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Abstract

It would seem prudent to attempt to recognize and visualize distinguishable components

of evidence in any statistical analysis. Some methods are developed to facilitate this. One

method provides marginal priors and marginal (integrated) likelihoods for a given foci (i.e.

parameters of interest) in proper Bayesian analysis using MCMC. Another provides accurate

almost individual observation likelihoods for Frequentist (profile and estimated) likelihood

analysis. To provide an approximate display for a Bayesian analysis, these almost individual

observation profile likelihoods are deformed so that they add up exactly to the integrated

likelihood. The motivation is to enable analysts to easily see what is happening in complex

Bayesian and or Frequency analyses - even those analysts without advanced mathematical

skills.

In a fully Bayesian analysis the prior and data model (likelihood) evidence can trivially

be recognized. Visualization, though, will be diffi cult with more than just a few parameters.

Fortunately, these lower dimensional foci (marginal posteriors) can be split into marginal

prior and marginal likelihood (Berger, et al 1999). The marginal posterior obtained from

integrating the full dimensional posterior is proportional to the marginal (integrated) prior

times the marginal (integrated) likelihood. In the Frequentist profile approach, the marginal

(profile) likelihoods for foci are obtained by maximizing over the other parameters. This

amounts to finding a particular path over the multivariate likelihood surface. This path

provides an immediate route for obtaining contributions from individual observations that then

can be modified to multiply to the integrated likelihood. They are called almost individual
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observation likelihoods because the path is determined from all the observations. Estimated

likelihood offers an even easier but less satifactory route.
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1 Introduction

Many, if not most current parametric applications in statistics, are most faithfully represented

by complex probability models resulting in both high dimensional likelihoods and priors. When

using these parametric modelling approaches, one can and arguably should plot distinguishable or

separable contributions to inferences regarding important parameters of interest. This is similar to

plotting individual raw data or estimates and their standard errors when they come from separate

sources or studies. Here though, we are plotting in the model or parameter space rather than the

estimate or data space. Recall that in parametric models, different parameter values index different

models. This will allow one to discern if the contributions are generally consistent or discrepant

(the observed degree of replication), as well as assess how the individual contributions “add up”

to the overall inference - given the prior and data models tentatively assumed.

These separable components will usually consist of individual observations or other unit of

analysis contributions and if working from a Bayesian perspective - always the prior. All contri-

butions need to be distinctively shown together in single plots - but likely for only one or perhaps

a few parameters of focus at a time.

This maybe a matter more of due diligence than choice. It is first and foremost exploratory not
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confirmatory, not primarily directed to detection and assessment of outliers, but rather to enhancing

the opportunities to discover and possibly repair modeling deficiencies and failures. The objective

is too further "model understanding" - that is, to be one of the tools for following the path from

data and models to inferences - hopefully noticing possible modeling failures, opportunities to be

less wrong and important limitations along the way. Put another way, the purpose is to avoid

being "blind sided" by the more usual statistical methods and procedures that are mostly blind

or at least not explicit about how individual observations combine to give the overall inference.

This visualization though may not be necessary for those who are comfortable doing this same

task mathematically. That is less likely to be the case with the more complex and non-standard

models that are increasingly being used. The motivation here then is to enable analysts to easily

see "what is happening" in complex Bayesian and or Frequency analyses - even those analysts

without advanced mathematical skills.

In a fully Bayesian analysis, with proper priors, the prior and data model (likelihood) evidence

can trivially be recognized as separable components as the Posterior equals the Prior times the

Likelihood. On the other hand, visualization not only will be diffi cult with more than just a

few parameters, particular lower dimensional foci (parameters or various functions of parameters)

may be of more direct scientific interest. Fortunately, as pointed out by Berger[7], these lower

dimensional foci (marginal posteriors) can be split into marginal prior and marginal likelihood.

That is the marginal posterior obtained from integrating the full dimensional posterior to a given

foci is proportional to the marginal (integrated) prior times the marginal (integrated) likelihood for

that foci. The marginal likelihood for a given foci may need to be obtained from MCMC sampling -

obtaining it from an monte carlo estimate of (Posterior density)/(Prior density). This has recently

become more feasible.

More formally, in terms of differences in empirical distributions see Evans[12]. In particular,

theorem 7 in this paper, suggests how general the approach will be. Additionally, for a theoretical

arguments that the Posterior/Prior provides an optimal (in some sense) summary of evidence and

hence justifies plotting integrated likelihoods, see Evans[15]. Additionally, visualization of these

distinguishable components of evidence - discerning their consistency and how they combine -

might be more readily apparent on a log scale. On this scale the combination is by addition - i.e.

log posterior equals log prior plus log likelihood.

In perhaps the closest Frequentist analogue, the marginal likelihoods for foci are obtained by
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maximizing over the full likelihood. This is often referred to as profile likelihood. As it is not a true

likelihood, it is also referred to as a pseudo-likelihood. It can by visually described as tracing out a

path along the foci that remains on the very top of the full dimensional likelihood surface. For a one

dimensional foci, it extracts a single curve from the high dimensional surface - a one dimensional

(psuedo-likelihood) function. For an n dimensional foci, an n dimensional function is extracted.

These often are approximately equal to integrated likelihoods when weakly-informative priors are

used - but not always[7]. Profile likelihoods are not considered fully satisfactory psuedo-likelihoods

and higher order aymptotics have failed to yet resolve all the issues[9][3]. But for recognizing and

visualizing distinguishable components of evidence by individual observation - they provide an

immediate route. Simply evaluate the full likelihood, individually for each observation, over the

traced out path obtained from using all of the data. Here only the parameters of foci are taken as

unknown - all other parameters take on the values from the traced out path, as given. Hence these

single observation psuedo-likelihoods are now just the dimension of the foci. They are called almost

individual observation likelihoods because the profile path is determined from all the observations.

They multiply up exactly to the profile likelihood determined by using all the data.

In principal, the first method provides an accurate means to recognize and visualize marginal

priors and marginal (integrated) likelihoods for a given foci in a (proper) Bayesian analysis. The

second provides accurate almost individual observation likelihoods for Frequentist (profile) likeli-

hood analysis. To put the two together, the almost individual profile likelihoods can be deformed

so that they add up exactly the integrated likelihood from a proper Bayesian analysis. Given the

profile likelihood is a fairly close approximation to the integrated likelihood, the deformation will

be minor and the resulting display approximately accurate.

A even simpler, though less accurate Frequentist method - estimated likelihood - may actually

be best to start with. In this method, the other parameters are just taken to be equal to their joint

MLE (or any other reasonable estimate) and then the pseudo-likelihood is just a function of the

same dimension as the foci. First estimated, then profile and then integrated likelihoods. This also

allows one to contrast a Bayesian versus two possible Frequentist analyses (estimated and profile)

rather directly.

Again, the motivations is to enable analysts to easily see what is happening in complex Bayesian

and or Frequency analyses - even those without advanced mathematical skills. If the analyst can

obtain reasonably large Posterior and Prior samples - the Bayesian picture can be created. At
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least for most of the support of the Posterior - as Posterior tails are hard to approximate well

from MCMC samples. If they can optimize over the multivariate likelihood to get the profile path,

the profile picture can be created and the almost individual observation likelihoods added to that

picture. If they can do both, the approximate Bayesian almost individual observation likelihoods

can be added to the Bayesian picture. Here it might be advisable to also add the profile almost

individual observation likelihoods to get a sense of the approximation. If the analyst can get the

joint MLE or any other reasonable joint estimate of the parameters, the estimated picture can be

created. All might be worth being carefully viewing by the analyst. Some well chosen subset might

also be worth including in external reports and publications.

