## A modeler's perspective on survey weights

#### **Roderick Little**



## Outline of talk

- 1. Big picture: design vs. model-based inference, weighting vs. prediction
- 2. Comparisons of weighting, prediction and generalized regression
- 3. Advocate robust modeling strategies

#### My overarching philosophy: calibrated Bayes

- Survey inference is not fundamentally different from other problems of statistical inference
  - But it has particular features that need attention
- Statistics is basically prediction: in survey setting, predicting survey variables for non-sampled units
- Inference should be model-based, Bayesian
- Seek models that are "frequency calibrated":
  - Incorporate survey design features
  - Properties like design consistency are useful
  - "objective" priors generally appropriate
    - Little (2004, 2006); Little & Zheng (2007)

#### Design vs. model-based survey inference

- Design-based (Randomization) inference
  - Survey variables *Y* fixed, inference based on distribution of sample inclusion indicators, *I*
- Model-based inference: Survey variables *Y* also random, assigned statistical model, often with fixed parameters. Two variants:
  - Superpopulation: Frequentist inference based on repeated samples from sample and superpopulation (hybrid approach)
  - Bayes: add prior for parameters; inference based on posterior distribution of finite population quantities
- key distinction in practice is randomization or model

### **Design-based vs. model-based inference**

#### **Design-based estimators**

- design unbiased
- potentially very inefficient
- variance estimation is cumbersome, and CI may deviate from nominal level at small sample size

#### **Parametric model-based estimators**

- subject to bias when the underlying model is misspecified
- efficient if model is correct
- variance estimation is more straightforward



Zheng and Little (2003, 2005)

#### **Robust Bayesian predictive estimators**

- robust to model misspecification
- efficient
- variance or CI is estimated from posterior distribution, and the confidence coverage is close to the nominal level

# Weighting

• A pure form of design-based estimation is to weight sampled units by inverse of inclusion probabilities  $w_i = 1/\pi_i$ 

- Sampled unit *i* "represents"  $w_i$  units in the population

• More generally, a common approach is:

 $w_{i} = w_{is} \times w_{in}(w_{is}) \times w_{ip}(w_{is}, w_{in})$   $w_{is} = \text{ sampling weight}$   $w_{in}(w_{is}) = \text{ nonresponse weight}$  $w_{ip}(w_{is}, w_{in}) = \text{ post-stratification weight}$ 

# Prediction

• The goal of model-based inference is to predict the non-sampled values

$$\hat{T} = \sum_{i \in s} y_i + \sum_{i \in \overline{s}} \hat{y}_i$$

 $\hat{y}_i$  = prediction based on model *M* 

- Prediction approach captures design information with covariates, fixed and random effects, in the prediction model
- (objective) Bayes is superior conceptual framework, but superpopulation models are also useful

# Composite approaches

• Generalized Regression Estimator, e.g.

$$\overline{y}_{\text{GR}} = N^{-1} \left( \sum_{i=1}^{N} \hat{y}_i + \sum_{i=1}^{n} w_i (y_i - \hat{y}_i) \right)$$

- Combines prediction and weighting
- Calibration by weighted residuals conveys robustness against model violations
- With proper attention to the model (Firth and Bennett 1998, calibration weighting is unnecessary and degrades the inference (examples below)
- Change the model, not the estimator

## The common ground

- Weighters can't ignore models
- Modelers can't ignore weights

# Weighters can't ignore models

- Weighting units yields design-unbiased or designconsistent estimates
  - In case of nonresponse, under "quasirandomization" assumptions
- Simple, prescriptive
  - Appearance of avoiding an explicit model
- But poor precision, confidence coverage when "implicit model" is not reasonable
  - Extreme weights a problem, solutions often ad-hoc
  - Basu's (1971) elephants

