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Linear Regression with Prediction

data {
int<lower = 0> K; int<lower = 0> N;
matrix[N, K] x; vector[N] y;
int<lower = 0> N_p; matrix[N_tilde, K] x_p;

}
parameters {

vector[K] beta; real<lower = 0> sigma;
}
model {

y ~ normal(x * beta, sigma);
}
generated quantities {

vector[N_p] y_p = normal_rng(x_p * beta, sigma);
}
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Stan Language
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Stan is a Programming Language

• Not a graphical specification language like BUGS or JAGS

• Stan is a Turing-complete imperative programming lan-
guage for specifying differentiable log densities

– reassignable local variables and scoping

– full conditionals and loops

– functions (including recursion)

• With automatic “black-box” inference on top (though even
that is tunable)

• Programs computing same thing may have different effi-
ciency
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Basic Program Blocks

• data (once)

– content: declare data types, sizes, and constraints

– execute: read from data source, validate constraints

• parameters (every log prob eval)

– content: declare parameter types, sizes, and constraints

– execute: transform to constrained, Jacobian

• model (every log prob eval)

– content: statements defining posterior density

– execute: execute statements
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Derived Variable Blocks
• transformed data (once after data)

– content: declare and define transformed data variables

– execute: execute definition statements, validate constraints

• transformed parameters (every log prob eval)

– content: declare and define transformed parameter vars

– execute: execute definition statements, validate constraints

• generated quantities (once per draw, double type)

– content: declare and define generated quantity variables;
includes pseudo-random number generators
(for posterior predictions, event probabilities, decision making)

– execute: execute definition statements, validate constraints
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Model: Read and Transform Data

• Only done once for optimization or sampling (per chain)

• Read data

– read data variables from memory or file stream

– validate data

• Generate transformed data

– execute transformed data statements

– validate variable constraints when done
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Model: Log Density

• Given parameter values on unconstrained scale

• Builds expression graph for log density (start at 0)

• Inverse transform parameters to constrained scale

– constraints involve non-linear transforms

– e.g., positive constrained x to unconstrained y = logx

• account for curvature in change of variables

– e.g., unconstrained y to positive x = log−1(y) = exp(y)

– e.g., add log Jacobian determinant, log | ddy exp(y)| = y

• Execute model block statements to increment log density
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Model: Log Density Gradient

• Log density evaluation builds up expression graph

– templated overloads of functions and operators

– efficient arena-based memory management

• Compute gradient in backward pass on expression graph

– propagate partial derivatives via chain rule

– work backwards from final log density to parameters

– dynamic programming for shared subexpressions

• Linear multiple of time to evaluate log density
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Model: Generated Quantities

• Given parameter values

• Once per iteration (not once per leapfrog step)

• May involve (pseudo) random-number generation

– Executed generated quantity statements

– Validate values satisfy constraints

• Typically used for

– Event probability estimation

– Predictive posterior estimation

• Efficient because evaluated with double types (no autodiff)
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Variable Transforms

• Code HMC and optimization with Rn support

• Transform constrained parameters to unconstrained

– lower (upper) bound: offset (negated) log transform

– lower and upper bound: scaled, offset logit transform

– simplex: centered, stick-breaking logit transform

– ordered: free first element, log transform offsets

– unit length: spherical coordinates

– covariance matrix: Cholesky factor positive diagonal

– correlation matrix: rows unit length via quadratic stick-
breaking
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Variable Transforms (cont.)

• Inverse transform from unconstrained Rn

• Evaluate log probability in model block on natural scale

• Optionally adjust log probability for change of variables

– adjustment for MCMC and variational, not MLE

– add log determinant of inverse transform Jacobian

– automatically differentiable
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Variable and Expression Types
Variables and expressions are strongly, statically typed.

