Bayesian Data Analysis Third edition
 (Draft, 15 July 2013)

Andrew Gelman
Columbia University
John B. Carlin
University of Melbourne
Hal S. Stern
University of California, Irvine
David B. Dunson
Duke University
Aki Vehtari
Aalto University
Donald B. Rubin
Harvard University

Copyright ©1995-2013, by Andrew Gelman, John Carlin, Hal Stern, Donald Rubin, David Dunson, and Aki Vehtari

Contents

Preface xiii
Part I: Fundamentals of Bayesian Inference 1
1 Probability and inference 3
1.1 The three steps of Bayesian data analysis 3
1.2 General notation for statistical inference 4
1.3 Bayesian inference 6
1.4 Discrete probability examples: genetics and spell checking 8
1.5 Probability as a measure of uncertainty 11
1.6 Example of probability assignment: football point spreads 13
1.7 Example: estimating the accuracy of record linkage 16
1.8 Some useful results from probability theory 19
1.9 Computation and software 22
1.10 Bayesian inference in applied statistics 24
1.11 Bibliographic note 25
1.12 Exercises 27
2 Single-parameter models 29
2.1 Estimating a probability from binomial data 29
2.2 Posterior as compromise between data and prior information 32
2.3 Summarizing posterior inference 32
2.4 Informative prior distributions 34
2.5 Estimating a normal mean with known variance 39
2.6 Other standard single-parameter models 42
2.7 Example: informative prior distribution for cancer rates 47
2.8 Noninformative prior distributions 51
2.9 Weakly informative prior distributions 55
2.10 Bibliographic note 56
2.11 Exercises 57
3 Introduction to multiparameter models 63
3.1 Averaging over 'nuisance parameters' 63
3.2 Normal data with a noninformative prior distribution 64
3.3 Normal data with a conjugate prior distribution 67
3.4 Multinomial model for categorical data 69
3.5 Multivariate normal model with known variance 70
3.6 Multivariate normal with unknown mean and variance 72
3.7 Example: analysis of a bioassay experiment 74
3.8 Summary of elementary modeling and computation 78
3.9 Bibliographic note 78
3.10 Exercises 79
4 Asymptotics and connections to non-Bayesian approaches 83
4.1 Normal approximations to the posterior distribution 83
4.2 Large-sample theory 87
4.3 Counterexamples to the theorems 89
4.4 Frequency evaluations of Bayesian inferences 91
4.5 Bayesian interpretations of other statistical methods 92
4.6 Bibliographic note 97
4.7 Exercises 98
5 Hierarchical models 101
5.1 Constructing a parameterized prior distribution 102
5.2 Exchangeability and setting up hierarchical models 104
5.3 Fully Bayesian analysis of conjugate hierarchical models 108
5.4 Estimating exchangeable parameters from a normal model 113
5.5 Example: parallel experiments in eight schools 118
5.6 Hierarchical modeling applied to a meta-analysis 123
5.7 Weakly informative priors for hierarchical variance parameters 128
5.8 Bibliographic note 132
5.9 Exercises 134
Part II: Fundamentals of Bayesian Data Analysis 139
6 Model checking 141
6.1 The place of model checking in applied Bayesian statistics 141
6.2 Do the inferences from the model make sense? 142
6.3 Posterior predictive checking 143
6.4 Graphical posterior predictive checks 153
6.5 Model checking for the educational testing example 159
6.6 Bibliographic note 161
6.7 Exercises 163
7 Evaluating, comparing, and expanding models 165
7.1 Measures of predictive accuracy 166
7.2 Information criteria and cross-validation 169
7.3 Model comparison based on predictive performance 178
7.4 Model comparison using Bayes factors 182
7.5 Continuous model expansion 184
7.6 Implicit assumptions and model expansion: an example 187
7.7 Bibliographic note 192
7.8 Exercises 193
8 Modeling accounting for data collection 197
8.1 Bayesian inference requires a model for data collection 197
8.2 Data-collection models and ignorability 199
8.3 Sample surveys 205
8.4 Designed experiments 214
8.5 Sensitivity and the role of randomization 218
8.6 Observational studies 220
8.7 Censoring and truncation 224
8.8 Discussion 229
8.9 Bibliographic note 229
8.10 Exercises 230
CONTENTS ix
9 Decision analysis 237
9.1 Bayesian decision theory in different contexts 238
9.2 Using regression predictions: incentives for telephone surveys 239
9.3 Multistage decision making: medical screening 245
9.4 Hierarchical decision analysis for radon measurement 246
9.5 Personal vs. institutional decision analysis 255
9.6 Bibliographic note 257
9.7 Exercises 257
Part III: Advanced Computation 259
10 Introduction to Bayesian computation 261
10.1 Numerical integration 261
10.2 Distributional approximations 262
10.3 Direct simulation and rejection sampling 263
10.4 Importance sampling 265
10.5 How many simulation draws are needed? 267
10.6 Computing environments 268
10.7 Debugging Bayesian computing 270
10.8 Bibliographic note 271
10.9 Exercises 272