# Modelers can't ignore weights

- All models are wrong, some models are useful
- Models that ignore features like survey weights are vulnerable to misspecification
  - Inferences have poor properties
  - See e.g. Kish & Frankel (1974), Hansen, Madow & Tepping (1983)
- But models <u>can</u> be successfully applied in survey setting, with attention to design features
  - Weighting, stratification, clustering

# Prediction trumps weighting as a principle

- All statistics is fundamentally prediction
- It's the model that matters: best way to interpret alternative estimators is to consider the model assumptions, and the implied predictions
- Weighted estimates imply predictions, but the weights implied by prediction models have no inherent interpretation, except in special cases
- Consider for example regression prediction

# Ex 1: regression prediction

Regression estimate of mean of Y based on auxiliary variable Z

$$\overline{y}_{\text{reg}} = \overline{y} + \hat{\beta}_{y \cdot x} (\overline{z} - \overline{Z}) = \sum_{i=1}^{n} w_i y_i,$$
  
where  $w_i = \frac{1}{n} + \frac{(\overline{z} - \overline{Z})(z_i - \overline{z})}{\sum_{\ell=1}^{n} (z_\ell - \overline{z})^2}$ 

Performance of estimator depends on validity of model assumptions Is the relationship between *Y* and *Z* linear? etc.

Weights are simply a by-product of the estimator:

Form of the weights provides no insight on whether or not this is a good model

#### Ex 2. One categorical post-stratifier Z

$$\overline{y}_{\text{reg}} = \overline{y}_{\text{wt}} = \sum_{j=1}^{J} P_j \overline{y}_j = \sum_{j=1}^{J} w_j n_j \overline{y}_j / \sum_{j=1}^{J} w_j n_j$$

In post-stratum *j*:

$$P_j$$
 = population proportion  
 $n_j$  = sample count,  $\overline{y}_j$  = sample mean of  $Y$   
 $\overline{y}_{reg}$  = prediction estimate for  $y_{ji} \sim Nor(\mu_j, \sigma_j^2)$   
 $w_j = nP_j / n_j$  = implied weight in poststratum  $j$ 

This weight has an interpretation – adjusting the sample population to the known population proportion in post-stratum j

Sample Population

Ζ

Z Y

## One categorical post-stratifier Z

Prediction focus

$$\overline{y}_{\text{reg}} = \overline{y}_{\text{wt}} = \sum_{j=1}^{J} P_j \overline{y}_j = \sum_{j=1}^{J} w_j n_j \overline{y}_j / \sum_{j=1}^{J} w_j n_j$$

Weight focus

Estimator breaks down in small samples:

Design modifies weight  $w_j$  -- but problem is with  $\overline{y}_j$ , not  $P_j$ ! Model replaces  $\overline{y}_j$  by prediction  $\hat{\mu}_j$  from model Changing  $\overline{y}_i$  requires a model --

E.g.  $\mu_i \sim Nor(\mu, \tau^2)$  shrinks weight towards 1.

Implied weights from this random effects model depend on values of *Y* Model assumptions are more informative than the form of the weights

Sample Population

Ζ

Z Y

### Model vs GR estimator

Random Effects Model:

$$\hat{\mu}_{\text{RE}} = \sum_{j=1}^{J} \tilde{w}_j n_j \overline{y}_j / \sum_{j=1}^{J} \tilde{w}_j n_j, \tilde{w}_j:$$

 $\tilde{w}_j$  shrinks  $w_j$  towards 1, by amount dependent on closeness of poststratum means

Generalized Regression Estimator does not help here:

$$\hat{\mu}_{\rm GR} = \overline{y} + \sum_{j=1}^{J} w_j n_j (\overline{y}_j - \overline{y}) / \sum_{j=1}^{J} w_j n_j = \overline{y}_{\rm wt}:$$

Reduces to design-weighted estimator, no gain from model

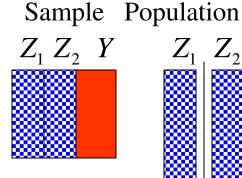
## Ex 3. One stratifier $Z_1$ , one post-stratifier $Z_2$

Design-based approaches

(A) Standard weighting is  $w_i = w_{is} \times w_{ip}(w_{is})$ 

Notes: (1)  $Z_1$  proportions are not matched!