2 Recognizing and visualizing distinguishable components

of evidence

When a probability model is being specified for an application, there are some aspects that perhaps

deserve more attention and emphasis than is usually the case in order to more clearly delineate

the path from data and given models to inferences. At the heart of any statistical analysis is

replication - or the repeated observation of a phenomenon. Each replication can be considered a

unit of analysis - and it is these very unit of analysis contributions that we wish to understand and

clearly display. For a replication to be a true replication, there must not be complete dependence

and for a replication to be strong there must be as much independence as is possible. In fact,

often a unit of analysis is taken as that unit that gives complete independence under reasonable

assumptions. Examples are individual observations in an individually randomized study, clusters

in a cluster randomized study and the reported study estimates in a meta-analysis of separately

conducted studies. The prior being independent of the data, if not also often "prior" in time

to the data, may or may not be replicated by the data[14]. Defining units of analysis that are

independent simplifies their individual display as well as combination (as is shown in the appendix

- they multiply and hence add on the log scale).

Once they are defined, it will often be worthwhile to discern how parameters vary - or even

must vary - with the units of analysis. Now, the parameters in differing units of analysis may be

common, common in distribution (implied by the units of analysis being exchangeable in what the

parameter reflects) or arbitrarily different (e.g. incidental parameters that only involve that unit
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of analysis as for instance in Neyman-Scott problems where the unit of analysis involves only two

or a few observations).

Dual plots can be constructed by plotting individual features that define the likelihood func-

tions and priors (e.g. the terms of a second or higher Taylor series expansion of the likeli-

hood/prior/posterior function or sometimes equivalently the suffi cient statistics and ancillaries)

along with the uncertainties of these features. In certain cases, well known plots are obtained as

the dual (for instance Forrest plots in meta-analysis using assumptions of Normally distributed

study estimates of a common unknown parameter θ with known σ - i.e. here θ is simply a scalar

and the curves are quadratic). When these dual plots omit important features of the likelihoods

and priors they are likely to be less informative or even outright misleading - especially when the

curves are not very quadratic[25]. The calibration of the frequency based uncertainties for the

features plotted in the dual plot will likely be quite challenging when θ does not simply start out

as a scalar parameter. This possible development or refinement will not be further addressed in

this paper. From a Bayesian perspective the prior predictive generation of say 20 plot replications

(replotting the 20 sets of generated data the same way) using informative enough priors would

seem the immediate solution with further refinements depending on work on methods for refining

posterior predictive model checking[5][4][11][15] and model prior conflict[13]. The "responsibility"

to discern how the evidence is adding up, should not be spurned on the basis that suggestive

patterns can not be fully or precisely calibrated. At the very least, basic prior predictive checking

can be carried out using a decreasing range of slightly informative priors as a sensitivity analyses.

In the examples section below, the first example demonstrates the basic ideas with a toy con-

trived regression example originally used by Pena to demonstrate similar ideas using generalized

inverses. Here the unit of analysis is simply the individual observation pair (xi, yi) and the es-

timated versus profile versus integrated marginalization methods are demonstrated. The second,

involves multiple assessments (studies or batches) of a possibly common underlying proportion -

where at least on hypothesis there is only a single parameter. Here the focus will mostly be with

graphical design issues. The parameter here is simply a scalar, by assumption, and the resulting

plot then, is simply the (perhaps) well known Bayesian triplot - but on the log scale with some

different design features. The third, is an example from regression where there is an interaction (i.e.

a decidedly non-common parameter). Here the individual observation log likelihood contributions

should be very different by the interacting feature. The fourth, is an example of a Meta-Analysis
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of two - two group RCTs with binary outcomes with very sparse observations. Here the unit of

analysis is the reported study summaries given in the published papers and we contrast a Bayesian

versus frequency approach. The fourth and last example, is a more challenging one from health

economics where the unit of analyses are bivariate individual observations (outcome, cost) and the

parameter of primary focus is a function of many other parameters. In this last example, although

the observations are unavoidably bivariate, the chosen parameter of interest in the model space

is simply univariate. With these examples, there is no implied suggestion that the best inference

methods were used or that final inferences should be adapted or restricted to that which can easily

be plotted. Rather, simply that it is better that the "least wrong" (marginal) plots be plotted

rather than none at all. Some readers may wish to proceed to the examples section before reading

the next section.

3 Statistical and Computational Background

Likelihood provides a direct route to defining individual observation contributions to inferences re-

garding unknown parameters - since likelihood functions are validly defined for individual observa-

tions and their multiplication together completely captures all the information regarding unknown

parameters (in the data, given the model)[17][6]. A review of likelihood along with some of its

perhaps less know properties is given in the appendix. Generalized inverses can be used to define

individual observation contributions for linear statistical models[34], but these are less direct and

perhaps less readily interpretable. More generally (and perhaps obviously), any scalar estimate,

curve or surface may always be re-written as a multiple of arbitrary scalars, curves or surfaces.

However, a principled choice for such a decomposition, such as likelihood, seems sensible. Other

units of analysis, comprised of more than one observation, offer more options for defining their

inference contributions. The multiple of the individual likelihoods of the individual observations

which comprise that unit of analysis, again seems an immediate choice. That is, with Li being an

individual observation likelihood -
∏
i∈g

Li for all observations i in a given group g defining a unit of

analysis.

Starting with the simplest case of a scalar parameter θ, the prior and overall study likelihood

contributions can been depicted as separate components (i.e. a factorization) that can then be

contrasted and appropriately combined. This is highlighted with square brackets in well known
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Bayes formula

π(θ|y) ∝ [L(θ; y)] ∗ [π(θ)].

Similarly, the likelihood contributions from the individual units of analysis in a given study can

themselves be depicted as arising from those separate unit of analysis components that again can

be contrasted and combined[8] as shown in this well known formula

L(θ; y) =

m∏
i

[Li(θ; yi)].

Putting these together we get

π(θ|y) ∝ [

m∏
i

[Li(θ; yi)]] ∗ [π(θ)].

with again, square brackets highlighting the separable curve components. The visualization of

these can be facilitated by working on the log scale where log prior curve, combined log likelihood

curve add to the log posterior curve and individual observation log likelihoods add to the combined

likelihood curve.

log(π(θ|y)) = [

m∑
i

[li(θ; yi)]] + [log(π(θ))].

There is no change here for multivariate θ

log(π(θ|y)) = [

m∑
i

[li(θ; yi)]] + [log(π(θ))]

but the display of the components just becomes problematic or impossible to grasp. Integrated,

profile and estimated marginalizations offer ways to make the display less problematic, with varying

degrees of success (as discussed above). Additionally, with these motivations its now just almost

individual observation log likelihoods that add to the combined likelihood curve and only the

integrated marginalization (using the implied prior from the full Bayes prior) that always avoids a

loss of information.

More formally, in Bayes, one simply integrates out all other parameters. But here, for a given

parameter of focus, we also want to plot a marginal log prior and combined marginal log likelihood

that adds exactly (plus an arbitrary constant) to the same marginal log posterior as obtained from

a full Bayesian analysis. That is, given full multivariate prior for the parameter of focus θ and
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other parameters λ, πB(θ, λ)can be factored into the

πB(θ, λ) = πB(θ)πB(λ|θ)

and the true marginal posterior for just θ is obtained by integrating out the λ -

πB(θ|y) =

∫
L(θ, λ; y)πB(θ)πB(λ|θ)dλ∫
L(θ, λ; y)πB(λ|θ)πB(θ)dλ

πB(θ)

∫
L(θ, λ; y)πB(λ|θ)dλ.

