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Outline of talk

1. Big picture: design vs. model-based
inference, weighting vs. prediction

2. Comparisons of weighting, prediction and
generalized regression

3. Advocate robust modeling strategies
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My overarching philosophy: calibrated Bayes

e Survey inference i1s not fundamentally different
from other problems of statistical inference

— But 1t has particular features that need attention

e Statistics 1s basically prediction: in survey setting,
predicting survey variables for non-sampled units

e Inference should be model-based, Bayesian

e Seek models that are “frequency calibrated”:
— Incorporate survey design features
— Properties like design consistency are useful
— “objective” priors generally appropriate
e Little (2004, 2006); Little & Zheng (2007)

JSM Washington 2009 3



Design vs. model-based survey inference

* Design-based (Randomization) inference
— Survey variables Y fixed, inference based on
distribution of sample inclusion indicators, /
 Model-based inference: Survey variables Y also
random, assigned statistical model, often with
fixed parameters. Two variants:

— Superpopulation: Frequentist inference based on
repeated samples from sample and superpopulation
(hybrid approach)

— Bayes: add prior for parameters; inference based on
posterior distribution of finite population quantities

e Kkey distinction in practice 1s randomization or model
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Design-based vs. model-based inference

Design-based estimators Parametric model-based estimators
= design unbiased = subject to bias when the underlying
= potentially very inefficient model 1s misspecified
= yariance estimation i1s cumbersome,| | = efficient if model is correct
and CI may deviate from nominal " variance estimation is more
level at small sample size straightforward

) Zheng and Little
(2003, 2005)

Robust Bayesian predictive estimators

= robust to model misspecification

= efficient

= variance or ClI is estimated from posterior
distribution, and the confidence coverage
is close to the nominal level
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Weighting

e A pure form of design-based estimation 1s to
weight sampled units by 1inverse of inclusion
probabilities w, =1/,

— Sampled unit i “represents” w, units in the population

 More generally, a common approach is:
W, = Wi Xw, (W)X Wio (Wigs W)
w, = sampling weight

w, (w, ) = nonresponse weight

w,, (W, w,, ) = post-stratification weight
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Prediction

e The goal of model-based inference 1s to predict the
non-sampled values

VaN
zes ies l

y, = predlctlon based on model M

e Prediction approach captures design information
with covariates, fixed and random effects, in the
prediction model

e (objective) Bayes 1s superior conceptual
framework, but superpopulation models are also
useful
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Composite approaches

Generalized Regression Estimator, e.g.

N n
Yer = N~ (Z)A’z +sz‘(yi — )A’z)j
i=1 i=1
1

Combines prediction and weighting

Calibration by weighted residuals conveys
robustness against model violations

With proper attention to the model (Firth and
Bennett 1998, calibration weighting 1s unnecessary
and degrades the inference (examples below)

Change the model, not the estimator
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The common ground

 Weighters can’t 1ignore models

 Modelers can’t ignore weights
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Weighters can’t ignore models

Weighting units yields design-unbiased or design-
consistent estimates

— In case of nonresponse, under “quasirandomization”
assumptions

Simple, prescriptive
— Appearance of avoiding an explicit model

But poor precision, confidence coverage when
“implicit model” 1s not reasonable

— Extreme weights a problem, solutions often ad-hoc
— Basu’s (1971) elephants
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Modelers can’t ignore weights

All models are wrong, some models are useful
Models that ignore features like survey weights
are vulnerable to misspecification

— Inferences have poor properties

— See e.g. Kish & Frankel (1974), Hansen, Madow &
Tepping (1983)

But models can be successfully applied in survey
setting, with attention to design features

— Weighting, stratification, clustering
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Prediction trumps weighting as a
principle

All statistics 1s fundamentally prediction

It’s the model that matters: best way to interpret
alternative estimators 1s to consider the model
assumptions, and the implied predictions

Weighted estimates imply predictions, but the
weights implied by prediction models have no
inherent interpretation, except in special cases

Consider for example regression prediction
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Ex 1: regression prediction

Regression estimate of mean of Y based on auxiliary variable Z
yreg — y_l_ﬁyx(z_z) — Zwiyi’
i=1

where w, =l+ (Zn )z, =2)

TN (e, -7

(=1

Performance of estimator depends on validity of model assumptions
Is the relationship between Y and Z linear? etc.