11 Basics of Markov chain simulation 275
11.1 Gibbs sampler 276
11.2 Metropolis and Metropolis-Hastings algorithms 278
11.3 Using Gibbs and Metropolis as building blocks 280
11.4 Inference and assessing convergence 281
11.5 Effective number of simulation draws 286
11.6 Example: hierarchical normal model 288
11.7 Bibliographic note 291
11.8 Exercises 291
12 Computationally efficient Markov chain simulation 293
12.1 Efficient Gibbs samplers 293
12.2 Efficient Metropolis jumping rules 295
12.3 Further extensions to Gibbs and Metropolis 297
12.4 Hamiltonian Monte Carlo 300
12.5 Hamiltonian dynamics for a simple hierarchical model 305
12.6 Stan: developing a computing environment 307
12.7 Bibliographic note 308
12.8 Exercises 309
13 Modal and distributional approximations 311
13.1 Finding posterior modes 311
13.2 Boundary-avoiding priors for modal summaries 313
13.3 Normal and related mixture approximations 318
13.4 Finding marginal posterior modes using EM 320
13.5 Approximating conditional and marginal posterior densities 325
13.6 Example: hierarchical normal model (continued) 326
13.7 Variational inference 331
13.8 Expectation propagation 338
13.9 Other approximations 343
13.10 Unknown normalizing factors 345
13.11 Bibliographic note 348
13.12 Exercises 349
Part IV: Regression models 353
14 Introduction to regression models 355
14.1 Conditional modeling 355
14.2 Bayesian analysis of the classical regression model 356
14.3 Example: incumbency in congressional elections 360
14.4 Goals of regression analysis 366
14.5 Assembling the matrix of explanatory variables 367
14.6 Regularization and dimension reduction for multiple predictors 370
14.7 Unequal variances and correlations 371
14.8 Including numerical prior information 378
14.9 Bibliographic note 380
14.10 Exercises 380
15 Hierarchical linear models 385
15.1 Regression coefficients exchangeable in batches 386
15.2 Example: forecasting U.S. presidential elections 387
15.3 Interpreting a normal prior distribution as additional data 392
15.4 Varying intercepts and slopes 394
15.5 Computation: batching and transformation 396
15.6 Analysis of variance and the batching of coefficients 399
15.7 Hierarchical models for batches of variance components 402
15.8 Bibliographic note 404
15.9 Exercises 405
16 Generalized linear models 409
16.1 Standard generalized linear model likelihoods 410
16.2 Working with generalized linear models 411
16.3 Weakly informative priors for logistic regression 416
16.4 Example: hierarchical Poisson regression for police stops 424
16.5 Example: hierarchical logistic regression for political opinions 426
16.6 Models for multivariate and multinomial responses 427
16.7 Loglinear models for multivariate discrete data 432
16.8 Bibliographic note 435
16.9 Exercises 436
17 Models for robust inference 439
17.1 Aspects of robustness 439
17.2 Overdispersed versions of standard probability models 441
17.3 Posterior inference and computation 443
17.4 Robust inference and sensitivity analysis for the 8 schools 445
17.5 Robust regression using t-distributed errors 448
17.6 Bibliographic note 449
17.7 Exercises 450
CONTENTS xi
18 Models for missing data 453
18.1 Notation 453
18.2 Multiple imputation 455
18.3 Missing data in the multivariate normal and t models 458
18.4 Example: multiple imputation for a series of polls 460
18.5 Missing values with counted data 466
18.6 Example: an opinion poll in Slovenia 467
18.7 Bibliographic note 470
18.8 Exercises 471
Part V: Nonlinear and nonparametric models 473
19 Parametric nonlinear models 475
19.1 Example: serial dilution assay 475
19.2 Example: population toxicokinetics 481
19.3 Bibliographic note 489
19.4 Exercises 489
20 Basis function models 491
20.1 Splines and weighted sums of basis functions 491
20.2 Basis selection and shrinkage of coefficients 494
20.3 Non-normal models and multivariate regression surfaces 498
20.4 Bibliographic note 502
20.5 Exercises 502
21 Gaussian process models 505
21.1 Gaussian process regression 505
21.2 Example: birthdays and birthdates 509
21.3 Latent Gaussian process models 513
21.4 Functional data analysis 516
21.5 Density estimation and regression 516
21.6 Bibliographic note 519
21.7 Exercises 520
22 Finite mixture models 523
22.1 Setting up and interpreting mixture models 523
22.2 Example: reaction times and schizophrenia 528
22.3 Label switching and posterior computation 537
22.4 Unspecified number of mixture components 540
22.5 Mixture models for classification and regression 543
22.6 Bibliographic note 546
22.7 Exercises 547
23 Dirichlet process models 549
23.1 Bayesian histograms 549
23.2 Dirichlet process prior distributions 550
23.3 Dirichlet process mixtures 553
23.4 Beyond density estimation 561
23.5 Hierarchical dependence 564
23.6 Density regression 572
23.7 Bibliographic note 575
23.8 Exercises 577