Here it is simply being argued that the marginal log(πB(θ)) and marginal log(
∫
L(θ, λ; y)πB(λ|θ)dλ)

and their sum (marginal log posterior) be clearly plotted. In principle, this is straightforward for

most Bayesian models - the log integrated posterior for the parameter of focus will usually be pro-

portional to the log integrated prior plus log integrated likelihood - subject to appropriate choice

of implied marginal prior from the full prior[7]. Further details are given in the appendix.

The perhaps somewhat unusual focus here, in terms of a fully Bayesian analysis, will be on the

explicit obtaining and careful assessment and display of marginal priors and marginal likelihoods -

the multivariate likelihoods not being just as a black box way to get from a multivariate prior to a

univariate marginal posterior - but as something critical to be extracted, then contrasted with and

then added on the log scale to the log marginal prior to get the log marginal posterior. Especially

given how easy and convenient this has become. Additionally, it is argued that it should be broken

down by unit of analysis as well. For displaying how the evidence adds up, log transformations

arguably make sense, for other purposes the original (probability) scale may make more sense.

This may depend to a certain extent on the particular application.

A frequency based marginalization is much more challenging and limited. The estimated

method is a very simple, but possibly very misleading marginalization. It can be obtained by

setting the value of all other parameters to their joint maximum likelihood estimate (mle) or some

other estimate and then taking and treating them as known. This is sometimes referred to as esti-

mated likelihood and is often used just for a subset of the parameters - a partial Bayes estimated

likelihood. This partial Bayes estimated likelihood (some parameters taken as unknown and given

a prior and others taken as simply known to be equal to given estimates) is ubiquitous in statistics
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and often ends up in Bayesian analyses via simplifying assumptions such as in meta-analysis when

the within study σ is taken as known and equal to the reported estimates. For some models this

can be disastrous[31].

The profiled method is a somewhat less misleading marginalization which takes the mle of the

other parameters - as a function of the current value of the parameter of focus. This is sometimes

referred to as the profile likelihood as it traces out the peak of a multidimensional likelihood surface

in the direction of the parameter(s) of focus. That is, as the parameter of focus θ varies from −∞

to +∞, always stay on the highest point on the surface. The profile likelihood is trivial to split

into individual observation likelihoods - simply evaluate the likelihood with a single observation

along the profile path determined by all the data, the values on this path being taken as known

nuisance parameters (further details given in the appendix). Its best feature may be that it often

gives an adequate approximation to integrated likelihoods when priors are not that informative.[7]

Modern higher order asymptotic methods suggest various modifications that can be made to this

profile likelihood to make it less misleading, though not yet completely with success and especially

not in a straightforward manner[24]. Alternatively, the integrated likelihood could be used simply

by assuming a measure (or formally a prior) on which to evaluate the integral[7] (here a possibly

partial Bayesian approach with just priors for parameters not currently of focus). All that is

required is a convenient or formal prior for all the other parameters and an ability to evaluate the

integral. Further details are given in the appendix.

Except under especially convenient distributional assumptions, any marginal view will lose

some information. This loss of information is notoriously diffi cult to quantify[24] and is usually

determined by showing that there is more information - in some sense - for the parameter of focus

in the full dimensional likelihood than in the marginal likelihood. When this is case, differing

marginalizations may lose differing amounts of information and it may not be clear which loss is

least wrong or detrimental. The impact of this may be quantified to a certain degree by bootstrap

sampling/cross validation of other unit of analysis given the individual unit of analysis and para-

meter of focus —i.e. how much does the pooling of contributions for other parameters depend on

the particular sample values in hand (other than those in the unit of analysis)? This diffi culty can

entirely be avoided in a Bayesian approach, as long as the appropriate implied marginal prior is

used[7] and will not be discussed further in this paper.

On the other hand, although the integrated likelihood essentially solves the marginalization
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challenge, factoring it into individual or unit of analysis marginal likelihoods is problematic. The

integrated likelihood required to obtain the marginal likelihood is essentially a sum of products

of all individual likelihoods that share the same nuisance parameters (which are being integrated

over). Since sums and products do not commute, it is not clear as to how to obtain the required

factorization, i.e. how to obtain a gi(xi; θ) for each i such that

n∏
i=1

∫
gi(xi; θ, λ)dλ˜

∫ n∏
i=1

f(xi; θ, λ)πB(λ|θ)dλ.

However, an almost individual observation pseudo integrated log likelihood can be defined by

differentially rescaling individual profile log likelihoods as a function of θ. This is accomplished by

multiplying the individual profile likelihood by an a(θ) that is equal to the combined integrated

likelihood divided by combined profile likelihood

∫ n∏
i=1

f(xi; θ, λ)πB(λ|θ)dλ

supλ∈Ω

n∏
i=1

f(xi; θ, λ)
.

The individual observation profile log likelihoods adjusted in this manner add up exactly to the

combined integrated log likelihood. So these will at least sum to the correct (combined) integrated

marginal log likelihood. They are simply a deformation of likelihoods over the profile path so that

they add exactly in this way. Alternatively, adjustments based on Laplace approximation methods

can be applied to quadratic curves that approximate the almost individual profile likelihoods or

arguably better to the almost individual profile likelihood (non-quadratic) curves themselves

sup
λ∈Ω

πB(λ|θ)√
I(θ, λ)

n∏
i=1

f(xi; θ, λ)˜

∫ n∏
i=1

f(xi; θ, λ)πB(λ|θ)dλ.

This would provide some connection with asypmtotic theory and the almost individual observation

pseudo integrated log likelihood. This itself can be factored and displayed as Laplace approximation

plus the additional deformation a(θ) applied to obtain the almost individual profile likelihood.

Unfortunately, dimensionality reduction, more so from the frequency perspective but also for

obtaining almost individual pseudo integrated likelihoods, can be somewhat challenging and there
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are even certain situations where any marginal views will usually be misleading. These misleading

situations are often referred to as Neyman-Scott situations involving incidental parameters[28][37]

(i.e. the number of parameters remains approximately equal to the number of observations). Given

these currently remain as open problems[9][3], it is not in general that one can always focus on one

or two parameter(s) of interest at a time, without being mislead. In a Bayesian approach this can

be remedied by utilizing informative priors[21], albeit often without strong justifications. Further

details on how to deal with them are given in the appendix.

The estimated marginalization is especially simple but often inadequate. Estimated likelihood

though, can often be a useful first step or platform in what is sometimes referred to as "scaffolding"

- which refers to using in turn, less and less wrong modeling approaches, for the same problem. For

instance one could start with the estimated likelihood, then obtain the profile likelihood and finally

the integrated likelihood - even for a fully Bayesian approach where the implied best integrated

likelihood is known. Plotting all of them, especially the incorrect ones, may often be illuminating,

as will be demonstrated in some of the following examples.

Computational challenges vary depending on both the data model specifications and the method

for the marginalization over the nuisance parameters. In particular, the estimated and profile mar-

ginalization (i.e. taking the best values of the other parameters for each given value of the parameter

of focus), have computational advantages. Integration is usually intractable and obtaining a good

approximation used to be very challenging. But now, given MCMC and faster computing each

year, this is getting increasingly trivial. With an adequate sample from the posterior, say from

an MCMC run, - just re-parameterize for the chosen focus of interest and then plot the observed

distribution (of that parameter disregarding all other parameters). Although, the sample will likely

not be adequate in regions where there is little posterior support and importance sampling may

be required to get better displays in these regions.