(2) why not  $w_i^* = w_{ip} \times w_{is}(w_{ip})$ ?



(B) Deville and Sarndal (1987) modifies sampling weights  $\{w_{is}\}$  to adjusted weights  $\{w_i\}$  that match poststratum margin, but are close to  $\{w_{is}\}$  with respect to a distance measure  $d(w_{is}, w_i)$ .

Questions:

What is the principle for choosing the distance measure?

Should the  $\{w_i\}$  necessarily be close to  $\{w_{is}\}$ ?

JSM Washington 2009

#### Ex 3. One stratifier $Z_1$ , one post-stratifier $Z_2$

Model-based prediction approach

Saturated model:  $\{n_{jk}\} \sim \text{MNOM}(n, \pi_{jk});$ 

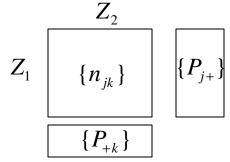
$$\overline{y}_{mod} = \sum_{j=1}^{J} \sum_{k=1}^{K} \hat{P}_{jk} \overline{y}_{jk} = \sum_{j=1}^{J} \sum_{k=1}^{K} w_{jk} n_{jk} \overline{y}_{jk} / \sum_{j=1}^{J} \sum_{k=1}^{K} w_{jk} n_{jk}$$

$$n_{jk} = \text{ sample count, } \overline{y}_{jk} = \text{ sample mean of } Y$$

$$\hat{P}_{jk} = \text{ proportion from raking (IPF) of } \{n_{jk}\}$$
to known margins  $\{P_{j+1}\}, \{P_{+k}\}$ 

 $y_{ihi} \sim Nor(\mu_{ih}, \sigma_{ih}^2)$ 

$$w_{jk} = n\hat{P}_{jk} / n_{jk} = \text{model weight}$$



Sample Population

 $Z_1 Z_2$ 

 $Z_1 Z_2 Y$ 

JSM Washington 2009

Ex 3. One stratifier  $Z_1$ , one post-stratifier  $Z_2$ <u>Model-based approach</u> Sample Population  $Z_1 Z_2 Y Z_1 Z_2$ 

$$\overline{y}_{\text{mod}} = \sum_{j=1}^{J} \sum_{k=1}^{K} \hat{P}_{jk} \,\overline{y}_{jk} = \sum_{j=1}^{J} \sum_{k=1}^{K} w_{jk} n_{jk} \,\overline{y}_{jk} \,/ \sum_{j=1}^{J} \sum_{k=1}^{K} w_{jk} n_{jk}$$

What to do when  $n_{ik}$  is small?

Design: arbitrary collapsing, ad-hoc modification of weight Model: Replace  $\overline{y}_{jk}$  by prediction from modified model e.g.  $y_{jki} \sim \operatorname{Nor}(\mu + \alpha_j + \beta_k + \gamma_{jk}, \sigma_{jk}^2)$ ,  $\sum_{j=1}^{J} \alpha_j = \sum_{k=1}^{K} \beta_k = 0, \gamma_{jk} \sim \operatorname{Nor}(0, \tau^2)$  (Gelman 2007) Setting  $\tau^2 = 0$  yields additive model,

otherwise shrinks towards additive model

### Ex 4. One continuous (post)stratifier Z

Consider PPS sampling, Z = measure of size

Design: HT or Generalized Regression

$$\overline{y}_{wt} = \frac{1}{N} \left( \sum_{i=1}^{n} y_i / \pi_i \right); \pi_i = \text{ selection prob (HT)}$$

