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Story 1: weights for men and women

I Survey of a population with 52% women, 48% men
I Simple random sampling, n = 100

I SRS 1: 52 women, 48 men. Weights are wi = 1 for everyone
I SRS 2: 60 women, 40 men. Weights are wi = 52

60 for women,
40
48 for men

I We know the population proportions, so the selection
probabilities are irrelevant

I Weights depend on the entire survey; the (yi ,wi ) paradigm is
inappropriate
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Example: CBS/New York Times pre-election polls

id org y state edu age adults weight
6140 cbsnyt NA 7 3 1 2 923
6141 cbsnyt 1 39 4 2 2 558
6142 cbsnyt 0 31 2 4 1 448
6143 cbsnyt 0 7 3 1 2 923
6144 cbsnyt 1 33 2 2 1 403

I The weight is listed as just another survey variable

I But they are actually constructed after the survey

I Weights wi = g(Xi , θ)
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Story 2: weights for household size

I Telephone survey of households
I Interview one adult in each sampled household
I Pr(selection) ∝ 1/(# adults in household)
I Obvious survey weight: # adults in household

I But . . . we can do better (Gelman and Little, 1998):
I Instead of weights 1, 2, 3, 4, set weights to 1.0, 1.4, 1.7, 2.0
I Lower bias and lower variance
I Set weights by matching to census numbers: sampling

probabilities don’t matter at all!
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The poststratification framework

I Goal is to estimate population average, θ

I Poststratification identity: θ =
∑

j Njθj∑
j Nj

I Point estimate θ̂ =
∑

j Nj θ̂j∑
j Nj

I Cells j might be determined by sex, age, education, ethnicity,
. . .

I Some estimators:
I Simple poststratification: θ̂j = ȳj

I Sample mean: θ̂j = ȳ
I Bayesian compromises: model θj given covariates Xj
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Complications

I Poststratification identity: θ =
∑

j Njθj∑
j Nj

I Many cells j (2 × 4 × 5 × 4 × 50): need complicated model
with many levels of interactions

I Adjusting for non-census variables (for example, religion):
need to model the Nj ’s

I Regression of y on x
I Must model y |x within each cell j
I Then average over cells to estimate E(y) as a function of x
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