Power-Shrinkage: An Alternative Method for Dealing with Excessive Weights

Xiao-Li Meng

Joint Work with
Chihnan Chen of Center for Multicultural Mental Health Research (CMMER)
Nanhua Duan of Columbia University and Margarita Alegria of Harvard University and CMMHR

"Survey weighting is a mess" (Gelman 2007, Statistical Science)

$\sqrt{ }$ A part of the mess is that weights are all over the place!

$$
\frac{\text { Max Weight }}{\text { Min Weight }} \sim 10^{k}, \quad k=2,3 \text { or even higher. }
$$

"Survey weighting is a mess" (Gelman 2007, Statistical Science)

$\sqrt{ }$ A part of the mess is that weights are all over the place!

$$
\frac{\text { Max Weight }}{\text { Min Weight }} \sim 10^{k}, \quad k=2,3 \text { or even higher } .
$$

$\sqrt{ }$ The standard approach: trimming a small percentage of extreme weights, hoping for a smaller Mean Squared Error (MSE).

"Survey weighting is a mess" (Gelman 2007, Statistical Science)

$\sqrt{ }$ A part of the mess is that weights are all over the place!

$$
\frac{\text { Max Weight }}{\text { Min Weight }} \sim 10^{k}, \quad k=2,3 \text { or even higher. }
$$

$\sqrt{ }$ The standard approach: trimming a small percentage of extreme weights, hoping for a smaller Mean Squared Error (MSE).
$\sqrt{ }$ The fact that the ad hoc Trimming (a.k.a "Winsorlizing") method is still a standard practice demonstrates the difficulties in dealing with weights.

Power Shrinkage

Given data and weights $\left\{\left(y_{i}, w_{i}\right), i=1, \ldots, n\right\}$, introduce $p \in[0,1]$, and the power-shrinkage parameter:

$$
\bar{y}^{(p)}=\frac{\sum_{i=1}^{n} w_{i}^{p} y_{i}}{\sum_{i=1}^{n} w_{i}^{p}} .
$$

Power Shrinkage

Given data and weights $\left\{\left(y_{i}, w_{i}\right), i=1, \ldots, n\right\}$, introduce $p \in[0,1]$, and the power-shrinkage parameter:

$$
\bar{y}^{(p)}=\frac{\sum_{i=1}^{n} w_{i}^{p} y_{i}}{\sum_{i=1}^{n} w_{i}^{p}} .
$$

$\sqrt{ }$ Clearly, $\bar{y}^{(1)}$ is the standard weighted estimator, and $\bar{y}^{(0)}$ is the unweighed estimator.
$\sqrt{ }$ The goal is to choose $p \in[0,1]$ to achieve as smaller MSE as possible.

So Why Power Shrinkage?

$\sqrt{ }$ Survey weights are typically formed multiplicatively: $w_{i}=\prod_{j} W_{i, j}$.

So Why Power Shrinkage?

$\sqrt{ }$ Survey weights are typically formed multiplicatively: $w_{i}=\prod_{j} W_{i, j}$.
$\sqrt{ }$ Consequently, imperfections in forming the weights (e.g., measurement error) impact all weights, not just the extreme ones.

So Why Power Shrinkage?

Survey weights are typically formed multiplicatively: $w_{i}=\prod_{j} W_{i, j}$.
$\sqrt{ }$ Consequently, imperfections in forming the weights (e.g., measurement error) impact all weights, not just the extreme ones.
$\sqrt{ }$ By CLT, we can often assume normality:

$$
\log w_{i}=\sum_{j} \log \left(W_{i, j}\right) \sim N\left(A, \tau^{2}\right)
$$

So Why Power Shrinkage?

Survey weights are typically formed multiplicatively: $w_{i}=\prod_{j} W_{i, j}$.
$\sqrt{ }$ Consequently, imperfections in forming the weights (e.g., measurement error) impact all weights, not just the extreme ones.
$\sqrt{ }$ By CLT, we can often assume normality:

$$
\log w_{i}=\sum_{j} \log \left(W_{i, j}\right) \sim N\left(A, \tau^{2}\right)
$$

$\sqrt{ }$ Shrinking τ to $p \tau \Longleftrightarrow$ changing w to w^{p}.

