

Physical and situational inequality on airplanes predicts air rage

Katherine A. DeCelles^{a,1} and Michael I. Norton^b

^aOrganizational Behaviour and Human Resource Management Area, Rotman School of Management, University of Toronto, Toronto, ON, Canada M5S 3E6; and ^bMarketing Unit, Harvard Business School, Boston, MA 02163

Edited by Susan T. Fiske, Princeton University, Princeton, NJ, and approved March 30, 2016 (received for review November 3, 2015)

We posit that the modern airplane is a social microcosm of classbased society, and that the increasing incidence of "air rage" can be understood through the lens of inequality. Research on inequality typically examines the effects of relatively fixed, macrostructural forms of inequality, such as socioeconomic status; we examine how temporary exposure to both physical and situational inequality, induced by the design of environments, can foster antisocial behavior. We use a complete set of all onboard air rage incidents over several years from a large, international airline to test our predictions. Physical inequality on airplanes-that is, the presence of a first class cabin-is associated with more frequent air rage incidents in economy class. Situational inequality-boarding from the front (requiring walking through the first class cabin) versus the middle of the plane-also significantly increases the odds of air rage in both economy and first class. We show that physical design that highlights inequality can trigger antisocial behavior on airplanes. More broadly, these results point to the importance of considering the design of environments-from airplanes to office layouts to stadium seating-in understanding both the form and emergence of antisocial behavior.

physical inequality \mid situational inequality \mid antisocial behavior \mid social class \mid air rage

Recent media attention has been devoted to the phenomenon colloquially known as "air rage" (1, 2): a form of antisocial behavior by airplane passengers becoming abusive or unruly, antagonizing crew members and other passengers, and endangering flight safety. Such incidents can be emotionally traumatic for passengers and staff, and expensive and reputationally damaging for airlines (3). Although virtually no empirical research examines the antecedents of this hazardous and increasingly common phenomenon, popular explanations for air rage include crowded planes, frustrating delays, and shrinking seats (1, 2). We advance an alternative view: the modern airplane reflects a social microcosm of class-based society, making inequality salient to passengers through both the physical design of the plane (the presence of a first class cabin) and, more subtly, the boarding procedure (whether economy passengers must pass through the first class cabin). We hypothesize that both types of inequality on airplanesphysical (presence of first class) and situational (boarding location)-trigger antisocial behavior (negative, often aggressive behaviors that are harmful to others) (4).

Since Durkheim (5), scholars across disciplines have investigated inequality and social class. The influence of social class—individuals' material resources and relative rank in the socioeconomic hierarchy—is ubiquitous, and can affect critical outcomes, such as health, well-being, emotions, and behavior (6–12). Economic scholars often conceptualize class as socioeconomic status, comprised of relatively chronic and macrostructurally determined factors, such as education, income, and geographic location (e.g., refs. 13 and 14). Our theoretical account suggests that inequality also manifests in everyday environments via both physical and situational factors. We argue that both physical and situational inequality increases the salience of individuals' rank in the socioeconomic hierarchy, and shapes individuals' likelihood of antisocial behavior. We define physical inequality as inequality in physical space or amenities in the built environment; for example, companies might provide cubicles for staff but private offices for executives, and many public spaces, from stadiums to airplanes, have tiered seating systems. Second, within environments with physical inequality, we refer to variation in the salience of that physical inequility as situational inequality: for example, a floor plan that requires staff to walk past executive offices to arrive at their cubicles, or stadium or airplane seating that requires passing through the expensive seats to arrive at the less expensive ones. Indeed, previous research suggests that people's perceptions of their relative socioeconomic status are influenced by situational factors (15–17) and that the salience of inequality exerts an impact, as evidenced by poorer health outcomes in impoverished neighborhoods that border wealthier areas (18).