Appendixes 579
A Standard probability distributions 581
A. 1 Continuous distributions 581
A. 2 Discrete distributions 589
A. 3 Bibliographic note 590

B Outline of proofs of limit theorems 591
B. 1 Bibliographic note 594

C Computation in R and Stan 595
C. 1 Getting started with R and Stan 595
C. 2 Fitting a hierarchical model in Stan 595
C. 3 Direct simulation, Gibbs, and Metropolis in R 600
C. 4 Programming Hamiltonian Monte Carlo in R 607
C. 5 Further comments on computation 611
C. 6 Bibliographic note 612

Preface

This book is intended to have three roles and to serve three associated audiences: an introductory text on Bayesian inference starting from first principles, a graduate text on effective current approaches to Bayesian modeling and computation in statistics and related fields, and a handbook of Bayesian methods in applied statistics for general users of and researchers in applied statistics. Although introductory in its early sections, the book is definitely not elementary in the sense of a first text in statistics. The mathematics used in our book is basic probability and statistics, elementary calculus, and linear algebra. A review of probability notation is given in Chapter 1 along with a more detailed list of topics assumed to have been studied. The practical orientation of the book means that the reader's previous experience in probability, statistics, and linear algebra should ideally have included strong computational components.

To write an introductory text alone would leave many readers with only a taste of the conceptual elements but no guidance for venturing into genuine practical applications, beyond those where Bayesian methods agree essentially with standard non-Bayesian analyses. On the other hand, we feel it would be a mistake to present the advanced methods without first introducing the basic concepts from our data-analytic perspective. Furthermore, due to the nature of applied statistics, a text on current Bayesian methodology would be incomplete without a variety of worked examples drawn from real applications. To avoid cluttering the main narrative, there are bibliographic notes at the end of each chapter and references at the end of the book.

Examples of real statistical analyses appear throughout the book, and we hope thereby to give an applied flavor to the entire development. Indeed, given the conceptual simplicity of the Bayesian approach, it is only in the intricacy of specific applications that novelty arises. Non-Bayesian approaches dominated statistical theory and practice for most of the last century, but the last few decades have seen a re-emergence of Bayesian methods. This has been driven more by the availability of new computational techniques than by what many would see as the theoretical and logical advantages of Bayesian thinking.

In our treatment of Bayesian inference, we focus on practice rather than philosophy. We demonstrate our attitudes via examples that have arisen in the applied research of ourselves and others. Chapter 1 presents our views on the foundations of probability as empirical and measurable; see in particular Sections 1.4-1.7.