• Primitive: int, real

• Matrix: matrix[M,N], vector[M], row_vector[N]

• Bounded: primitive or matrix, with
<lower=L>, <upper=U>, <lower=L,upper=U>

• Constrained Vectors: simplex[K], ordered[N],
positive_ordered[N], unit_length[N]

• Constrained Matrices: cov_matrix[K], corr_matrix[K],
cholesky_factor_cov[M,N], cholesky_factor_corr[K]

• Arrays: of any type (and dimensionality)
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Integers vs. Reals

• Different types (conflated in BUGS, JAGS, and R)

• Distributions and assignments care

• Integers may be assigned to reals but not vice-versa

• Reals have not-a-number, and positive and negative infin-
ity

• Integers single-precision up to +/- 2 billion

• Integer division rounds (Stan provides warning)

• Real arithmetic is inexact and reals should not be (usually)
compared with ==
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Arrays vs. Vectors & Matrices

• Stan separates arrays, matrices, vectors, row vectors

• Which to use?

• Arrays allow most efficient access (no copying)

• Arrays stored first-index major (i.e., 2D are row major)

• Vectors and matrices required for matrix and linear alge-
bra functions

• Matrices stored column-major (memory locality matters)

• Are not assignable to each other, but there are conversion
functions
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“Sampling” Increments Log Prob
• A Stan program defines a log posterior

– typically through log joint and Bayes’s rule

• Sampling statements are just “syntactic sugar”

• A shorthand for incrementing the log posterior

• The following define the same∗ posterior

– y ~ poisson(lambda);

– increment_log_prob(poisson_log(y, lambda));

• ∗ up to a constant

• Sampling statement drops constant terms
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What Stan Does
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Full Bayes: No-U-Turn Sampler

• Adaptive Hamiltonian Monte Carlo (HMC)

– Potential Energy: negative log posterior

– Kinetic Energy: random standard normal per iteration

• Adaptation during warmup

– step size adapted to target total acceptance rate

– mass matrix (scale/rotation) estimated with regularization

• Adaptation during sampling

– simulate forward and backward in time until U-turn

– discrete sample along path prop to density

(Hoffman and Gelman 2011, 2014)
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Adaptation During Warmup

I II II II II II III

-
Iteration

Figure 34.1: Adaptation during warmup occurs in three stages: an initial fast adaptation in-

terval (I), a series of expanding slow adaptation intervals (II), and a final fast adaptation interval

(III). For HMC, both the fast and slow intervals are used for adapting the step size, while the slow

intervals are used for learning the (co)variance necessitated by the metric. Iteration numbering

starts at 1 on the left side of the figure and increases to the right.

Automatic Parameter Tuning

Stan is able to automatically optimize ✏ to match an acceptance-rate target, able to
estimate ⌃ based on warmup sample iterations, and able to dynamically adapt L on
the fly during sampling (and during warmup) using the no-U-turn sampling (NUTS)
algorithm (Hoffman and Gelman, 2014).

When adaptation is engaged (it may be turned off by fixing a step size and mass
matrix), the warmup period is split into three stages, as illustrated in Figure 34.1,
with two fast intervals surrounding a series of growing slow intervals. Here fast and
slow refer to parameters that adapt using local and global information, respectively;
the Hamiltonian Monte Carlo samplers, for example, define the step size as a fast pa-
rameter and the (co)variance as a slow parameter. The size of the the initial and final
fast intervals and the initial size of the slow interval are all customizable, although
user-specified values may be modified slightly in order to ensure alignment with the
warmup period.

The motivation behind this partitioning of the warmup period is to allow for more
robust adaptation. The stages are as follows.

I. In the initial fast interval the chain is allowed to converge towards the typical
set,1 with only parameters that can learn from local information adapted.

II. After this initial stage parameters that require global information, for exam-
ple (co)variances, are estimated in a series of expanding, memoryless windows;
often fast parameters will be adapted here as well.

1The typical set is a concept borrowed from information theory and refers to the neighborhood (or
neighborhoods in multimodal models) of substantial posterior probability mass through which the Markov
chain will travel in equilibrium.