In the plots, a choice of which separable components to hide versus make explicit will be required

- i.e. should the single observation components (almost individual likelihoods), be themselves

displayed or not. For instance, as will be seen in one of the examples to follow, displaying individual

observations can be completely uninformative. With hierarchical models that have qualitatively

different types of levels (components), the choice of levels to display and whether to call them

prior or likelihood becomes very challenging - for instance see page 395 of Gelman and Hill[18] or

page 162 of O’Rourke[30]. Such challenges are being left for a subsequent paper. In this paper
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primarily non-hierarchical models will be addressed. A good first display for hierarchical models

though, may often be obtained by simply using a non-hierarchical model to display the observed

non-commonness of assumed to be common parameters in the non-hierarchical model.

4 Examples

We first provide a very simple example to demonstrate the essential ideas. Consider a univariate

regression with one independent variable - y = BX1 + error - under the usual assumptions of

independent identically distributed random error distributed as Normal(0, σ). There are just two

parameters here and the model implies that each observation is drawn from Normal(BX1, σ),

each and every time with the same values of (B, σ). If we choose to focus on B we need to

somehow marginalize out (σ) to get a L(B) - a scalar function just involving B. Additionally,

with a Bayesian approach, one needs to marginalize the prior over (σ) to get a prior just involving

B. In this simple example, we first use a classical approach (no explicit prior) and choose to

undertake the estimated and then profile marginalization - i.e. the maximization over (σ) for each

value of B (the profile likelihood for B). We then redo it with an explicit prior using integrated

likelihood by specifying a semi-conjugate slightly informative prior distributions to help highlight

the differences. We use simple example data contrived by Pena, with x values (1 : 10, 17, 17, 17) and

y values (1 : 10, 25, 25, 25) - the three last observations are meant to be tricky outliers in an other

wise perfectly correlated example. The graph of resulting individual observation log likelihoods

is shown below with the three non-replicating log likelihoods being fairly obvious (some random

shifting of the arbitrary height of the curves could be used to make the three distinct - they are

actually identical functions). It is important to keep in mind that this is a contrived example and

guard against any intuitions about the observations being generated randomly and how often this

pattern might arise by chance - they simply were not randomly generated.

The estimated likelihood marginalization plot is used as an initial start (figure 1). In the second

plot on the right an intercept parameter was added to the model - note the somewhat less clear

picture. This likely would be true most often, that as more nuisance parameters are added to

the model, the pictures will become less clear. Then the profile and integrated marginalization

plots are given in figure 2 (left and right respectively). The Bayesian approach for the integrated

marginalization requires a prior and log prior curve is added in that plot. Interestingly, although

the estimated marginalization is "more wrong" - σ is not known - its plot perhaps more clearly
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Figure 1: Estimated Marginalizations with (right) and without (left) intercept parameter. Com-
bined log likelihood is shown dashed.
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Figure 2: Combined log likelihood and posterior are shown dashed.

identifies the non-replication. In a real sense, the less correct (more wrong) assumptions providing

a less possibly misleading (wrong) display. It might be a good strategy in general to always start

with the estimated marginalization. A more carefully investigation using in turn profile and then

integrated log likelihoods would then follow - but now with the "suspects" clearly in one’s sights. If

calibration of the plots was needed to confirm an outlier was indeed an outlier, predictive checking

of the integrated likelihoods using an informative but not too informative prior would be the

current route recommended here. Undertaken such an exercise with this example would not make

sense as we know those three observations were not random.

The next example is again fairly simple one, at least on the basis of the hypothesis of a number of

separate studies each of which is estimating the same single common parameter value of an assumed

binomial model. The data was obtained from a published meta-analysis that provided the raw data

in a table[33] and although the assumption of a single common parameter is almost surely wrong
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here - it is a convenient example to start with. The log likelihood is very straightforward

x log(p) + (n− x) log(1− p)

and even for very large x and or n presents little computational challenges. The parameter is

simply a scalar, by assumption, and the only unit of analysis worth plotting is the study. The

individual observation log likelihoods are simply not informative - being simply either log(p) or

log(1− p). However, how to best plot these likelihoods may not be obvious. So that the individual

unit of analysis curves will add to the combined curve, log likelihoods will be plotted.

Given that only relative values of the likelihoods are to used for inference, only changes in the

height of each unit of analysis log likelihood or combined log likelihood will matter. Therefore

arbitrary constants (even different ones) can be added to each individual log likelihood and the

combined log likelihood (calculated from the sum of these) - with no change for any possible

inference if correctly "read" off the plot. The same is true for log prior and log posteriors - if

the graph is only meant to correctly portray their proportionality - with the probabilities being

perhaps given in a separate graph or table. We therefor choose to set the value of each of m unit

of analysis log likelihood to 2/m at the combined mle. This results in the maximum of the pooled

(summed) log likelihood being 2 at the combined mle. Additionally, the points at which the log

likelihood curves intersect the zero horizontal line provide approximate 95% confidence intervals

(pooled or individual depending on the curve). The maximum of the log prior and log posterior

is also arbitrarily set to 2 at the parameter value at which its respective maximum occurs. For

this example, a Beta(.5,.5) prior was used and the resulting posterior is so similar to the combined

likelihood they cannot be distinguished in the plot (the prior is red, likelihood blue and the posterior

purple and dashed). Similarly, very approximate 95% credible intervals can equivalently be read

off the plot from the posterior curve.

This is a design choice to facilitate the display of approximate intervals (both confidence and

credible intervals). A different choice to facilitate the display tests might be to set the value of

each of m unit of analysis log likelihoods to 0 at the null parameter value to be tested against the

mle. Then one could discern how they add/subtract to get the pooled (summed) maximum at the

mle [personal communication, Steve Goodman].

In the plot shown below, the x-axis for the parameter value was simply plotted on the original

scale. A logit transformation (re-parameterization) would likely make the log likelihoods more
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Figure 3: Global and focussed veiws.

quadratic - which might be important if a dual plot was to be constructed. Here though, for the

observations with 0 events observed out of n trials, the log likelihood is simply n log(1−p) and one

would need to be careful when summarizing its features. Note (in Figure 3) that the log likelihoods

were plotted as bolded thick lines when within 2 units of their (individual) maximums and grey

thin lines elsewhere. The pooled log likelihood was plotted as a (tentative) dashed line.

The next example, is a univariate regression with two independent variables - y = B0+B1X1+

B2X2 + error - under the usual assumptions that the random error is i.i.d. N(0, σ) . The unit

of the analysis is almost always taken as the individual observations given the i.i.d. assumption

implying no serial correlation. There a four common parameters here - B0, B1, B2 and σ. Every

unit of analysis is assumed to have been generated from a probability model that has these same

four parameters at exactly the same value. The expected value of y for each unit of analysis is

linearly modulated by the values of X1 and X2 via exactly the same parameter values. Now if

say X2 is gender and we add an interaction B3X1X2, now there are five parameters - a common

intercept αm and common slope βm amongst the males, a different common intercept αf and

common slope βf amongst females and a common σ amongst every one. (A rather strange, but

very common assumption.) If we choose to do the regressions separately by gender, we will get

exactly the same estimates, except for the estimate of σ which will differ depending on how the

residuals errors split between the gender groups. We can also see this difference when plotting

the individual log likelihoods for βm - the male slope parameter - from the female subjects (red)

versus the male subjects (blue). If we assume σ is known and equal to its estimate (e.g. its mle)
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Figure 4: Female curves in red, males in blue.

versus unknown - the information separates. This is obvious in Figure 4 on the left, in the flat

likelihoods for the individual female log likelihoods for βm (females provide no information at all

for the males slope).

On the other hand, with σ taken as unknown and hence being estimated as in the profile

marginalization, the individual female log likelihoods for βm are curved but symmetric about the

mle for βm (i.e. females do provide some information for the males’slope, as is clear on the right

side of Figure 4). This information arises from the σ parameter being unknown but making some

observations more likely than others - for both males and females.