So Why Power Shrinkage?

Survey weights are typically formed multiplicatively: $w_{i}=\prod_{j} W_{i, j}$.
$\sqrt{ }$ Consequently, imperfections in forming the weights (e.g., measurement error) impact all weights, not just the extreme ones.
$\sqrt{ }$ By CLT, we can often assume normality:

$$
\log w_{i}=\sum_{j} \log \left(W_{i, j}\right) \sim N\left(A, \tau^{2}\right)
$$

$\sqrt{ }$ Shrinking τ to $p \tau \Longleftrightarrow$ changing w to w^{p}.
$\sqrt{ }$ Using w_{i}^{p} preserves the (strict) order of w_{i} 's.

The Most Frequently Asked Question By Referees

$\sqrt{ }$ "So how do you choose p ?"

The Most Frequently Asked Question By Referees

$\sqrt{ }$ "So how do you choose p ?"
$\sqrt{ }$ We seek p to reduce MSE, compared to both $\bar{y}^{(1)}$ and $\bar{y}^{(0)}$.

The Most Frequently Asked Question By Referces

$\sqrt{ }$ "So how do you choose p ?"
$\sqrt{ }$ We seek p to reduce MSE, compared to both $\bar{y}^{(1)}$ and $\bar{y}^{(0)}$.
Intuitively, $p=1 / 2$ seems to be a good compromise: what else could it be?

The Most Frequently Asked Question By Referees

$\sqrt{ }$ "So how do you choose p ?"
$\sqrt{ }$ We seek p to reduce MSE, compared to both $\bar{y}^{(1)}$ and $\bar{y}^{(0)}$.
Intuitively, $p=1 / 2$ seems to be a good compromise: what else could it be?
$\sqrt{ } p=1 / 2$ was suggested in a thesis by Levenson (1993, U of Chicago) in the context of Importance Sampling.

The Most Frequently Asked Question By Referces

$\sqrt{ }$ "So how do you choose p ?"
$\sqrt{ }$ We seek p to reduce MSE, compared to both $\bar{y}^{(1)}$ and $\bar{y}^{(0)}$.
\checkmark Intuitively, $p=1 / 2$ seems to be a good compromise: what else could it be?
$\sqrt{ } p=1 / 2$ was suggested in a thesis by Levenson (1993, U of Chicago) in the context of Importance Sampling.
$\sqrt{ }$ Empirically, I was reminded by my twin brother

Evidence of Taking Root from Gelman and Little (1998)?

Table 2. Poststratification Weights for Late CBS Polls, Early CBS Polls, and NES, Normalized So That the Weight is 1 for Respondents from Households with One Adult

Number of Adults in Household
1
2
3
$4+$

Poststratification Weights

Theory	Early CBS	Late CBS	NES
1	1.00		
2	1.32	1.00	1.00
3	1.35	1.38	2.00
4.25	0.95	1.53	2.30

Note.-If sampling all went as planned, the weights would equal the theoretical values. (The last weight is not exactly 4 because the last poststratification category includes all households with 4 or more adults.) The weights for the higher categories are lower than the theoretical values because the surveys oversampled the larger households.

Potential Thesis Topics

$\sqrt{ }$ Is it possible to prove that $p=1 / 2$ is some kind of minimax choice?

Potential Thesis Topics

$\sqrt{ }$ Is it possible to prove that $p=1 / 2$ is some kind of minimax choice?
$\sqrt{ }$ Is it possible to find theoretically the optimal p ?

Potential Thesis Topics

$\sqrt{ }$ Is it possible to prove that $p=1 / 2$ is some kind of minimax choice?
$\sqrt{ }$ Is it possible to find theoretically the optimal p ?
$\sqrt{ }$ Is it possible to estimate such an optimal p ?

Potential Thesis Topics

$\sqrt{ }$ Is it possible to prove that $p=1 / 2$ is some kind of minimax choice?
$\sqrt{ }$ Is it possible to find theoretically the optimal p ?
$\sqrt{ }$ Is it possible to estimate such an optimal p ?
$\sqrt{ }$ We cannot solve any of these problems, because all of us already have Ph .D degrees.