394

• (I) initial fast interval to find typical set
(adapt step size, default 75 iterations)

• (II) expanding memoryless windows to estimate metric
(adapt step size & metric, initial 25 iterations)

• (III) final fast interval for final step size
(adapt step size, default 50 iterations)
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Posterior Inference

• Generated quantities block for inference:
predictions, decisions, and event probabilities

• Extractors for samples in RStan and PyStan

• Coda-like posterior summary

– posterior mean w. MCMC std. error, std. dev., quantiles

– split-R̂ multi-chain convergence diagnostic (Gelman/Rubin)

– multi-chain effective sample size estimation (FFT algorithm)

• Model comparison with approximate or exact leave-one-
out cross-validation
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MAP / Penalized MLE
• Posterior mode finding via L-BFGS optimization

(uses model gradient, efficiently approximates Hessian)

• Disables Jacobians for parameter inverse transforms

• Models, data, initialization as in MCMC

• Standard errors on unconstrained scale
(estimated using curvature of penalized log likelihood function)

• Standard errors on constrained scale
(sample unconstrained approximation and inverse transform)

• From Bayesian perspective, Laplace approximation to pos-
terior
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“Black Box” Variational Inference

• Black box so can fit any Stan model

• Multivariate normal approx to unconstrained posterior

– covariance: diagonal (aka mean-field) or full rank

– like Laplace approx, but around posterior mean, not mode

• Gradient-descent optimization

– ELBO gradient estimated via Monte Carlo + autodiff

• Returns approximate posterior mean / covariance

• Returns sample transformed to constrained space
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Stan as a Research Tool

• Stan can be used to explore algorithms

• Models transformed to unconstrained support on Rn

• Once a model is compiled, have

– log probability, gradient, and Hessian

– data I/O and parameter initialization

– model provides variable names and dimensionalities

– transforms to and from constrained representation
(with or without Jacobian)
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Under Stan’s Hood
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Euclidean Hamiltonian Monte Carlo
• Phase space: q position (parameters); p momentum

• Posterior density: π(q)

• Mass matrix: M

• Potential energy: V(q) = − logπ(q)

• Kinetic energy: T(p) = 1
2p
>M−1p

• Hamiltonian: H(p, q) = V(q)+ T(p)
• Diff eqs:

dq
dt

= +∂H
∂p

dp
dt

= −∂H
∂q
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Leapfrog Integrator Steps

• Solves Hamilton’s equations by simulating dynamics
(symplectic [volume preserving]; ε3 error per step, ε2 total error)

• Given: step size ε, mass matrix M, parameters q

• Initialize kinetic energy, p ∼ Normal(0, I)

• Repeat for L leapfrog steps:

p ← p − ε
2
∂V(q)
∂q

[half step in momentum]

q ← q + εM−1 p [full step in position]

p ← p − ε
2
∂V(q)
∂q

[half step in momentum]
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Reverse-Mode Auto Diff

• Eval gradient in (usually small) multiple of function eval
time

– independent of dimensionality

– time proportional to number of expressions evaluated

• Result accurate to machine precision (cf. finite diffs)

• Function evaluation builds up expression tree

• Dynamic program propagates chain rule in reverse pass

• Reverse mode computes ∇g in one pass for a function
f : RN → R
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Autodiff Expression Graph
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Figure 1: Expression graph for the normal log density function given in (1). Each circle cor-

responds to an automatic differentiation variable, with the variable name given to the right in

blue. The independent variables are highlighted in yellow on the bottom row, with the depen-

dent varaible highlighted in red on the top of the graph. The function producing each node is

displayed inside the circle, with operands denoted by arrows. Constants are shown in gray with

gray arrows leading to them because derivatives need not be propagated to constant operands.

In this example, the gradient with respect to all of y , µ, and � are calculated. It is
common in statistical models for some variables to be observed outcomes or fixed
prior parameters and thus constant. Constants need not enter into derivative calcu-
lations as nodes, allowing substantial reduction in both memory and time used for
gradient calculations. See Section 2 for an example of how the treatment of constants
differs from that of autodiff variables.

This mathematical formula corresponds to the expression graph in Figure 1. Each
subexpression corresponds to a node in the graph, and each edge connects the node
representing a function evaluation to its operands.