We now present example of a meta-analysis of two studies - each involving randomization to

two groups for the assessment of the same treatment on the same binary outcomes. Here we do

a fully Bayesian analysis but also plot a classical approach using profile marginalization. It is a

common assumption in meta-analysis to allow the Pcs to be arbitrarily different in each trail but

then argue for an essentially similar relative treatment effect. This relative treatment effect is often,

but not always, taken to be the log odds ratio. This results in two independent, two dimensional

likelihoods based on two parameters, one parameter that is common to both and another that

arbitrarily differs. The Bayesian analysis requires a joint prior for Pc and Pt. The pooled or

meta-analysis likelihood is simply the multiple of these two likelihoods and this multiple now has

three parameters, Pc1, Pc2 and OR. Here it would be feasible to attempt a three dimensional

plot of some sort (one dimension for each parameter) but instead we illustrate our strategy to use

a marginalization for both the individual and pooled likelihoods and prior to get one dimensional

functions for the common parameter OR of focus to plot (see Figure 5). The profile reduction

simply maximizes out the non-common parameter(s) and except for occasional numerical problems
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Figure 5: Individual study log likelihoods in solid (profile in green, integrated in blue), combined
dashed and posterior purple.

can always be conveniently obtained. In the Bayesian reduction, it can challenging to obtain the

integrated likelihoods and here was facilitated by adopting the assumptions and approach suggested

by Wolpert[38] and the use of default numerical integration provided in R. More generally, MCMC

sampling will be required. Here we also used direct simulation as the numerical integration failed

(with a warning) for log odds ratios greater than 5.5. This is a made up example of two studies

both of which observe only failures - there are no successes in either study.

The prior suggests that positive and negative log odds ratio of the same magnitude are equally

supported. The profile log likelihood suggests the same - each study’s likelihood is a perfectly

straight-line. But the posterior via the integrated log likelihood suggests positive log odds ratios

are better supported than negative ones. Note the maximum posterior has been set at 1.36 rather

than 2 to provide an approximate 90% intervals at the 0 line. The studies differ slightly on this

but add to provide a fairly concentrated integrated likelihood and posterior. For an account of

this, using basic inverse variance weight formulas and Simpson’s paradox, see Greenland[20]. The

important point here, is just to (always) be aware if something like this is happening. If the

prior assumptions were not carefully thought of, especially with regards to impacts on marginal

inferences of real direct interest, some modification may be sensible. Peter Thall and colleagues

have brought much attention to this point for adaptive (very small sample size) trials via the

concept of effective sample size[26]. The visualization can be largely automated and may be more

salient for non-statisticians.

The final example is from health economics. Here it is critical to consider both effects and

costs of treatments jointly in order to appropriately assess costs versus benefits of adopting new
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treatments in clinical practice. To do this, both effects and costs are modelled jointly and this

quickly leads to complicated data model specifications[29] that are hard to motivate, justify and

especially assess their robustness. Given these challenges in specifying appropriate joint data

models - we here just use an especially convenient joint data model - a joint Normal distribution

where the relationship between effects and costs is simply linear. Here it is also obvious how the

bivariate distribution is factored into two univariate ones, (one marginal and one conditional) and

this factorization greatly facilitates the programing.

The full specification with choice of common and arbitrarily different parameters is

Placebo(θ; e, c) = N(c;µpc, σpc)N(e|c;µpe + βp(c− µpc), σpe|c)

for the placebo group, with e, c being the effects and costs respectively and the subscripts p, pe, pc

referring to the placebo, placebo effects and placebo costs (i.e. βp is the slope coeffi cient of effects

on costs in the placebo group). The treatment group’s specification is

Treatment(θ; e, c) = N(c;µtc, σtc)N(e|c;µte + βt(c− µtc), σte|c).

The common parameters here being restricted to being within the treatments groups (i.e. only

replication within the groups is being specified.) Many alternative specifications are possible, one

reasonable with replication over the groups would specify the same slope in both treatment groups

by dropping the subscript on β. Often the parameter of interest is a function of the underlying

parameters as in the Net Monetary Benefit parameter

NMB = K(µte − µpe)− (µtc − µpc)

This represents the excess of valued treatment effect over treatment cost. We "insert" this para-

meter of focus into the specification by the re-parameterization

µte →
NMB

K
+ µpe +

µtc
K
−
µpc
K

and then directly obtain the marginalized unit of analysis log likelihoods for the NMB parameter

that is now explicitly in the specification.

The units of analysis here are simply the individual bivariate observations by patient. The
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Figure 6: Combined log likelihood in dashed.

example in the following plot (Figure 6) is based on simulated data drawn from this bivariate

Normal specification and with one of the observations purposely changed to be an outlier (i.e. it

was made not to replicate) in Figure 6 (left side). The profile marginalization was used to obtain

the unit of analysis log likelihoods - here being the individual observations. The non-replicating

observation appears as the unusual red curve in the plot. Although the probability model is

bivariate with numerous parameters, it was straightforward to display replication, by individual

observations, for a function of the parameters.

5 Discussion

Plotting separable contributions to inferences regarding important parameters of interest can be

challenging but illuminating. Just how illuminating needs to be better informed by more and

wider experience. On the other hand, it has been argued that this is a matter of due diligence

- especially with the use of complicated models (and complicated is in the eye of the beholder).

The primary barrier would seem to be computational feasibility - can the integrated likelihood of

interest be approximated well enough? In some cases though, even the joint likelihood itself is

not readily available. Well known examples occur with missing or incompletely observed data. Of

particular concern in meta-analysis is the obtaining of likelihoods from reported summaries rather

than raw individual data. Methods to over come this diffi culty will be addressed in O’Rourke (to

be submitted). Another diffi culty that arose in the meta-analysis example was that even with

weak priors, the profile likelihoods may not approximate the integrated likelihood. Here another

method would be needed to obtain approximate almost individual integrated likelihoods. One
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simple method would be to obtain the integrated likelihood from both n and all possible n − 1

observations (excluding a single observation in turn) and dividing the n observation integrated

likelihoods by the n − 1 integrated likelihoods. These will not necessarily multiply exactly to the

combined integrated likelihood as the single observations excluded provide different information

about the other parameters.

It is much more common to plot individual raw data summaries or estimates and their standard

errors when they come from separate sources or studies. Here though, we plotted in the model or

parameter space rather than an estimate or data space. This plotting in the model space may be

fairly novel and might require some adjustment as to what should be looked for in applications.

Should such plotting be an option or a usual requirement in applying statistics? Perhaps it should

be an obligation in statistical applications to explicitly discern the degree of replication between

each contribution as well as the impact of each contribution in the overall inference - for each and

every set of models entertained? If calibration is required, prior predictive simulations are likely

though to be the most direct route to calibrate these plots. That is, for patterns that are discerned

in one of the these plots, how often would similar patterns appear in prior predictive simulations.

If the apparent discrepancy or lack of replication could easily be due to chance, perhaps it should

be ignored.

As simply another graphical method, especially in regard to the assessment of the commonality

of parameters, the approach could be viewed as an extension of the method of locating several

outliers in multiple-regression, using elemental sets[23] to single observations as opposed to sets of

observations of size p. Elemental sets of size p are the smallest set of observations that will allow

consistent estimates of p parameters. All possible such sets need to be formed and investigated. It

is also possible to just write the slope estimates as a single double sum of difference ratios[19]

β =

∑
i,j

yi−yj
xi−xj (xi − xj)2∑
i,j(xi − xj)2

.