 $\begin{array}{cc} \text{Sample} & \text{Population} \\ Z & Y & Z \end{array}$ 

 $\overline{y}_{wt} \approx \text{ prediction estimate for } y_i \sim \text{Nor}(\beta \pi_i, \sigma^2 \pi_i^2) ("\text{HT model"})$ 

This motivates following robust modeling approach:

$$\overline{y}_{\text{mod}} = \frac{1}{N} \left( \sum_{i=1}^{n} y_i + \sum_{i=n+1}^{N} \hat{y}_i \right), \ \hat{y}_i \text{ predictions from:}$$

 $y_i \sim \text{Nor}(S(\pi_i), \sigma^2 \pi_i^k); S(\pi_i) = \text{penalized spline of } Y \text{ on } Z$ Zheng and Little (2003, 2005) show reduced RMSE, better confidence coverage than HT, GR estimators by simulation:

## Probit p-spline regression model

• Chen, Elliott and Little (2009) extend p-spline model to a probit model for a binary outcome (Ruppert, Wand, and Carroll 2003):

$$\Phi^{-1}(P(y_i = 1)) = \beta_0 + \sum_{k=1}^p \beta_k \pi_i^k + \sum_{l=1}^m b_l (\pi_i - k_l)_+^p$$
  
$$b_l \sim N(0, \tau^2) \quad l = 1, ..., m \quad i = 1, ..., n$$

- the constants  $k_1 < ... < k_m$  are *m* selected fixed knots.
- $= (u)_{+}^{p} = \{u \times I(u \ge 0)\}^{p} \text{ for any real number } u.$
- Gibbs' sampling used to generate posterior predictive distribution of nonsampled values
- 95% credible interval: split the tail area of posterior distribution equally between the upper and lower 2.5% endpoints.

## Simulation study (1)

#### • Unequal probability sampling design:

 PPS sampling: units are selected with probability proportional to a given size variable related to the survey variable under study.

#### • Population and sample:

- N = 2,000 with sampling rates of 5% and 10% (n = 100 or 200).
- The size variable X takes the values 71, 72, ..., 2070. The inclusion probabilities  $\pi$  are proportional to X.
- Simulations: 1000 replicates
- Compare:
  - Empirical bias, width of posterior probability/CI
  - Empirical root mean squared error (RMSE)
  - Noncoverage rate of 95% CI

# Simulation study (1): artificial populations

LINUP

EXP

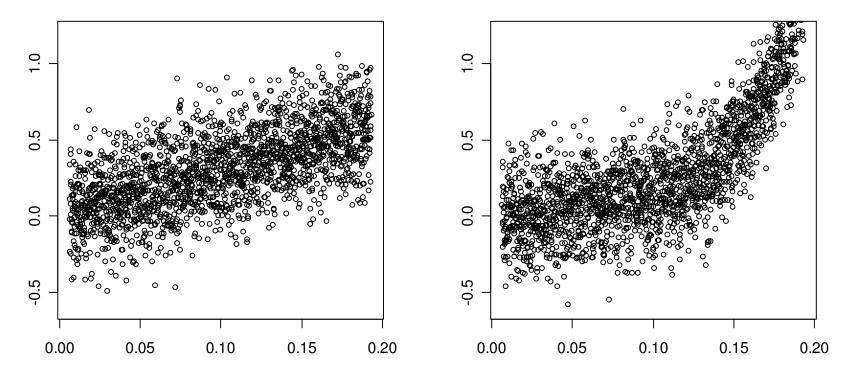


Figure 1 Two simulated populations, X-axis: inclusion probability; Y-axis: Y\*

JSM Washington 2009

# Simulation study (1): RMSE (low=good)

Table 1 Empirical RMSE × 1,000 of six estimators (Minimum RMSE is in bold print)

| Population       | True<br>prop. | НК | LR | PR | PR_GR | BPSP | BPSP_GR |
|------------------|---------------|----|----|----|-------|------|---------|
| LINUP            | 0.10          | 55 | 57 | 47 | 52    | 47   | 52      |
| N=2,000<br>n=100 | 0.50          | 66 | 52 | 48 | 51    | 49   | 51      |
|                  | 0.90          | 27 | 24 | 24 | 24    | 24   | 24      |
| EXP              | 0.10          | 52 | 60 | 55 | 52    | 52   | 53      |
| N=2,000<br>n=100 | 0.50          | 67 | 57 | 44 | 54    | 48   | 53      |
|                  | 0.90          | 25 | 13 | 13 | 13    | 13   | 13      |