Figure 2 illustrates the forward pass used by reverse-mode automatic differentia-
tion to construct the expression graph for a program. The expression graph is con-
structed in the ordinary evaluation order, with each subexpression being numbered
and placed on a stack. The stack is initialized here with the dependent variables, but
this is not required. Each operand to an expression is evaluated before the expression
node is created and placed on the stack. As a result, the stack provides a topolog-
ical sort of the nodes in the graph (i.e., a sort in which each node representing an

6

f (y, µ,σ)
= log (Normal(y|µ,σ))
= − 12

(
y−µ
σ

)2 − logσ − 1
2 log(2π)

∂
∂y f (y, µ,σ)

= −(y − µ)σ−2
∂
∂µ f (y, µ,σ)

= (y − µ)σ−2
∂
∂σ f (y, µ,σ)

= (y − µ)2σ−3 − σ−1
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Autodiff Partials
var value partials

v1 y
v2 µ
v3 σ
v4 v1 − v2 ∂v4/∂v1 = 1 ∂v4/∂v2 = −1
v5 v4/v3 ∂v5/∂v4 = 1/v3 ∂v5/∂v3 = −v4v−23
v6 (v5)2 ∂v6/∂v5 = 2v5
v7 (−0.5)v6 ∂v7/∂v6 = −0.5
v8 logv3 ∂v8/∂v3 = 1/v3
v9 v7 − v8 ∂v9/∂v7 = 1 ∂v9/∂v8 = −1
v10 v9 − (0.5 log2π) ∂v10/∂v9 = 1
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Autodiff: Reverse Pass
var operation adjoint result

a1:9 = 0 a1:9 = 0
a10 = 1 a10 = 1
a9 += a10 × (1) a9 = 1
a7 += a9 × (1) a7 = 1
a8 += a9 × (−1) a8 = −1
a3 += a8 × (1/v3) a3 = −1/v3
a6 += a7 × (−0.5) a6 = −0.5
a5 += a6 × (2v5) a5 = −v5
a4 += a5 × (1/v3) a4 = −v5/v3
a3 += a5 × (−v4v−23 ) a3 = −1/v3 + v5v4v−23
a1 += a4 × (1) a1 = −v5/v3
a2 += a4 × (−1) a2 = v5/v3
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Stan’s Reverse-Mode

• Easily extensible object-oriented design

• Code nodes in expression graph for primitive functions

– requires partial derivatives

– built-in flexible abstract base classes

– lazy evaluation of chain rule saves memory

• Autodiff through templated C++ functions

– templating each argument avoids needless promotion
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Stan’s Reverse-Mode (cont.)

• Arena-based memory management

– specialized C++ operator new for reverse-mode variables

– custom functions inherit memory management through base

• Nested application to support ODE solver

• Adjoint-vector product formulation for multivariates

– avoids N2 memory cost of storing Jacobian

– minimizes autodiff nodes and virtual function calls
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Stan’s Autodiff vs. Alternatives
• Stan is fastest (and uses least memory)

– among open-source C++ alternatives
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Forward-Mode Auto Diff

• Evaluates expression graph forward from one independent
variable to any number of dependent variables

• Function evaluation propagates chain rule forward

• In one pass, computes ∂
∂x f (x) for a function f : R→ RN

– derivative of N outputs with respect to a single input
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Stan’s Forward Mode

• Templated scalar type for value and tangent

– allows higher-order derivatives

• Primitive functions propagate derivatives

• No need to build expression graph in memory

– much less memory intensive than reverse mode

• Autodiff through templated functions (as reverse mode)
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Second-Order Derivatives

• Compute Hessian (matrix of second-order partials)

Hi,j = ∂2

∂xi∂xj
f (x)

• Required for Laplace covariance approximation (MLE)

• Required for curvature (Riemannian HMC)

• Nest reverse-mode in forward for second order

• N forward passes: takes gradient of derivative
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Third-Order Derivatives

• Required for Riemannian HMC

• Gradients of Hessians (tensor of third-order partials)

∂3

∂xi∂xj∂xk
f (x)

– N2 forward passes: gradient of derivative of derivative
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Third-order Derivatives (cont.)