Potential Thesis Topics

$\sqrt{ }$ Is it possible to prove that $p=1 / 2$ is some kind of minimax choice?
$\sqrt{ }$ Is it possible to find theoretically the optimal p ?
$\sqrt{ }$ Is it possible to estimate such an optimal p ?
$\sqrt{ }$ We cannot solve any of these problems, because all of us already have Ph .D degrees.
$\sqrt{ }$ So we took an easier route ...

Conducting Simulation Studies via CPPS

$\sqrt{ }$ The Collaborative Psychiatric Epidemiology Surveys (CPES) were initiated in recognition of the factors of mental disorders among the general population with emphasis on minority groups.

Conducting Simulation Studies via

 CPDS$\sqrt{ }$ The Collaborative Psychiatric Epidemiology Surveys (CPES) were initiated in recognition of the factors of mental disorders among the general population with emphasis on minority groups.
$\sqrt{ }$ It combines three (hopefully!) nationally representative multi-stage surveys: the National Comorbidity Survey Replication (NCS-R), the National Survey of American Life (NSAL), and the National Latino and Asian American Study (NLAAS).

Conducting Simulation Studies via

 CPDS$\sqrt{ }$ The Collaborative Psychiatric Epidemiology Surveys (CPES) were initiated in recognition of the factors of mental disorders among the general population with emphasis on minority groups.
$\sqrt{ }$ It combines three (hopefully!) nationally representative multi-stage surveys: the National Comorbidity Survey Replication (NCS-R), the National Survey of American Life (NSAL), and the National Latino and Asian American Study (NLAAS).
$\sqrt{ }$ Data were collected between May 2002 and November 2003, resulting 13,837 cases.

How Variable are the Survey Weights?

	w	Percentile	w
MIN	181.5	5	550.6
MEAN	$13,496.1$	25	$2,722.7$
MAX	$195,000.0$	50	$6,799.1$
		75	$15,942.0$
		95	$50,167.1$

Table 1: Summery Statistics for w

Always Take Log!

Survey Weight w

$\log _{10}(w)$

Love Log or Log for Love!

Create a Semi-artificial Population

$\sqrt{ }$ Each of the $I=13,837$ reported y_{i} represents a cluster with w_{i} individuals, whose values (if continuous and no restriction) are generated according to $N\left(y_{i}, \sigma_{y}^{2}\right)$, where σ_{y} is the standard error of y. The population consisted of $N=\sum_{i=1}^{I} w_{i}=186,745,266$ individuals.

Create a Semi-artificial Population

$\sqrt{ }$ Each of the $I=13,837$ reported y_{i} represents a cluster with w_{i} individuals, whose values (if continuous and no restriction) are generated according to $N\left(y_{i}, \sigma_{y}^{2}\right)$, where σ_{y} is the standard error of y. The population consisted of $N=\sum_{i=1}^{I} w_{i}=186,745,266$ individuals.
$\sqrt{ }$ If y has to be positive, a log-normal distribution is used instead.

Create a Semi-artificial Population

$\sqrt{ }$ Each of the $I=13,837$ reported y_{i} represents a cluster with w_{i} individuals, whose values (if continuous and no restriction) are generated according to $N\left(y_{i}, \sigma_{y}^{2}\right)$, where σ_{y} is the standard error of y. The population consisted of $N=\sum_{i=1}^{I} w_{i}=186,745,266$ individuals.
$\sqrt{ }$ If y has to be positive, a log-normal distribution is used instead.
$\sqrt{ }$ If y is binary, we use a logistic model with age, gender, height and education as covariates, and then sample from the Bernoulli distribution with the predicted mean. (For gender, we use age, height and education as covariates.)

Simulation Design

$\sqrt{ }$ Two-stage Sampling:

Simulation Design

$\sqrt{ }$ Two-stage Sampling:

* First, draw q clusters by simple random sampling without replacement.

Simulation Design

Two-stage Sampling:
\star First, draw q clusters by simple random sampling without replacement.

* Second, draw s cases within each cluster by simple random sampling without replacement.

Simulation Design

Two-stage Sampling:
夫 First, draw q clusters by simple random sampling without replacement.