We argue that exposure to both physical and situational inequality can result in antisocial behavior. Our perspective extends prior research on inequality in several ways. First, criminological and economic research typically examines how variance in stable macrostructural factors, such as socioeconomic status, predicts outcomes, including violent crime and economic mobility (13, 14, 19–21); we show that in addition to such stable macrostructural factors, even temporary exposure to physical inequality—being literally placed in one's "class" (economy class) for the duration of a flight—relates to antisocial behavior, and that situational inequality—being reminded of economy or first class via the boarding procedure—further predicts such behavior. Second, building on recent research demonstrating that increasing the visibility of inequality decreases prosocial behavior by relatively higher social

Significance

We suggest that physical and situational inequality are built into people's everyday environments—such as the modern airplane—and that exposure to these forms of inequality can trigger antisocial behavior. Analyses reveal that air rage is more common in economy class on airplanes, where inequality is physically present, and in both economy and first class when inequality is situationally salient. We extend research demonstrating that the salience of inequality decreases prosocial behavior by higher class individuals, showing that temporary exposure to physical and situational inequality predicts antisocial behavior among individuals in both higher and lower classes. Moreover, we explore a novel predictor of inequalityinduced antisocial behavior—the design of physical environments—augmenting research on macrostructural forms of inequality.

Author contributions: K.A.D. collected the data; K.A.D. and M.I.N. designed research; K.A.D. and M.I.N. performed research; K.A.D. analyzed data; and K.A.D. and M.I.N. wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

¹To whom correspondence should be addressed. Email: katy.decelles@rotman.utoronto.ca.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. 1073/pnas.1521727113/-/DCSupplemental.

class individuals (22, 23), we show that situational inequality increases antisocial behavior among both higher and lower social class individuals.

We situate our research in the common experience of airplane travel, suggesting that airplanes serve as a microcosm of classbased society that can expose people to both physical and situational inequality, resulting in greater odds of antisocial behavior in the form of air rage. First, we hypothesize that economy passengers are exposed to physical inequality when airplanes have a first class cabin (compared with when they do not), and that air rage by economy passengers will be more likely on flights with (relative to planes without) a first class cabin. Second, situational inequality occurs on airplanes when economy passengers board the airplane from the front-necessitating passing through the first class cabin and already-seated first class passengers-than from the middle, where passengers typically walk directly into their respective class. We hypothesize that such situational inequality increases the salience for economy passengers of their relatively disadvantaged status compared with first class passengers; such awareness has been shown to prompt negative emotions and aggressive behavioral scripts (24-26). Specifically, we predict that the odds of air rage by economy passengers will be greater in planes with first class cabins that board from the front versus the middle of the aircraft.

Third, we hypothesize that first class passengers are made more aware of their relatively advantaged status (compared with economy passengers) in the presence of situational inequality, increasing the odds of air rage by first class passengers. Particularly when making downward social comparisons to the disadvantaged, research shows that higher social class individuals are more selfish, entitled, and scornful (15, 22, 27, 28), psychological states that foster antisocial behavior (29). Dovetailing with research demonstrating that increased visibility of inequality decreases other-regarding behavior among wealthier individuals (23), we predict greater odds of air rage among first class passengers when situational inequality is present: when flights are boarded from the front versus the middle of the airplane.

To test our predictions, we obtained a private database of all incidents of air rage from a large international airline over several years (circa 2010) of between 1 and 5 million flights. (We present a range to protect airline confidentiality.)

Results

Descriptive and comparative information on the onboard incidents that were matched to a flight is in Table 1. We first examined the base rate of air rage (i.e., the number of incidents per 1,000 flights). Supporting our account, air rage is relatively more common in economy class on flights with first class (incidence rate of 1.58) than flights without first class (0.14; t = 37.17, P < 0.0001). The incidence of air rage in first class (0.31) is intermediate and significantly different from the incidence of air rage in economy with (t = -29.37, P < 0.0001) and without (t = 8.02, P < 0.0001) first class.

We used binary logistic regression with robust SEs, and clustering on flight route, predicting whether or not a flight contained an incident of air rage in the relevant cabin and including controls for commonly invoked explanations for air rage, such as seat pitch (leg room) and seat width, delay amount, and cabin space, as well as additional controls for flight distance, number of seats, and whether or not the flight was international.