The method here separates the prior model versus data model, displaying any possible conflict

between these two, and then focuses directly on data model fit. This is then split out by units of

analysis and addresses just the commonality of parameters, rather than a mixture of commonality

of parameters and distribution shape. Whether parameters appear common or not depends heavily

on distribution shape - what appears as common with heavy tailed distributions will appear non

common with a light tailed distribution.
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Distributional specifications could be investigated by varying the prior and or data model as-

sumptions and discerning how this changes the apparent commonness in the plots. A dramatic

example perhaps being common versus common in distribution data model assumptions (i.e. a

hierarchical model)- any apparent lack of consistency between the unit of analysis log likelihoods

under a common parameter assumption usually disappears with the alternative assumption the

parameter of focus being common in distribution instead of just plain common. The topic of hierar-

chical models will be addressed in a later paper. Another example would be with regard to apparent

outliers. These can change dramatically with differing data model assumptions. Nelder apparently

suggests this as a way of avoiding outliers all together[27] - choosing a data model distributional

specifications in which there appear to be no outliers. This seems a bit too convenient. On the

other hand, David Cox warns that unpleasant features in the model space (e.g. multi-modality)

may simply be warnings that the model being assumed - is just "way too wrong"[9].
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6 Appendix: Review of likelihood and some of its properties

The likelihood is the probability of the observations for various values of the parameters and will

be denoted as c(y) Pr(y; θ), where Pr is the tentatively assumed probability model that generated

the observations, the observations y are taken as fixed and the “parameter”θ is varied. The generic

positive constant function c(y) emphasizes that only relative values are of interest in applications

and we will only be using relative values of the likelihoods in the plots. A perhaps preferable choice

of c(y) would be 1/Pr(y; θ̊) to make L(θ; y) = Pr(y; θ)/Pr(y; θ̊) simple - stripping off any function

that just depends on y . A more formal definition of likelihood is that it is simply a mathematical

function

L(θ; y) = c(y) Pr(y; θ).

The formal definition as a mathematical function though, may blur that the likelihood is the

probability of re-observing what was actually observed. In particular, one should not condition

on something that was not actually observed such as a continuous outcome, but instead some

appropriate interval containing that outcome (i.e. see page 52 of Cox & Hinkley[10][1]). We later

give an example where this distinction was important.

In the event there is more than one unit of analysis, say y1 and y2, a combined inference is
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sought and as the likelihoods involved are probabilities, they multiply. Recall that

Pr(y1, y2; θ1, θ2) = Pr(y1; θ1) ∗ Pr(y2|y1; θ1, θ2) = Pr(y2; θ2) ∗ Pr(y1|y2; θ1, θ2)

and simply

Pr(y1; θ1) ∗ Pr(y2; θ2)

for independent units of analysis. Re-emphasized as likelihoods - as a function of θ for fixed y

L(θ1, θ2; y1, y2) = L(θ1; y1) ∗ L(θ1, θ2; y2|y1) = L(θ
2
; y2) ∗ L(θ1, θ2; y1|y2)

and

L(θ1; y1) ∗ L(θ2; y2)

or independent units of analysis.

If some parameter in the probability models used to represent each of the units of analysis is

common, then there is a combination for that parameter - simply by that multiplication. In this

way the combined likelihood concentrates (or increases in information) for common parameters.

For parameters that are different or arbitrary (i.e. incidental parameters) there is an expansion of

dimension in the combined likelihood without an increase in information[37]. Common parameters

are clearly identified by the repeated appearance of the same parameter in the likelihoods that

are multiplied together - common simply means repeated in two or more individual observation

likelihoods. For a discussion of the factorization of likelihoods, i.e. the inverse of combination, see

Cox[8].

These may or may not be obvious and may even be actually hidden in some parameteriza-

tions. Because of this, a common parameter reparameterization may be helpful to discern this. In

notation: ω = ω(θ1, θ2) = (γ, χ), where γ = γ(θ1, θ2) (the something that is possibly common)

and χi = χ(θ1, θ2)i (the something that arbitrarily differs) and conversely, θ1 = θ1(γ, χi) and

θ2 = θ2(γ, χi). The multiplication for independent observations then gives

L(θ1, θ2; y1, y2) = L(γ(θ1, θ2), χ(θ1, θ2)(1,2); y1, y2)

= L(γ(θ1, θ2), χ(θ1, θ2)1; y1) ∗ L(γ(θ1, θ2), χ(θ1, θ2)2; y2)
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(one concentration γ(θ1, θ2) and one expansion χ(θ1, θ2)i) versus

L(θ1, θ2; y1, y2) = L(χ(θ1, θ2)(1,2); y1, y2)

= L(χ(θ1, θ2)1; y1) ∗ L(χ(θ1, θ2)2; y2)

with no common γ(θ1, θ2) - just expansion. This is slightly more complicated for dependent obser-

vations where even with no common parameters some concentration arises from the dependency

itself

L(θ1, θ2; y1, y2) = L(χ(θ1, θ2)(1,2); y1, y2)

= L(χ(θ1, θ2)1; y1) ∗ L(χ(θ1, θ2)(1,2); y2|y1)

(with χ(θ1, θ2)1 in both likelihoods) and hence some concentration. Getting commonness is key to

getting likelihood concentration and the good statistical properties associated with that.

In between parameters that are common and parameters that are arbitrarily different, there

are parameters that differ by units of analysis but are drawn (or more formally are implied by

exchangeability to be equivalent to being drawn) from distributions that have common parameters

(common in distribution). In such cases, one would likely wish to denote such parameters as

random variables χ∗i drawn from Pr(χ∗i ; Θ). Here for there to be commonness, it is the Θ that

must have components that repeat in the likelihoods multiplied together. This will be further

clarified and more fully discussed later.

By focussing on unit of analysis likelihoods, it is made clear which parameters are common,

arbitrarily different or common in distribution - by unit of analysis. For example in

L(θ1, θ2; y1, y2) = L((µ, σ1); y1) ∗ L((µ, σ2); y2)

µ is common and the σi are arbitrary - γ(θ1, θ2) = µ and χ(θ1, θ2)i = σi.When there are common

in distribution parameters, unobserved random parameters differ by study but are related by being

drawn from the same "common" distribution. For example in

L(θ1, θ2; y1, y2) = L((µ1˜N(µ|Θ), σ1); y1) ∗ L((µ2˜N(µ|Θ), σ2); y2)
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Θ is common, µi random (implied by exchangeability of the means of y1 and y2) and the σi are

arbitrary - γ(θ1, θ2) = Θ, with µi unobserved and hence integrated out[7][25] and χ(θ1, θ2)i = σi.

Given likelihoods combine by multiplication, this combination is likely best displayed as addition

on the log scale. An early proponent of this was Fisher [16]. On page 75, he states

“It is usually convenient to tabulate its [the likelihoods] logarithm, since for independent
bodies of data such as might be obtained by different investigators, the “combination
of observations”requires only that the log-likelihoods be added.”

We have adopted this suggestion for plotting log likelihoods and also log priors and log posteriors

- all on the log scale.

Furthermore on page 165 Fisher states the need to use the likelihood function itself rather than

approximations

“. . . it is the Likelihood function that must supply all the material for estimation, and
that the ancillary statistics obtained by differentiating this function are inadequate only
because they do not specify the function fully.”

providing an early warning against the uncritical use of dual plots. For more modern warnings,

see Meng[25].

Apart from convenience of always being able to obtain unit of analysis likelihoods that simply

combine by multiplication to give the overall likelihoods, why is it important to plot likelihoods?

