managed to install
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time / Stan's time

Stan’s Matrix Calculations

Faster in Eigen, but takes more memory

Best of both worlds

matrix_product_eigen
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coming soon

system
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time / Stan's time
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Stan’s Density Calculations

- Vectorization a huge win

time / Stan's time

normal_log_density normal_log_density_stan
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Hard Models, Big Data



Riemannian Manifold HMC

Best mixing MCMC method (fixed # of continuous params)

Moves on Riemannian manifold rather than Euclidean

- adapts to position-dependent curvature
geoNUTS generalizes NUTS to RHMC (Betancourt arXiv)

SoftAbs metric (Betancourt arXiv)
- eigendecompose Hessian and condition

- computationally feasible alternative to original Fisher info metric
of Girolami and Calderhead (JRSS, Series B)

- requires third-order derivatives and implicit integrator

merged with develop branch



Laplace Approximation
- Multivariate normal approximation to posterior
- Compute posterior mode via optimization
0* = argmax, p(0ly)
- Laplace approximation to the posterior is
p(0]y) = MultiNormal(6*| — H™1)

- H is the Hessian of the log posterior

aZ
Hivj - 691 agj IOgP(QD’)



Stan’s Laplace Approximation

Operates on unconstrained parameters
L-BFGS to compute posterior mode 0*

- Automatic differentiation to compute H
- current R: finite differences of gradients

- soon: second-order automatic differentiation

Draw a sample from approximate posterior
- transfrom back to constrained scale

- allows Monte Carlo computation of expectations



“Black Box” Variational Inference

Black box so can fit any Stan model

Multivariate normal approx to unconstrained posterior
- covariance: diagonal mean-field or full rank
- not Laplace approx — around posterior mean, not mode

- transformed back to constrained space (built-in Jacobians)

Stochastic gradient-descent optimization

- ELBO gradient estimated via Monte Carlo + autodiff
Returns approximate posterior mean / covariance

Returns sample transformed to constrained space



VB in a Nutshell

-y is observed data, 0 parameters
- Goal is to approximate posterior p(0|y)

- with a convenient approximating density g(0|¢)

- ¢ is a vector of parameters of approximating density
- Given data y, VB computes ¢* minimizing KL-divergence
¢* = argmin, KL[g(0]¢) [| p(Oly)]

. p0ly)
argmlnd)J@log(g(md))) g(0|¢) do

argming Eyo10) [logp(01y) —logg(0 | ¢)]




VB vs. Laplace
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solid yellow: target; red: Laplace; green: VB
Laplace located at posterior mode
- VB located at approximate posterior mean

— Bishop (2006) Pattern Recognition and Machine Learning, fig. 10.1



KL-Divergence Example

1 1

0.5 0.5

0 05z 1 0 05z 1
(a) (b)

- Green: true distribution p; Red: best approximation g
(@) VB-like: KL[g || p]
(b) EP-like: KL[p |l g]

- VB systematically underestimates posterior variance

— Bishop (2006) Pattern Recognition and Machine Learning, fig. 10.2



Stan’s “Black-Box” VB

- Typically custom g() per model

- based on conjugacy and analytic updates
- Stan uses “black-box VB” with multivariate Gaussian g
g(0|¢) = MultiNormal(0 | u,X)

for the unconstrained posterior

- e.g., scales o log-transformed with Jacobian

- Stan provides two versions
- Mean field: X diagonal

- General: X dense



Stan’s VB: Computation

Use L-BFGS optimization to optimize 6
Requires gradient of KL-divergence w.r.t. 0 up to constant

- Approximate KL-divergence and gradient via Monte Carlo

- only need approximate gradient calculation for soundness
of L-BFGS

- KL divergence is an expectation w.r.t. approximation g(0|¢)
- Monte Carlo draws i.i.d. from approximating multi-normal

- derivatives with respect to true model log density via reverse-
mode autodiff

- so only a few Monte Carlo iterations are enough



Stan’s VB: Computation (cont.)

- To support compatible plug-in inference

- draw Monte Carlo sample 0. .., 0™ with
0™ ~ MultiNormal(@ | u*,=*)

- inverse transfrom from unconstrained to constrained scale

- report to user in same way as MCMC draws

Future: reweight 8™ via importance sampling
- with respect to true posterior

- to improve expectation calculations



Near Future: Stochastic VB

Data-streaming form of VB
- Scales to billions of observations

- Hoffman et al. (2013) Stochastic variational inference. JMLR 14.

Mashup of stochastic gradient (Robbins and Monro 1951)
and VB

- subsample data (e.g., stream in minibatches)
- upweight each minibatch to full data set size
- use to make unbiased estimate of true gradient

- take gradient step to minimize KL-divergence

Prototype code complete



“Black Box” EP

Fast, approximate inference (like VB)
- VB and EP minimize divergence in opposite directions

- especially useful for Gaussian processes
- Asynchronous, data-parallel expectation propagation (EP)

Cavity distributions control subsample variance

Prototype stage

collaborating with Seth Flaxman, Aki Vehtari, Pasi Jylanki, John
Cunningham, Nicholas Chopin, Christian Robert



The Cavity Distribution

(

<\)K/
- Two parameters, with data split into yi,...,ys
- Contours of likelihood p(yx|0) for k € 1:5
- g-x(0) is cavity distribution (current approx. without y)
- Separately computing for yx reqgs each partition to cover its area

- Combining likelihood with cavity focuses on overlap



Challenges



Discrete Parameters

e.g., simple mixture models, survival models, HMMs, dis-
crete measurement error models, missing data

Marginalize out discrete parameters
Efficient sampling due to Rao-Blackwellization

Inference straightforward with expectations

- Too difficult for many of our users
(exploring encapsulation options)



Models with Missing Data

In principle, missing data just additional parameters
In practice, how to declare?

- observed data as data variables
- missing data as parameters

- combine into single vector

(in transformed parameters or local in model)



Position-Dependent Curvature

Mass matrix does global adaptation for
- parameter scale (diagonal) and rotation (dense)

Dense mass matrices hard to estimate (O (N?) estimands)

Problem: Position-dependent curvature

- Example: banana-shaped densities

% arise when parameter is product of other parameters

- Example: hierarchical models

« hierarchical variance controls lower-level parameters
Mitigate by reducing stepsize

- initial (stepsize) and target acceptance (adapt_delta)



The End