• Gradient of trace of Hessian times matrix

– ∇tr(H M), or

– needed for Riemannian Hamiltonian Monte Carlo

– computable in quadratic time for fixed M
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Jacobians

• Assume function f : RN → RM

• Partials for multivariate function (matrix of first-order par-
tials)

Ji,j = ∂
∂xi
fj(x)

• Required for stiff ordinary differential equations

– differentiate coupled sensitivity autodiff for ODE system

• Two execution strategies

1. Multiple reverse passes for rows

2. Forward pass per column (required for stiff ODE)
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Autodiff Functionals

• Functionals map templated functors to derivatives

– fully encapsulates and hides all autodiff types

• Autodiff functionals supported

– gradients: O(1)
– Jacobians: O(N)
– gradient-vector product (i.e., directional derivative): O(1)
– Hessian-vector product: O(N)
– Hessian: O(N)
– gradient of trace of matrix-Hessian product: O(N2)

(for SoftAbs RHMC)
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Diff Eq Derivatives

• Need derivatives of solution w.r.t. parameters

• Couple derivatives of system w.r.t. parameters(
∂
∂t
y,

∂
∂t
∂y
∂θ

)

• Calculate coupled system via nested autodiff of second
term

∂
∂θ
∂y
∂t

• Based on Eigen’s Odeint package (RK45 non-stiff solver)
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Stiff Diff Eqs

• Based on CVODES implementation of BDF (Sundials)

• CVODES builds-in efficient structure for sensitivity

• More nested autodiff required for system Jacobian

– algebraic reductions save a lot of work
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Variable Transforms

• Code HMC and optimization with Rn support

• Transform constrained parameters to unconstrained

– lower (upper) bound: offset (negated) log transform

– lower and upper bound: scaled, offset logit transform

– simplex: centered, stick-breaking logit transform

– ordered: free first element, log transform offsets

– unit length: spherical coordinates

– covariance matrix: Cholesky factor positive diagonal

– correlation matrix: rows unit length via quadratic stick-
breaking
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Variable Transforms (cont.)

• Inverse transform from unconstrained Rn

• Evaluate log probability in model block on natural scale

• Optionally adjust log probability for change of variables

– adjustment for MCMC and variational, not MLE

– add log determinant of inverse transform Jacobian

– automatically differentiable
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Parsing and Compilation
• Stan code parsed to abstract syntax tree (AST)

(Boost Spirit Qi, recursive descent, lazy semantic actions)

• C++ model class code generation from AST
(Boost Variant)

• C++ code compilation

• Dynamic linking for RStan, PyStan

• Moving to OCaml—nearly complete

– much cleaner and easier to manage than the C++

– optimize by tranforming intermediate representations

• Next: tuples, ragged arrays, lambdas (closures)
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Coding Probability Functions
• Vectorized to allow scalar or container arguments

(containers all same shape; scalars broadcast as necessary)

• Avoid repeated computations, e.g. logσ in

log Normal(y|µ,σ) = ∑N
n=1 log Normal(yn|µ,σ)

= ∑N
n=1− log

√
2π − logσ − yn − µ2σ 2

• recursive expression templates to broadcast and cache
scalars, generalize containers (arrays, matrices, vectors)

• traits metaprogram to drop constants (e.g., − log
√
2π

or logσ if constant) and calculate intermediate and return
types
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Stan’s Autodiff vs. Alternatives
• Stan is fastest and uses least memory

– among open-source C++ alternatives we managed to install
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Stan’s Matrix Calculations
• Faster in Eigen, but takes more memory

• Best of both worlds coming soon
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Stan’s Density Calculations

• Vectorization a huge win

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

1/16

1/4

1

4

16

20 22 24 26 28 210 212 214

dimensions

tim
e 

/ S
ta

n'
s 

tim
e

system
●

●

●

●

●

●

adept

adolc

cppad

double

sacado

stan

normal_log_density

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

1/16

1/4

1

4

16

20 22 24 26 28 210 212 214

dimensions

tim
e 

/ S
ta

n'
s 

tim
e

system
●

●

●

●

●

●

adept

adolc

cppad

double

sacado

stan

normal_log_density_stan

49



Hard Models, Big Data
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Riemannian Manifold HMC

• Best mixing MCMC method (fixed # of continuous params)