Perhaps because many, if not most techniques in applied statistics are based on or are closely related

to the likelihood[3]? Essentially, under an assumed model, the likelihood captures all "useful inputs

(from the data)" for statistical procedures. Why the likelihood is so useful in developing statistical

techniques - in fact so useful as to eliminate the need for any other aspect of the observations - has

been the subject of a long literature. From a mainly non-Bayesian perspective, Barndorff-Nielsen[2]

states

“Likelihood is the single most important concept of statistics." and further states it is
mainly just the relative likelihood - "We are almost always interested only in relative
values of the likelihood at different values of θ."

Pace and Salvan[32] further suggest suffi ciency as a basis to restrict one’s attention to relative

likelihood values as they are suffi cient. More formally, the distribution of any statistic conditioned

on the observed relative likelihood is independent of the parameters (in the assumed model) - and
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hence they can provide no further “information”. This would argue that it is only important that

any plots maintain and highlight "relative" features of the likelihoods - height (y axis) is purely

arbitrary.

Recalling the definition of the likelihood as the probability of re-observing what was actually

observed - a more intuitive explanation of the primacy of the likelihood in frequency statistics can

be given here. Problems can arise if what was observed is casually considered to be continuous

- continuous observations are simply not possible. An example of where this was a problem is

presented further below. Under any data model specification there is only a finite set of possible

observations (since without lack of generality continuous observations are excluded) and their

probabilities are fully determined by the data model for each parameter point (value). If for every

parameter point in the data model, these probabilities are different, then in principle the is a one

to one function from these probabilities of possible observations to the parameter points. If not,

the data model is not identifiable and no amount of data would ever be able to discern which of the

various parameters points gave rise to the observed data - no matter how much data is observed.

Recall that the likelihood records the various probabilities of the actual observations observed for

each parameter point. So in principle, with an unending amount of data collection, this would

allow the parameter point actually sampled from to be identified (technically the mle is said to

be consistent). Importantly, this could be accomplished with simply the relative versus absolute

probabilities of the possible observations. Now, the holy Grail of frequency statistics, is perhaps

the construction of a set of parameter points, that for a known and set percentage times under

repeated sampling, catches the actual parameter point sampled from.

This is known to be impossible unless "set percentage" is relaxed to either less than a set

percentage or roughly within (+ or -) a set percentage. For simple data models, especially those

involving a scalar parameter, getting such a set of parameter points can be quite straight forward.

From a Bayesian perspective, the relative likelihood is all that is needed to get the posterior and

how often intervals from the posterior would catch true parameter points may seem irrelevant.

Many though would argue that it should not be too bad at this.[36][15][22]

It is unargued though, that the joint model (data model plus prior model) is paramount in any

Bayesian analysis. So here, both the data model and prior model needs to be plotted. It would

be a mistake to just plot the posterior (joint model conditioned on the observed data) because, as

we will see, the prior and likelihood (apparently separable components) may highly conflict with

29



each other. How the marginal prior is modified to obtain the marginal posterior may not be at all

obvious - see the meta-analysis example below. This would indicate that the joint model is "too

wrong" to be taken seriously as a model for the research in hand. Perhaps more importantly for

applied Bayesian analysis, the joint model may never have been meant as or more or less faithful

model for the research in hand - where the priors need to represent salient subjective probabilities -

nothing less nor nothing more. In such a case, the conditioning of that joint model on the observed

data does not provide salient posterior probabilities - but only formal probabilities that are not

related directly for uncertainties for the research in hand. Here plots may be even more necessary

to help discern the role the priors played in the credible intervals they were involved in determining.

Perhaps arguably more important - the multivariate likelihood should not simply be considered as

a nuisance black box for obtaining marginal posteriors for a parameter of focus from a multivariate

prior.

Given the plots pragmatically need to be only one or a few dimensions, only marginal priors,

marginal likelihoods and marginal posteriors will be plotted. Now, to get unit of analysis likelihoods

that are simply curves or low dimensional surfaces rather than full likelihoods, the required mar-

ginalization over the other parameters, first entails a borrowing or pooling of information for the

given individual unit of analysis from all other units of analysis —but only for the other (nuisance)

parameters. That is, the individual unit of analysis inference contributions for the parameter of

focus come only from each separate individual unit of analysis given the inference for all other

parameters is first pooled. Hence the need for the qualification - almost individual observation

likelihoods. (Perhaps this should be called partial combining but that risks being confused with

the term partial pooling used in hierarchical modeling.) This "partial combining" would be easiest

to grasp with estimated likelihood and a single parameter of focus - given the mle for all other

parameters the marginalized log likelihood is now just a scalar function of the parameter of focus

- a curve - defined for individual observation that adds up exactly to the marginalized total log

likelihood evaluated at the mle. For the profile marginalization, the unit of analysis profile log like-

lihoods would add up to exactly the profile total log likelihood (the curve that traces the maximum

of the high dimensional log likelihood surface, in the direction of the parameter of focus.)

Fortunately, for a fully Bayesian approach, unless one insists on using a marginal prior other

than the one implied by the full dimensional prior, the marginal posterior that results from the

displayed marginal prior added to the marginal likelihoods does correspond exactly (up to pro-
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portionality) to what would be obtained from the full posterior later marginalized to the chosen

parameter of focus. In a full Bayesian analysis, there will be a full multivariate prior which will

provide a specific integrated likelihood for each parameter of focus, but we need to verify that

the true marginal posterior that results from the full multivariate prior times full multivariate

likelihood will be proportional to this specific marginal likelihood times marginal prior. The full

multivariate prior can be factored into the parameter of focus θ and other parameters λ

πB(θ, λ) = πB(θ)πB(λ|θ)

and where the superscript B indicates this is the intended prior for the Bayesian analysis. The

question becomes when would the true marginal posterior for just θ which integrates out the λ -

πB(θ|y) =

∫
L(θ, λ; y)πB(θ)πB(λ|θ)dλ

- be proportional to the marginal likelihood for just θ times marginal prior for just θ, i.e. would

π(θ|y) ∝ πB(θ)L(θ; y)?

Now recall that the full posterior for (θ, λ) is

πB(θ, λ|y) ∝ L(θ, λ; y) ∗ πB(θ)πB(λ|θ)

and again the marginal posterior for θ is

πB(θ|y) ∝
∫
L(θ, λ; y) ∗ πB(θ)πB(λ|θ)dλ.

Any possible integrated likelihood can be written as

L(θ; y) =

∫
L(θ, λ; y)π(λ|θ)dλ

where the lack of the subscript B indicates a possibly different conditional prior or measure used

and note that

πB(θ)L(θ; y) = πB(θ)

∫
L(θ, λ; y)π(λ|θ)dλ

=

∫
L(θ, λ; y)π(λ|θ)πB(θ)dλ
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and if πB(λ|θ) is obtained from πB(θ, λ) and is used

L(θ; y)πB(θ) =

∫
L(θ, λ; y)πB(λ|θ)πB(θ)dλ

=

∫
L(θ, λ; y)πB(θ, λ)dλ

So then, if the specific integrated likelihood "that should be used" is used

πB(θ)LB(θ; y) = πB(θ)

∫
L(θ, λ; y)πB(λ|θ)dλ

the true posterior is recovered

πB(θ)

∫
L(θ, λ; y)πB(λ|θ)dλ ∝ πB(θ|y).