We first examined how our control variables related to air rage (Table 2). In economy class (models 1 and 2), planes with larger cabin area, longer flights, flights with longer delays, and domestic (compared with international) flights had comparatively greater odds of air rage. We did not find evidence that seat pitch significantly related to air rage, and seat width marginally predicted lower odds of air rage in model 1 (P = 0.05), but significantly related to greater odds of air rage in model 2 (P < 0.01). In first class (model 3), planes with more first class seats, planes with larger cabin areas, and longer flights significantly related to air rage. The effects of additional control variables are in *SI Methods*.

We hypothesized that physical inequality-the presence of first class on an airplane-would predict greater incidence of air rage in economy. Table 2 (model 1) shows that the chances of an onboard economy incident are 3.84-times higher when first class is present versus absent (P < 0.001); dividing the coefficients from the regression (1.3463 first class present/0.1419 delay hours), presence of first class is associated with greater odds of air rage equivalent to the effect of an additional 9-h and 29-min flight delay. We also hypothesized that situational inequalityboarding from the front of the plane-would predict greater incidence of air rage in economy. As predicted, front boarding of planes predicted 2.18-times greater odds of an economy cabin incident than middle boarding (P = 0.005; model 2), an effect equivalent to an additional 5-h and 58-min flight delay (0.7772 front boarding/0.1305 delay hours). Finally, our hypothesis that situational inequality-boarding from the front of the planewould predict greater incidence of air rage in first class was supported: front boarding of planes predicted 11.86 greater odds of a first class air rage incident than boarding from the middle (P = 0.013; model 3). (For models predicting first class incidents, the coefficient for delay hours was not significantly different from zero. Therefore we are unable to provide an estimate of this effect in delay hours.)

We observed differences in the types of air rage in economy versus first class. For example, incidents in first class were more likely to be a result of belligerent behavior, involving a passenger's expression of strong anger (36.3% of the incidents in first class vs. 27.8% in economy class), whereas incidents in economy were more likely to result from emotional outbursts (6.2% of the incidents in economy class vs. 2.2% in first class; proportion comparison z-tests all P < 0.01). These preliminary results are consistent with research linking high status to displays of anger

Disruptive passengers	Percent of incidents (%)	Incident type	Percent of incidents (%)	Cabin	Percent of incidents (%)*
Female	23.83	Belligerent behavior	29.00	First class	15.26
Male	72.49	Drugs	0.14	Economy class	83.98
Two or more people	0.66	Emotional	5.50	Missing	0.76
Missing	3.02	Intoxication	31.75		
		Noncompliant	18.67		
		Sexual	0.90		
		Smoking	10.90		
		Other (e.g., medical related)	3.14		

Table 1. Description of onboard incidents

Data reported here are at the incident (rather than the flight) level of analysis.

*A t test between raw number of incidents between economy and first class is significant at P < 0.0001.

Table 2. Logistic regression models predicting onboard incidents

Variable	Model 1	Model 2	Model 3
Dependent variable	Economy class incident	Economy class incident	First class incident
Dataset	All flights	Flights with first class	Flights with first class
Predictor variables	-	-	-
Economy seats	1.0010 (0.0012)	1.0031** (0.0014)	_
First class seats	_	_	1.0342** (0.0139)
Economy seat width (cm)	0.9514* (0.0243)	1.2175*** (0.0922)	_
Economy seat pitch (cm)	0.9887 (0.0101)	1.0093 (0.0125)	_
First class seat width (cm) [†]	_	_	0.8147 (0.1101)
Flight distance in miles	1.0004**** (0.0001)	1.0004**** (0.0001)	1.0003** (0.0001)
Flight delay in hours	1.1524**** (0.0151)	1.1393**** (0.0157)	1.0526 (0.0468)
Cabin area (m ²)	1.1186** (0.0528)	1.1213** (0.0610)	1.4777*** (0.1969)
International flight (1 = yes)	0.6840**** (0.0681)	0.7185*** (0.0720)	0.8212 (0.1869)
First class present $(1 = yes)$	3.8431**** (0.4743)	_	_
Boarding from front $(1 = yes)$	_	2.1754*** (0.6083)	11.8594** (11.8367)
McFadden's pseudo R^2	0.1028	0.0578	0.0675

Values presented are odds ratios with robust SEs. The full dataset represented ~150-300 unique arrival and departure airports, and between 500 and 1,000 unique flight routes. SEs are adjusted clusters based on plane route (i.e., the specific departure airport and arrival airport combination). All models include fixed effects for flight regions (suppressed for space but included in *SI Methods*). Observations were dropped because they were in a flight region that had no incidents. Flights with first class present are ~46.1% of the population of flights. No flights without first class boarded from the middle of the plane. *P < 0.10, **P < 0.05, ***P < 0.01, ****P < 0.0001.