 $\bigstar$  BPSP method yields estimates with small RMSE

#### Simulation study (1): CI noncoverages (nominal = 5)

Table 2 Noncoverage rate of 95% CI  $\times$  100 of six estimators (noncoverage rate most close to 5 is in bold print)

| Population                | True  |      | LR   |      |      | PR_GR |      |      | BPSP_GR |      |
|---------------------------|-------|------|------|------|------|-------|------|------|---------|------|
|                           | prop. | HK   | V1   | V2   | PR   | V1    | V2   | BPSP | V1      | V2   |
| LINUP<br>N=2,000<br>n=100 | 0.10  | 16.7 | 24.7 | 18.5 | 8.3  | 21.8  | 16.0 | 8.9  | 18.9    | 14.2 |
|                           | 0.50  | 7.3  | 6.9  | 10.8 | 5.7  | 7.5   | 9.6  | 5.4  | 7.9     | 9.0  |
|                           | 0.90  | 7.9  | 8.3  | 11.1 | 7.0  | 8.8   | 9.2  | 6.8  | 8.8     | 9.3  |
| EXP<br>N=2,000<br>n=100   | 0.10  | 14.8 | 24.7 | 17.7 | 10.9 | 19.2  | 14.9 | 9.7  | 18.5    | 14.3 |
|                           | 0.50  | 8.9  | 8.7  | 12.8 | 12.5 | 9.1   | 10.4 | 8.3  | 10.5    | 10.0 |
|                           | 0.90  | 6.7  | 12.2 | 12.2 | 9.7  | 12.3  | 9.1  | 9.7  | 11.2    | 9.0  |

\* V1: variance estimator using linearization; V2: jackknife variance estimator

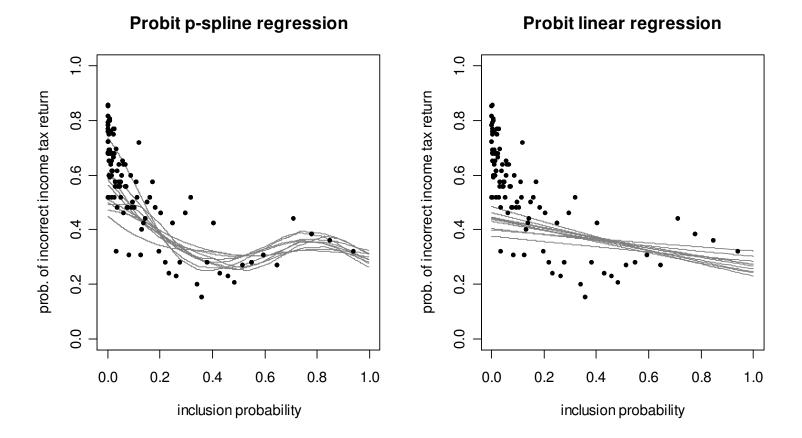
BPSP method has confidence coverage closer to nominal level, especially when true prop. = 0.10

JSM Washington 2009

## Simulation study (2)

- Tax auditing data (Computine 2007)
  - 3,119 income tax returns
  - *Y*: whether the income tax return is incorrect (p=0.517)
  - *X*: the amount of the realized profit
  - PPS sampling using *X* as the size variable
  - -n = 300 or 600
  - 1,000 replicates of simulation