• Moves on Riemannian manifold rather than Euclidean

– adapts to position-dependent curvature

• geoNUTS generalizes NUTS to RHMC (Betancourt arXiv)

• SoftAbs metric (Betancourt arXiv)

– eigendecompose Hessian and condition

– computationally feasible alternative to original Fisher info metric
of Girolami and Calderhead (JRSS, Series B)

– requires third-order derivatives and implicit integrator

• merged with develop branch
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Laplace Approximation

• Multivariate normal approximation to posterior

• Compute posterior mode via optimization

θ∗ = arg maxθ p(θ|y)

• Laplace approximation to the posterior is

p(θ|y) ≈ MultiNormal(θ∗| −H−1)

• H is the Hessian of the log posterior

Hi,j = ∂2

∂θi ∂θj
logp(θ|y)
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Stan’s Laplace Approximation

• Operates on unconstrained parameters

• L-BFGS to compute posterior mode θ∗

• Automatic differentiation to compute H

– current R: finite differences of gradients

– soon: second-order automatic differentiation

• Draw a sample from approximate posterior

– transfrom back to constrained scale

– allows Monte Carlo computation of expectations
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“Black Box” Variational Inference

• Black box so can fit any Stan model

• Multivariate normal approx to unconstrained posterior

– covariance: diagonal mean-field or full rank

– not Laplace approx — around posterior mean, not mode

– transformed back to constrained space (built-in Jacobians)

• Stochastic gradient-descent optimization

– ELBO gradient estimated via Monte Carlo + autodiff

• Returns approximate posterior mean / covariance

• Returns sample transformed to constrained space
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VB in a Nutshell

• y is observed data, θ parameters

• Goal is to approximate posterior p(θ|y)
• with a convenient approximating density g(θ|φ)

– φ is a vector of parameters of approximating density

• Given data y, VB computes φ∗ minimizing KL-divergence

φ∗ = arg minφ KL[g(θ|φ) || p(θ|y)]

= arg minφ

∫
Θ

log

(
p(θ |y)
g(θ |φ)

)
g(θ|φ) dθ

= arg minφ Eg(θ|φ)
[

logp(θ |y)− logg(θ |φ)]
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VB vs. Laplace464 10. APPROXIMATE INFERENCE
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Figure 10.1 Illustration of the variational approximation for the example considered earlier in Figure 4.14. The
left-hand plot shows the original distribution (yellow) along with the Laplace (red) and variational (green) approx-
imations, and the right-hand plot shows the negative logarithms of the corresponding curves.

However, we shall suppose the model is such that working with the true posterior
distribution is intractable.

We therefore consider instead a restricted family of distributions q(Z) and then
seek the member of this family for which the KL divergence is minimized. Our goal
is to restrict the family sufficiently that they comprise only tractable distributions,
while at the same time allowing the family to be sufficiently rich and flexible that it
can provide a good approximation to the true posterior distribution. It is important to
emphasize that the restriction is imposed purely to achieve tractability, and that sub-
ject to this requirement we should use as rich a family of approximating distributions
as possible. In particular, there is no ‘over-fitting’ associated with highly flexible dis-
tributions. Using more flexible approximations simply allows us to approach the true
posterior distribution more closely.

One way to restrict the family of approximating distributions is to use a paramet-
ric distribution q(Z|ω) governed by a set of parameters ω. The lower bound L(q)
then becomes a function of ω, and we can exploit standard nonlinear optimization
techniques to determine the optimal values for the parameters. An example of this
approach, in which the variational distribution is a Gaussian and we have optimized
with respect to its mean and variance, is shown in Figure 10.1.