[†]Seat pitch data are not available because many first class seats had their own pods/beds.

and low status to reduced self-control (30, 31), and suggest that the visibility of inequality may induce different types of antisocial behavior among the relatively advantaged and disadvantaged.

Conclusion

Class-based seating is both more prevalent and more unequal in recent years, with first class cabins claiming an increasingly large share of total space (32). As both inequality and class-based airplane seating continue to rise, incidents of air rage may similarly climb in frequency. Building on previous interdisciplinary research on inequality, we demonstrate that both physical and situational factors present in everyday environments are associated with dangerous, class-specific antisocial behaviors among both the "haves" and the "have nots."

Methods

Our study was approved by the University of Toronto Ethics Review Board (Protocol 32624) and did not require informed consent. We examined a population of flights from a large international airline over several years (circa 2010). We used a private database that contained all documented disruptive passenger incidents during this time period (n = 1,500 to 4,000). Of

- Reuters (2015) Air rage becoming more common, due to airlines' shrinking seats. Available at fortune.com/2015/04/16/air-rage-becoming-more-common/. Accessed November 1, 2015.
- Rosenbloom S (September 28, 2014) A recipe for air rage. New York Times. Available at www.nytimes.com/2014/09/28/travel/a-recipe-for-air-rage.html?_r=0. Accessed November 1, 2015.
- Penzenstadler N (February 2, 2015) FAA rarely wields hefty penalty hammer with air rage. USA Today. Available at www.usatoday.com/story/news/2015/01/30/faa-bigfines-rare-in-air-rage-cases/22479715/. Accessed December 12, 2015.
- Miller PA, Eisenberg N (1988) The relation of empathy to aggressive and externalizing/antisocial behavior. *Psychol Bull* 103(3):324–344.
- 5. Durkheim E (1933) The Division of Labor in Society (The Free Press, New York).
- Adler NE (2009) Health disparities through a psychological lens. Am Psychol 64(8):663–673.
 Sampson RJ (2012) Neighborhood inequality, violence, and the social infrastructure of
- the American city. Research on Schools, Neighborhoods, and Communities: Toward Civic Responsibility, ed Tate WF, IV (Rowman and Littlefield, Lanham, MD), pp 11–28.
 Wilkinson R, Pickett K (2009) The Spirit Level: Why Greater Equality Makes Societies
- Stronger (Bloomsbury, New York).
- 9. Bourdieu P (1985) The social space and the genesis of groups. Theory Soc 14(6):723-744.
- Domhoff GW (1998) Who Rules America (Mayfield Publishing, Mountain View, CA).
 Kraus MW, Piff PK, Keltner D (2011) Social class as culture the convergence of re-
- sources and rank in the social realm. Curr Dir Psychol Sci 20(4):246–250.
 Rivera LA (2012) Hiring as cultural matching the case of elite professional service firms. Am Sociol Rev 77(6):999–1022.

these, we selected only those incidents that occurred on board and could be matched to a flight record; we used these data in our analyses (see *SI Methods* for additional details). The airline classified each incident by flight number and date, and recorded disruptive passengers' seating class, gender, and incident type (e.g., belligerent behavior or emotional outburst).

We combined the air rage incident data with a proprietary database of the population of flights from this airline in the time period (n = 1-5 million flights). The flight database included flight characteristics (e.g., plane model details and flight details, such as departure and arrival locations, delays, and distance). Using the plane models indicated in the dataset, we coded the physical layout of each airplane with readily available online information from the airline, including seat and cabin dimensions. We operationalized physical inequality on the plane by the presence or absence of first class on all flights; we operationalized situational inequality by boarding type—front boarding or middle boarding planes—within flights that contained a first class cabin.