# Simulation study (2): Tax auditing data



JSM Washington 2009

## Simulation study (2): results

Table 3 Comparison of various estimators for empirical bias, root mean squared error, and average width and noncoverage rate of 95% CI, in the tax return example

|         | bias*100 |       | RMSE*100 |      | average w | vidth*100 | noncoverage*100 |      |  |
|---------|----------|-------|----------|------|-----------|-----------|-----------------|------|--|
| Methods | 300      | 600   | 300      | 600  | 300       | 600       | 300             | 600  |  |
| HK      | -2.4     | -1.8  | 12.4     | 10.2 | 36        | 29        | 14.1            | 10.2 |  |
| LR      | 6.7      | 5.5   | 11.9     | 9.2  | 27        | 21        | 43.5            | 45.6 |  |
| PR      | -11.6    | -10.1 | 12.4     | 10.6 | 18        | 14        | 69.8            | 83.4 |  |
| PR_GR   | -1.2     | -0.3  | 11.5     | 8.8  | 33        | 26        | 16.1            | 11.4 |  |
| BPSP    | -6.8     | -2.7  | 9.3      | 5.2  | 27        | 19        | 14.2            | 5.0  |  |
| BPSP_GR | -0.7     | 0.2   | 12.0     | 10.1 | 34        | 26        | 15.9            | 12.8 |  |

\* The variance of GR estimator is estimated using linearization

 $\bigstar$  BPSP estimator performs well; PR estimator is biased and has poor confidence coverage because of model misspecification

JSM Washington 2009

# Why does model do better?

- Assumes smooth relationship HT weights can "bounce around"
- Predictions use sizes of the non-sampled cases
  - HT estimator does not use these
  - Often not provided to users (although they could be)
- Little & Zheng (2007) also show gains for model when sizes of non-sampled units are not known
  - Predicted using a Bayesian Bootstrap (BB) model
  - BB is a form of stochastic weighting

# Summary

- Compared design-based and model-based approaches to survey weights
- Model approach is attractive because of flexibility, inferential clarity
- Advocate survey inference under "weak models"

#### References

- Chen, Q., Elliott, M. and Little, R. (2009). Under review, Survey Meth.
- Deville, J-C and Sarndal, C-E. JASA 87, 376-382
- Firth, D. & Bennett, K.E. (1998). JRSS B 60, 3-21.
- Gelman, A. (2007) Stat. Science (with discussion)
- Hansen, MH, Madow, WG & Tepping, BJ (1983) JASA 78, 776-793.
- Holt, D., & Smith, T.M.F. (1979). JRSSA, 142, 33-46.
- Horvitz, D.G., & Thompson, D.J. (1952). JASA, 47, 663-685.
- Kish, L., & Frankel, M. R. (1974). JRSS B, 36, 1–37.
- Little, R.J.A. (2004). JASA, 99, 546-556.
- (2006). Am. Statist., 60, 3, 213-223.
  - & Zheng, H. (2007). To appear in *Bayesian Statistics* 8, J. M. Bernardo, M. J. Bayarri, J. O. Berger, A. P. Dawid, D. Heckerman, A. F. M. Smith & M. West (Eds.)
- Rizzo, L. (1992). JASA 87, 1166-1173.
- Rosenbaum, P. R. & Rubin, D. B. (1983). Biometrika, 70, 41-55
- Rubin, D.B. (1985). pp. 463-472 in *Bayesian Statistics*, eds. I.M. Bernado, M.H. DeGroot, D.V. Lindley, & A.F.M. Smith, Amsterdam: Elsevier,.
- Särndal, C.-E., Swensson, B. & Wretman, J.H. (1992), *Model Assisted Survey Sampling*, Springer: New York.
- Zheng, H. & Little, R.J. (2003). JOS 19, 2, 99-117.
  - \_\_\_\_\_ (2005) JOS 21,  $1_{\overline{J}SM}$  Washington 2009