10.1.1 Factorized distributions
Here we consider an alternative way in which to restrict the family of distri-

butions q(Z). Suppose we partition the elements of Z into disjoint groups that we
denote by Zi where i = 1, . . . , M . We then assume that the q distribution factorizes
with respect to these groups, so that

q(Z) =

M∏

i=1

qi(Zi). (10.5)

• solid yellow: target; red: Laplace; green: VB

• Laplace located at posterior mode

• VB located at approximate posterior mean

— Bishop (2006) Pattern Recognition and Machine Learning, fig. 10.1
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KL-Divergence Example468 10. APPROXIMATE INFERENCE

Figure 10.2 Comparison of
the two alternative forms for the
Kullback-Leibler divergence. The
green contours corresponding to
1, 2, and 3 standard deviations for
a correlated Gaussian distribution
p(z) over two variables z1 and z2,
and the red contours represent
the corresponding levels for an
approximating distribution q(z)
over the same variables given by
the product of two independent
univariate Gaussian distributions
whose parameters are obtained by
minimization of (a) the Kullback-
Leibler divergence KL(q∥p), and
(b) the reverse Kullback-Leibler
divergence KL(p∥q).
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is used in an alternative approximate inference framework called expectation prop-
agation. We therefore consider the general problem of minimizing KL(p∥q) whenSection 10.7
q(Z) is a factorized approximation of the form (10.5). The KL divergence can then
be written in the form

KL(p∥q) = −
∫

p(Z)

[
M∑

i=1

ln qi(Zi)

]
dZ + const (10.16)

where the constant term is simply the entropy of p(Z) and so does not depend on
q(Z). We can now optimize with respect to each of the factors qj(Zj), which is
easily done using a Lagrange multiplier to giveExercise 10.3

q⋆
j (Zj) =

∫
p(Z)

∏

i̸=j

dZi = p(Zj). (10.17)

In this case, we find that the optimal solution for qj(Zj) is just given by the corre-
sponding marginal distribution of p(Z). Note that this is a closed-form solution and
so does not require iteration.

To apply this result to the illustrative example of a Gaussian distribution p(z)
over a vector z we can use (2.98), which gives the result shown in Figure 10.2(b).
We see that once again the mean of the approximation is correct, but that it places
significant probability mass in regions of variable space that have very low probabil-
ity.

The difference between these two results can be understood by noting that there
is a large positive contribution to the Kullback-Leibler divergence

KL(q∥p) = −
∫

q(Z) ln

{
p(Z)

q(Z)

}
dZ (10.18)

• Green: true distribution p; Red: best approximation g

(a) VB-like: KL[g ||p]
(b) EP-like: KL[p ||g]

• VB systematically underestimates posterior variance

— Bishop (2006) Pattern Recognition and Machine Learning, fig. 10.2
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Stan’s “Black-Box” VB

• Typically custom g() per model

– based on conjugacy and analytic updates

• Stan uses “black-box VB” with multivariate Gaussian g

g(θ|φ) = MultiNormal(θ |µ,Σ)

for the unconstrained posterior

– e.g., scales σ log-transformed with Jacobian

• Stan provides two versions

– Mean field: Σ diagonal

– General: Σ dense
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Stan’s VB: Computation

• Use L-BFGS optimization to optimize θ

• Requires gradient of KL-divergence w.r.t. θ up to constant

• Approximate KL-divergence and gradient via Monte Carlo

– only need approximate gradient calculation for soundness
of L-BFGS

– KL divergence is an expectation w.r.t. approximation g(θ|φ)
– Monte Carlo draws i.i.d. from approximating multi-normal

– derivatives with respect to true model log density via reverse-
mode autodiff

– so only a few Monte Carlo iterations are enough
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Stan’s VB: Computation (cont.)

• To support compatible plug-in inference

– draw Monte Carlo sample θ(1), . . . , θ(M) with

θ(m) ∼ MultiNormal(θ |µ∗,Σ∗)

– inverse transfrom from unconstrained to constrained scale

– report to user in same way as MCMC draws

• Future: reweight θ(m) via importance sampling

– with respect to true posterior

– to improve expectation calculations
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Near Future: Stochastic VB

• Data-streaming form of VB

– Scales to billions of observations

– Hoffman et al. (2013) Stochastic variational inference. JMLR 14.