The assumption of a full dimensional prior provides the appropriate conditional prior for the

parameter of focus to integrate over the other parameters in both the prior and integrated like-

lihoods to achieve a complete and fully accurate separability by the units of analysis. The full

Bayesian analysis can be marginally displayed for any parameter of focus without any loss of any

information for the parameter of focus. The marginal likelihoods obtained by integration also

have theoretical support via work Relative Surprise Inference by Good and Evans[15]. Note the

marginal likelihoods obtained by integration represents the amount by which the marginal prior is

changed to obtain the marginal posterior. This provides support for the shape of credible intervals

to match the integrated likelihood as well as Bayes factors for testing. Hence, at least for the

combined marginal integrated likelihood, there is direct theoretical motivation for plotting these.

We now look at how almost individual marginal likelihoods are obtained. In general, the full

likelihood from m independent units of analyses with only common and arbitrary parameters is

given as
m∏
i

L(θ, λi; yi)

with θ representing the common parameter and λi representing the arbitrary parameters. Again,

a general and computationally convenient route to focus on a given parameter by marginalizing

out the other parameters by maximization, is the profile likelihood. The profile likelihood for a
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given θ is

L(θ; yij) = sup
λi∈Ω

m∏
i

ni∏
j∈i

L(λi; yij , θ) j within i given the same λi

and as long as the λi are variation independent components (i.e. λi ∈ Ωi and Ω1×Ω2× ...×Ωn = Ω

), the profile likelihoods can be obtained by unit of analysis since

sup
λi∈Ω

m∏
i

n∏
j

L(λi; yij , θ) =

m∏
i

sup
λi∈Ω

n∏
j

L(λi; yij , θ).

The analysis can be fully updated for the addition of a new unit of analysis by multiplication by

of the above by

sup
λi+1∈Ω

n∏
j

L(λi+1; y(i+1)j , θ).

This assumes that there is no modification of the assumed probability specifications in the later

study. But as outlined above, a full and completely accurate marginal representation is available

from

πB(θ; y) = πB(θ)

∫
L(θ, λ; y)π(λ|θ)dλ

and although the profile marginal likelihood is easily split into almost individual profile likelihoods,

it may not provide an accurate enough approximation.

πB(θ; y) ∼ πB(θ) sup
λ∈Ω

n∏
j

L(λ; yj , θ)

To get a better sense of this as an approximation we can look to Laplace approximation methods.

πB(θ; y) = πB(θ) sup
λ∈Ω

[
πB(λ; θ)√
I(θ, λ)

n∏
j

L(λ; yj , θ)]

versus the proposed approximation given later.

First, we consider integrated likelihoods and how they factorize. The integrated likelihood value

for a given θ
′
becomes factorized as

L(θ; yij) =

∫
· · ·
∫ m∏

i

n∏
j

L(λi; yij , θ)dλi

and as long as the λi are variation independent components (i.e. λi ∈ Ωi and Ω1×Ω2× ...×Ωn = Ω
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), the integrated likelihoods can be obtained separately since

∫
· · ·
∫ m∏

i

n∏
j

L(λi; yij , θ)dλi =

m∏
i

∫ n∏
j

L(λi; yij , θ)dλi.

We now give the proposed almost individual marginalized pseudo integrated likelihood

πB(θ; yj) ≡ πB(θ)

∫
L(θ, λ; y)π(λ|θ)dλ
L(λ̂θ; yj , θ)

L(λ̂θ; yj , θ)

where λ̂θ = {λ : sup
λ∈Ω

n∏
i

L(λ; yi, θ)}

The sole motivation being that this pseudo likelihood adds on the log scale exactly to the combined

integrated log likelihood.

The convenient factorizations pointed out above, do not continue to hold when the full likelihood

from m independent units of analyses has additional common in distribution (random) parameters.

The full likelihood for a given unit of analysis i is given then as

Li(θ, λi,Θ, ; y(1,..i,..m)j) =

∫ n∏
j

L(θ, αi˜g(α|Θ), λi; y(1,..i,..m)j)dg(α|Θ)

where the y1,..i,..m emphasizes that data from all other units of analysis are required, now with θ

and Θ representing the common parameters and λi representing the arbitrary parameters. Here,

clearly there will be not factorization by unit of analysis as all the data will needed from each and

every unit of analysis likelihood and the subsequent profiling or integrating of the remaining λi

and Θ must be done jointly over all the units of analysis. The analysis can not be fully updated for

the addition of a new unit of analysis just simply by multiplication of the marginalized likelihood

for the old units of analysis by the marginalized likelihood for the new unit. But again, once the

marginal likelihood is updated using all the data, it can be displayed as a multiple of the revised

previous unit of analysis likelihoods and the new one.

Neyman-Scott problems create major challenges for likelihood methods and any visualization

based on them. On the other hand, Neyman-Scott situations can be thought of arising from the lack

of replication, in the sense that there is little (or no good) replication of the incidental parameters

(i.e. not many observations for each parameter common to those observations). Perhaps the most

widely known example is pair matched binary outcomes, with usual logistic regression maximizing
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out the incidental shared pair parameter to focus on the common odds ratio across pairs (i.e.

using the profile marginalization). It is well known that this results in a seriously inconsistent

mle for the odds ratio. Conditional logistic regression "fixes" this by conditioning out the shared

pair (incidental) parameter and modified profile likelihood tries to "mimic" this. There are also

Bayesian approaches that mimic this "fix"[35]. The inconsistency falls off rapidly - when matched

pairs are increased to matched strata that provide better replication of the shared parameter

(i.e. a few observations for each common strata parameter). So a full assessment of replication

should in principle help identify Neyman-Scott problems - which parameters have little to no

replication? Again, another remedy would be to provide some replication by using informative

priors[21]. For many if not most situations, where all parameters have some minimal replication

(possibly just coming from an informative prior), the graphs can be illuminating without necessarily

being misleading about the path from data given the model, to inferences.

An example where something that was not actually observed such as a continuous outcome,

but instead some appropriate interval, lead to a problem when this was ignored - leading to an

apparently inconsistent mle with a single parameter. The example was posted on Radford’s Neal

Blog - see material at

http://radfordneal.wordpress.com/2008/08/09/inconsistent-maximum-likelihood-estimation-an-

ordinary-example/#comments.

The probability specification is i.i.d. observations, drawn from the distribution -

f(t) = (1/2)N(0, 1) + (1/2)N(t, exp(−1/tˆ2)ˆ2),

where t is a positive real parameter. These likelihoods involve a single parameter - so the plotting

of individual log likelihoods and their sum is very straight forward. A few plots clearly shows that

with increasing sample sizes there is very likely to be a positive observation near 0 that has a very

spiked log likelihood. Because of this, at that point, it dominates the sum of all the other log

likelihoods. Hence clearly displaying the apparent inconsistency of the mle. With an increasing

numbers of samples - it gets more and more likely that such a dominant one will occur (hence the

inconsistency).

This then would seem to be an example where a plot could only mislead - most, if not all

but one single observation log likelihood suggest something other than the mle that is guaranteed

to be wrong - the mle will almost always be very close to 0. This happens even with a correct
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Figure 7: Continuous versus Discrete Observation Data Model

specification and no nuisance parameters unless the sample size was small and we were lucky (see

Figure on top). That is, until one recalls that the likelihood is the probability of what was observed

and the observations are never observed to infinite precision.

When the likelihood is rewritten to correct for this, i.e. an integral over some small interval

that represents the accuracy of recording the observations, the inconsistency disappears (see Figure

on bottom). Specifically on the same blog see - Radford Neal | August 26, 2008 at 2:47 pm ("if

one took account of observations being actually discrete rather than truly continuous and replaced

the density with the integral from obs — e to obs + e the inconsistency would go away — if e

was big enough?" Yes). The inconsistencies that arise in Neyman-Scott problems are not so easy

to overcome in other problems such as the Neyman-Scott problems discussed earlier and remain

serious open problems.
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