* Second, draw s cases within each cluster by simple random sampling without replacement.
$\sqrt{ }$ The simulated sample size is $n=q \times s$. The observation from cluster i is assigned the weight $w_{i}^{*}=\frac{w_{i}}{s} \propto w_{i}$.

Simulation Design

Two-stage Sampling:
夫 First, draw q clusters by simple random sampling without replacement.

* Second, draw s cases within each cluster by simple random sampling without replacement.
$\sqrt{ }$ The simulated sample size is $n=q \times s$. The observation from cluster i is assigned the weight $w_{i}^{*}=\frac{w_{i}}{s} \propto w_{i}$.
$\sqrt{ }$ For the reported results, $s=2$.

Variables Examined

$\sqrt{ }$ Gender, age, height, household income, major depression, substance disorder, social phobia, any disorder, agepluswgt, body weight, nativity and the survey weight w itself.

Variables Examined

$\sqrt{ }$ Gender, age, height, household income, major depression, substance disorder, social phobia, any disorder, agepluswgt, body weight, nativity and the survey weight w itself.
agepluswgt $=$ age $+0.001 * w$, which correlates with w with unweighted correlation $r=0.5360$.

Variables Examined

Gender, age, height, household income, major depression, substance disorder, social phobia, any disorder, agepluswgt, body weight, nativity and the survey weight w itself.
$\sqrt{ }$ agepluswgt $=$ age $+0.001 * w$, which correlates with w with unweighted correlation $r=0.5360$.
$\sqrt{ }$
The importance of considering unweighted correlation:

$$
\bar{y}^{(1)}-\bar{y}^{(0)}=\frac{\sum_{i} w_{i} y_{i}}{\sum_{i} w_{i}}-\frac{\sum_{i} y_{i}}{n}=\frac{\operatorname{Cov}_{\mathrm{n}}(w, y)}{\bar{w}}
$$

Age

$$
\bar{r}=0.0617
$$

Major Depression

$\bar{r}=-0.0069$

Substance Abuse

Gender

$$
\bar{r}=-0.0716
$$

Household Income

Survey Weight w

$$
\bar{r}=0.1687
$$

Height

$$
\bar{r}=0.0347
$$

Social Phobia

$\bar{r}=-0.0002$

Immigrant

$$
\bar{r}=-0.0296
$$

Any Disorder

$\bar{r}=-0.0001$

Body Weight

Agepluswgt
 $\bar{r}=0.5360$

$n=432$

$n=864$

$$
n=1730
$$

So What Do We Observe?

The optimal bias-variance trade-off depends on both r and n.

So What Do We Observe?

$\sqrt{ }$ The optimal bias-variance trade-off depends on both r and n.
$\sqrt{ }$ As n increases, $p_{o p t}$ approaches $p=1$ (as it should!).

So What Do We Observe?

$\sqrt{ }$ The optimal bias-variance trade-off depends on both r and n.
$\sqrt{ }$ As n increases, $p_{\text {opt }}$ approaches $p=1$ (as it should!).
$\sqrt{ }$ But for r very small (e.g., $|r|<0.01$), a quite large n is needed before we prefer a large power.

So What Do We Observe?

The optimal bias-variance trade-off depends on both r and n.
$\sqrt{ }$ As n increases, $p_{\text {opt }}$ approaches $p=1$ (as it should!).
$\sqrt{ }$ But for r very small (e.g., $|r|<0.01$), a quite large n is needed before we prefer a large power.
$\sqrt{ }$ Suggest to predict $p_{\text {opt }}$ via \hat{r} and n :

$$
\log \left(\frac{p_{\text {opt }}}{1-p_{\text {opt }}}\right)=\beta_{0}+\beta_{1} \log \left(\frac{|\hat{r}|}{1-|\hat{r}|}\right)+\beta_{2} \log (n)
$$

So What Do We Observe?