Changes for the third edition

The biggest change for this new edition is the addition of Chapters 20-23 on nonparametric modeling. Other major changes include weakly informative priors in Chapters 2, 5, and elsewhere; boundary-avoiding priors in Chapter 13; an updated discussion of cross-validation and predictive information criteria in the new Chapter 7; improved convergence monitoring and effective sample size calculations for iterative simulation in Chapter 11; presentations of Hamiltonian Monte Carlo, variational Bayes, and expectation propagation in Chapters 12 and 13; and new and revised code in Appendix C. We have made other changes throughout.

During the eighteen years since completing the first edition of Bayesian Data Analysis, we have worked on dozens of interesting applications which, for reasons of space, we are not able to add to this new edition. Many of these examples appear in our book, Data Analysis

Using Regression and Hierarchical/Multilevel Models, as well as in our published research articles.

Online information

Additional materials, including the data used in the examples, solutions to many of the end-of-chapter exercises, and any errors found after the book goes to press, are posted at http://www.stat.columbia.edu/~gelman/book/. Feel free to send any comments to us directly.

Acknowledgments

We thank many students, colleagues, and friends for comments and advice and also acknowledge the public funding that made much of this work possible.

In particular, we thank Stephen Ansolabehere, Adriano Azevedo, Jarrett Barber, Richard Barker, Tom Belin, Michael Betancourt, Suzette Blanchard, Rob Calver, Brad Carlin, Bob Carpenter, Alicia Carriquiry, Samantha Cook, Alex Damour, Victor De Oliveira, Vince Dorie, David Draper, John Emerson, Steve Fienberg, Alex Franks, Byron Gajewski, Yuanjun Gao, Daniel Gianola, Yuri Goegebeur, David Hammill, Chad Heilig, Matt Hoffman, Chuanpu Hu, Zaiying Huang, Shane Jensen, Yoon-Sook Jeon, Pasi Jylanki, Jay Kadane, Jouni Kerman, Gary King, Lucien Le Cam, Yew Jin Lim, Rod Little, Tom Little, Chuanhai Liu, Xuecheng Liu, Peter McCullagh, Mary Sara McPeek, Xiao-Li Meng, Baback Moghaddam, Olivier Nimeskern, Peter Norvig, Ali Rahimi, Thomas Richardson, Christian Robert, Scott Schmidler, Matt Schofield, Andrea Siegel, Sandip Sinharay, Elizabeth Stuart, Andrew Swift, Eric Tassone, Francis Tuerlinckx, Iven Van Mechelen, Amos Waterland, Rob Weiss, Lo-Hua Yuan, and Alan Zaslavsky. We especially thank John Boscardin, Jessica Hwang, Daniel Lee, Phillip Price, and Radford Neal.

This work was partially supported by research grants from the National Science Foundation, National Institutes of Health, Institute of Education Sciences, National Security Agency, Department of Energy, and Academy of Finland.

Many of our examples have appeared in books and articles by ourselves and others, as we indicate in the bibliographic notes and exercises in the chapters where they appear. ${ }^{1}$

Finally, we thank Caroline, Nancy, Hara, Amy, Ilona, and other family and friends for their love and support during the writing and revision of this book.

[^0]
[^0]: ${ }^{1}$ In particular: Figures 1.3-1.5 are adapted from the Journal of the American Statistical Association 90 (1995), pp. 696, 702, and 703, and are reprinted with permission of the American Statistical Association. Figures 2.6 and 2.7 come from Gelman, A., and Nolan, D., Teaching Statistics: A Bag of Tricks, Oxford University Press (1992), pp. 14 and 15, and are reprinted with permission of Oxford University Press. Figures 19.8-19.10 come from the Journal of the American Statistical Association 91 (1996), pp. 1407 and 1409, and are reprinted with permission of the American Statistical Association. Table 19.1 comes from Berry, D., Statistics: A Bayesian Perspective, first edition, copyright 1996 Wadsworth, a part of Cengage Learning, Inc. Reproduced by permission. www.cengage.com/permissions. Figures 18.1 and 18.2 come from the Journal of the American Statistical Association 93 (1998), pp. 851 and 853, and are reprinted with permission of the American Statistical Association. Figures 9.1-9.3 are adapted from the Journal of Business and Economic Statistics 21 (2003), pp. 219 and 223, and are reprinted with permission of the American Statistical Association. We thank Jack Taylor for the data used to produce Figure 23.4.