• Mashup of stochastic gradient (Robbins and Monro 1951)
and VB

– subsample data (e.g., stream in minibatches)

– upweight each minibatch to full data set size

– use to make unbiased estimate of true gradient

– take gradient step to minimize KL-divergence

• Prototype code complete
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“Black Box” EP

• Fast, approximate inference (like VB)

– VB and EP minimize divergence in opposite directions

– especially useful for Gaussian processes

• Asynchronous, data-parallel expectation propagation (EP)

• Cavity distributions control subsample variance

• Prototype stage

• collaborating with Seth Flaxman, Aki Vehtari, Pasi Jylänki, John

Cunningham, Nicholas Chopin, Christian Robert
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The Cavity Distribution

Figure 1: Sketch illustrating the benefits of expectation propagation (EP) ideas in Bayesian compu-
tation. In this simple example, the parameter space ✓ has two dimensions, and the data have been
split into five pieces. Each oval represents a contour of the likelihood p(yk|✓) provided by a single
partition of the data. A simple parallel computation of each piece separately would be inefficient
because it would require the inference for each partition to cover its entire oval. By combining with
the cavity distribution g�k(✓) in a manner inspired by EP, we can devote most of our computational
effort to the area of overlap.

2. Initialization. Choose initial site approximations gk(✓) from some restricted family (for
example, multivariate normal distributions in ✓). Let the initial approximation to the posterior
density be g(✓) = p(✓)

QK
k=1 gk(✓).

3. EP-like iteration. For k = 1, . . . , K (in serial or parallel):

(a) Compute the cavity distribution, g�k(✓) = g(✓)/gk(✓).

(b) Form the tilted distribution, g\k(✓) = p(yk|✓)g�k(✓).

(c) Construct an updated site approximation gnew
k (✓) such that gnew

k (✓)g�k(✓) approximates
g\k(✓).

(d) If parallel, set gk(✓) to gnew
k (✓), and a new approximate distribution g(✓) = p(✓)

QK
k=1 gk(✓)

will be formed and redistributed after the K site updates. If serial, update the global
approximation g(✓) to gnew

k (✓)g�k(✓).

4. Termination. Repeat step 3 until convergence of the approximate posterior distribution g.

The benefits of this algorithm arise because each site gk comes from a restricted family with
complexity is determined by the number of parameters in the model, not by the sample size; this is
less expensive than carrying around the full likelihood, which in general would require computation
time proportional to the size of the data. Furthermore, if the parametric approximation is multi-
variate normal, many of the above steps become analytical, with steps 3a, 3b, and 3d requiring only
simple linear algebra. Accordingly, EP tends to be applied to specific high-dimensional problems
where computational cost is an issue, notably for Gaussian processes (Rasmussen, and Williams,
2006, Jylänki, Vanhatalo, and Vehtari, 2011, Cunningham, Hennig, and Lacoste-Julien, 2011, and
Vanhatalo et al., 2013), and efforts are made to keep the algorithm stable as well as fast.

Figure 1 illustrates the general idea. Here the data have been divided into five pieces, each of
which has a somewhat awkward likelihood function. The most direct parallel partitioning approach
would be to analyze each of the pieces separately and then combine these inferences at the end,

3

• Two parameters, with data split into y1, . . . , y5

• Contours of likelihood p(yk|θ) for k ∈ 1:5

• g−k(θ) is cavity distribution (current approx. without yk)

• Separately computing for yk reqs each partition to cover its area

• Combining likelihood with cavity focuses on overlap
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Challenges
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Discrete Parameters

• e.g., simple mixture models, survival models, HMMs, dis-
crete measurement error models, missing data

• Marginalize out discrete parameters

• Efficient sampling due to Rao-Blackwellization

• Inference straightforward with expectations

• Too difficult for many of our users
(exploring encapsulation options)
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Models with Missing Data

• In principle, missing data just additional parameters

• In practice, how to declare?

– observed data as data variables

– missing data as parameters

– combine into single vector
(in transformed parameters or local in model)
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Position-Dependent Curvature

• Mass matrix does global adaptation for

– parameter scale (diagonal) and rotation (dense)

• Dense mass matrices hard to estimate (O(N2) estimands)

• Problem: Position-dependent curvature

– Example: banana-shaped densities

* arise when parameter is product of other parameters

– Example: hierarchical models

* hierarchical variance controls lower-level parameters

• Mitigate by reducing stepsize

– initial (stepsize) and target acceptance (adapt_delta)
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The End
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