The optimal bias-variance trade-off depends on both r and n.
$\sqrt{ }$ As n increases, $p_{\text {opt }}$ approaches $p=1$ (as it should!).
$\sqrt{ }$ But for r very small (e.g., $|r|<0.01$), a quite large n is needed before we prefer a large power.
$\sqrt{ }$ Suggest to predict $p_{\text {opt }}$ via \hat{r} and n :

$$
\log \left(\frac{p_{\text {opt }}}{1-p_{\text {opt }}}\right)=\beta_{0}+\beta_{1} \log \left(\frac{|\hat{r}|}{1-|\hat{r}|}\right)+\beta_{2} \log (n)
$$

$\sqrt{ }$ Note \hat{r} is the unweighted sample correlation between y and w.

Empirical Findings

Using the entire CPES data

Variable	Coefficient	t-probability	Confidence Interval	
Intercept	-1.3255	0.5097	-5.3079	1.5391
$\operatorname{logit}(\|\hat{\mathrm{r}}\|)$	0.9327	0.0000	0.6338	1.0220
$\log (n)$	0.7421	0.0036	0.3063	1.1548
$R^{2}=0.5446$				

Empirical Findings

Using the entire CPES data

Variable	Coefficient	t-probability	Confidence Interval	
Intercept	-1.3255	0.5097	-5.3079	1.5391
$\operatorname{logit}(\|\hat{\mathrm{r}}\|)$	0.9327	0.0000	0.6338	1.0220
$\log (n)$	0.7421	0.0036	0.3063	1.1548
$R^{2}=0.5446$				

Using the NLAAS dataset only:

Variable	Coefficient	t-probability	Confidence Interval	
Intercept	-3.6990	0.0217	-6.8359	-0.5621
$\operatorname{logit}(\|\hat{\mathrm{r}}\|)$	1.0211	0.0000	0.6335	1.4089
$\log (n)$	1.1308	0.0000	0.7245	1.5372
$R^{2}=0.5012$				

KISS: Keep it Sophistically Simple

$\sqrt{ }$ To KISS, we suggest (for now!)

$$
\hat{\beta}_{0}=-4, \hat{\beta}_{1}=1, \hat{\beta}_{2}=1 \text {, yielding }
$$

$$
\hat{p}_{n}=\frac{n|\hat{r}|}{(1-|\hat{r}|) e^{4}+n|\hat{r}|} .
$$

KISS: Keep it Sophistically Simple

$\sqrt{ }$ To KISS, we suggest (for now!)

$$
\hat{\beta}_{0}=-4, \hat{\beta}_{1}=1, \hat{\beta}_{2}=1, \text { yielding }
$$

$$
\hat{p}_{n}=\frac{n|\hat{r}|}{(1-|\hat{r}|) e^{4}+n|\hat{r}|} .
$$

$\sqrt{ }$ Desire properties of \hat{p}_{n} :

KISS: Keep it Sophistically Simple

$\sqrt{ }$ To KISS, we suggest (for now!)

$$
\begin{aligned}
& \hat{\beta}_{0}=-4, \hat{\beta}_{1}=1, \hat{\beta}_{2}=1 \text {, yielding } \\
& \hat{p}_{n}=\frac{n|\hat{r}|}{(1-|\hat{r}|) e^{4}+n|\hat{r}|} .
\end{aligned}
$$

$\sqrt{ }$ Desire properties of \hat{p}_{n} :
\star For fixed $\hat{r} \neq 0$, it approaches 1 as $n \rightarrow \infty$;

KISS: Keep it Sophistically Simple

\checkmark To KISS, we suggest (for now!)

$$
\begin{aligned}
& \hat{\beta}_{0}=-4, \hat{\beta}_{1}=1, \hat{\beta}_{2}=1 \text {, yielding } \\
& \hat{p}_{n}=\frac{n|\hat{r}|}{(1-|\hat{r}|) e^{4}+n|\hat{r}|} .
\end{aligned}
$$

$\sqrt{ }$ Desire properties of \hat{p}_{n} :
\star For fixed $\hat{r} \neq 0$, it approaches 1 as $n \rightarrow \infty$;
$\star \bar{y}^{\left(\hat{p}_{n}\right)}$ is asymptotically equivalent to $\bar{y}^{(1)}$;

KISS: Keep it Sophistically Simple

$\sqrt{ }$ To KISS, we suggest (for now!)