ACKNOWLEDGMENTS. We thank Cameron Anderson, Stéphane Côté, Sanford DeVoe, Avi Goldfarb, Lindy Greer, Nir Halevy, Stefanie Stantcheva, Bob Sutton, Kathleen Vohs, and Robb Willer for their helpful comments; and M. Bilal Ahmed, Xiang Ao, and Danielle Dobos for their help with the data. This work was supported by a Social Science and Humanities Research Council of Canada grant and the Harvard Business School.

- Chetty R, Hendren N, Kline P, Saez E (2014) Where is the Land of Opportunity? The Geography of Intergenerational Mobility in the United States (No. w19843) (National Bureau of Economic Research, Cambridge, MA).
- Ludwig J, et al. (2013) Long-Term Neighborhood Effects on Low-Income Families: Evidence from Moving to Opportunity (No. w18772) (National Bureau of Economic Research, Cambridge, MA).
- Piff PK, Stancato DM, Côté S, Mendoza-Denton R, Keltner D (2012) Higher social class predicts increased unethical behavior. Proc Natl Acad Sci USA 109(11):4086–4091.
- Kraus MW, Côté S, Keltner D (2010) Social class, contextualism, and empathic accuracy. *Psychol Sci* 21(11):1716–1723.
- Piff PK, Kraus MW, Côté S, Cheng BH, Keltner D (2010) Having less, giving more: The influence of social class on prosocial behavior. J Pers Soc Psychol 99(5):771–784.
- Pellowski JA, Kalichman SC, Matthews KA, Adler N (2013) A pandemic of the poor: Social disadvantage and the U.S. HIV epidemic. *Am Psychol* 68(4):197–209.
- Daly M, Wilson M, Vasdev S (2001) Income inequality and homicide rates in Canada and the United States. Can J Criminol 43(2):219–236.
- Fajnzylber P, Lederman D, Loayza N (2002) What causes violent crime? Eur Econ Rev 46(7):1323–1357.
- 21. Kelly M (2000) Inequality and crime. Rev Econ Stat 82(4):530-539.
- Côté S, House J, Willer R (2015) High economic inequality leads higher-income individuals to be less generous. Proc Natl Acad Sci USA 112(52):15838–15843.
- Nishi A, Shirado H, Rand DG, Christakis NA (2015) Inequality and visibility of wealth in experimental social networks. *Nature* 526(7573):426–429.

AN VNA

- Berkowitz L (1989) Frustration-aggression hypothesis: Examination and reformulation. *Psychol Bull* 106(1):59–73.
- Buss AH (1966) Instrumentality of aggression, feedback, and frustration as determinants of physical aggression. J Pers Soc Psychol 3(2):153–162.
- Anderson CA, Bushman BJ (2001) Effects of violent video games on aggressive behavior, aggressive cognition, aggressive affect, physiological arousal, and prosocial behavior: A meta-analytic review of the scientific literature. *Psychol Sci* 12(5):353–359.
- Harris LT, Fiske ST (2006) Dehumanizing the lowest of the low: Neuroimaging responses to extreme out-groups. *Psychol Sci* 17(10):847–853.
- Major B (1994) From social inequality to personal entitlement: The role of social comparisons, legitimacy appraisals, and group membership. Adv Exp Soc Psychol 26:293–355.
- Baumeister RF, Lobbestael J (2011) Emotions and antisocial behavior. J Forensic Psychiatry Psychol 22(5):635–649.
- Moffitt TE, et al. (2011) A gradient of childhood self-control predicts health, wealth, and public safety. Proc Natl Acad Sci USA 108(7):2693–2698.
- Tiedens LZ, Ellsworth PC, Mesquita B (2000) Sentimental stereotypes: Emotional expectations for high-and low-status group members. *Pers Soc Psychol Bull* 26(5):560–575.
 Berman EP (2014) *Inequality in the Skies*. Available at https://orgtheory.wordpress.
- Berman EP (2014) Inequality in the Skies. Available at https://orgtheory.wordpress. com/2014/11/24/inequality-in-the-skies/. Accessed November 1, 2015.