$$
\begin{gathered}
\hat{\beta}_{0}=-4, \hat{\beta}_{1}=1, \hat{\beta}_{2}=1 \text {, yielding } \\
\hat{p}_{n}=\frac{n|\hat{r}|}{(1-|\hat{r}|) e^{4}+n|\hat{r}|} .
\end{gathered}
$$

$\sqrt{ }$ Desire properties of \hat{p}_{n} :
\star For fixed $\hat{r} \neq 0$, it approaches 1 as $n \rightarrow \infty$;
$\star \bar{y}^{\left(\hat{p}_{n}\right)}$ is asymptotically equivalent to $\bar{y}^{(1)}$;
\star For fixed n, it goes to 1 as $\hat{r} \rightarrow 1$ and 0 as $\hat{r} \rightarrow 0$.

Log(MSE) under

 $\left\{\beta_{0}=-4, \beta_{1}=1, \beta_{2}=1\right\}$.Age
$\bar{r}=0.0617$

Survey Weight
$\bar{r}=0.1687$

Major Depression
$\bar{r}=-0.0069$

Substance Abuse

$$
\bar{r}=0.0139
$$

Gender
$\bar{r}=-0.0716$

Household Income

$$
\bar{r}=0.0809
$$

$-p=1$
$-p=0$ $-p=0.5$
-p=phat -••p=popt
$-p=1$
$-p=0$ $-\mathrm{p}=0.5$
$-p=$ phat

Log(MSE) under

 $\left\{\beta_{0}=-4, \beta_{1}=1, \beta_{2}=1\right\}$.Height
$\bar{r}=0.0347$

Agepluswgt
$\bar{r}=0.5360$

Social Phobia
$\bar{r}=-0.0002$

Immigrant
$\bar{r}=-0.0296$

Any Disorder

Body Weight
$\bar{r}=0.0520$

Out of Sample, Log(MSE) under $\{-4,1,1\}$

Age
$\bar{r}=0.0259$

Survey Weight

Major Depression
$\bar{r}=-0.0075$

Substance Abuse
$\bar{r}=0.0058$

Gender
$\bar{r}=-0.0516$

$-p=1$
$-p=0$

- $p=0.5$
-p=phat
-••p=popt
Household Income
$\bar{r}=0.1050$

Out of Sample, Log(MSE) under $\{-4,1,1\}$

Height
$\bar{r}=0.0673$

Agepluswgt
$\bar{r}=0.5219$

Social Phobia

Immigrant
$\bar{r}=-0.0020$

Any Disorder
$\bar{r}=-0.0068$

Body Weight
$\bar{r}=-0.0118$

Weighting is Still a Mess

$\sqrt{ }$ Using power is a promising general framework.

Weighting is Still a Mess

$\sqrt{ }$ Using power is a promising general framework.
$\sqrt{ }$ But a lot more research is needed, both empirical and theoretical.

Weighting is Still a Mess

$\sqrt{ }$ Using power is a promising general framework.
$\sqrt{ }$ But a lot more research is needed, both empirical and theoretical.
$\sqrt{ }$ A common power for all estimators v.s. individual power for specific estimators.

Weighting is Still a Mess

$\sqrt{ }$ Using power is a promising general framework. But a lot more research is needed, both empirical and theoretical.
$\sqrt{ }$ A common power for all estimators v.s. individual power for specific estimators.
$\sqrt{ }$ How to find "nearly optimal" power for weighted regressions, especially binary regressions?

Weighting is Still a Mess

$\sqrt{ }$ Using power is a promising general framework. But a lot more research is needed, both empirical and theoretical.
$\sqrt{ }$ A common power for all estimators v.s. individual power for specific estimators.
$\sqrt{ }$ How to find "nearly optimal" power for weighted regressions, especially binary regressions?
$\sqrt{ }$ Is it possible to find an adaptively optimal power?

Weighting is Still a Mess

$\sqrt{ }$ Using power is a promising general framework. But a lot more research is needed, both empirical and theoretical.
$\sqrt{ }$ A common power for all estimators v.s. individual power for specific estimators.
$\sqrt{ }$ How to find "nearly optimal" power for weighted regressions, especially binary regressions?
$\sqrt{ }$ Is it possible to find an adaptively optimal power?
$\sqrt{ }$...