Weights are simply a by-product of the estimator:

Form of the weights provides no insight on whether or not this

1s a good model
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ExX 2. One categorical post-stratifier Z

; ; Sample Population
I A _ ZY Z
yreg = Yt _ZPJy] _ijnjyj /ijnj

In post-stratum j:

P, = population proportion

n; = sample count, y, = sample mean of ¥

— . T . )
Vg = prediction estimate for y . ~ Nor(u,,07;)

w, =nP. [/ n; = implied weight in poststratum j

This weight has an interpretation — adjusting the sample
population to the known population proportion in post-
stratum j
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One categorical post-stratifier Z

Weight focus  Prediction focus
_ _ I J \« _/ J Sample Population
Vg =V =2 PV, =D win 3, 1 Y wn, ZY Z
j=1 j=1

J=1

Estimator breaks down in small samples:

Design modifies weight w. -- but problem is with y ., not P!

Model replaces y; by prediction /; from model

Changing y. requires a model --

E.g. i,~Nor(u,7°) shrinks weight towards 1.

Implied weights from this random effects model depend on values of Y

Model assumptions are more informative than the form of the weights
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Model vs GR estimator

Random Effects Model:
J J

e = ijnjyj / W, W,
j=1 j=1

w ; shrinks w ; towards 1, by amount dependent

on closeness of poststratum means

Generalized Regression Estimator does not help here:
J J

fog =Y+ 2 win, (3, =)D win; =3,
j=1 J=1

Reduces to design-weighted estimator, no gain from model

JSM Washington 2009 16



Ex 3. One stratitier Z , one post-stratifierZ,

Design-based approaches Sample Population

(A) Standard weighting 18 w, = w, Xw, (W) 2,2, Y 7 Z,

Notes: (1) Z, proportions are not matched!

(2) why not w; = W Xwi (W, )?
(B) Deville and Sarndal (1987) modifies sampling
weights {w, } to adjusted weights {w,} that match

poststratum margin, but are close to {w, } with

respect to a distance measure d(w,

s’

w,).
Questions:
What 1s the principle for choosing the distance measure?

Should the {w,} necessarily be close to {w, }?
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Ex 3. One stratitier Z,, one post-stratifier Z,
Model-based prediction approach Sample Population

Saturated model: {n, } ~ MNOM(n, , ); 2122 r 2 :5:

J K J
?monZPJij Z Jkyjk/ZZWJk"Jk

j=1 k=1 j=1 k j=1 k=1

n, = sample count,y, = sample mean of Y

P, = proportion from raking (IPF) of {n, }

to known margins {P,, },{P,, } 2,

Wi = nij In, = model weight Zi | n,)y | [\B)
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Ex 3. One stratifier Z,, one post-stratifier Z,

Sample Population

Model-based approach
z27,Y Z Z,

J K J K J
?mod=ZZPJ-ij=ZZ MY i Z Wit ji

j=1 k=1 j=1 k=1 J=1 k=1

K

What to do when n;, 1s small?

Design: arbitrary collapsing, ad-hoc modification of weight

Model: Replace y, by prediction from modified model
e.g. v, ~ Nor(u+a, + 5, + 7/jk,0']2.k ),

J K
ZOIJ Z B. =0, ¥, ~Nor(0,7°) (Gelman 2007)
j=1 1

Setting 7°=

l\.) II

0 yields additive model,

otherwise shrinks towards additive model
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Ex 4. One continuous (post)stratifier Z

Consider PPS sampling, Z = measure of size
Sample Population

Design: HT or Generalized Regression

ZY Z
Vo = %(Z v, / 7[1.]; 7, = selection prob (HT) .
i=1

y.. = prediction estimate for y, ~ Nor(S7,,0°7”) ("HT model")

This motivates following robust modeling approach:
n N
y d=%(z Vit Y yij, y, predictions from:
i=l1 i=n+l
y. ~ Nor(S(x.),0°x’); S(x.) = penalized spline of Y on Z
Zheng and Little (2003, 2005) show reduced RMSE, better

confidence coverage than HT, GR estimators by simulation:
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Probit p-spline regression model

e Chen, Elliott and Little (2009) extend p-spline model to a
probit model for a binary outcome (Ruppert, Wand, and

Carroll 2003):
o'(P(y, =1)) ,BO+Z,Bk7z +Zb 7, —k,)
b~ N(0,22) I=lm i=l..n
— the constants k, <..<k, are m selected fixed knots.

— ()] ={uxI1(w=0)}" for any real number u.

— G1bbs’ sampling used to generate posterior predictive
distribution of nonsampled values

— 95% credible interval: split the tail area of posterior
distribution equally between the upper and lower 2.5%
endpoints.
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Simulation study (1)

Unequal probability sampling design:
— PPS sampling: units are selected with probability

proportional to a given size variable related to the survey
variable under study.

Population and sample:

— N = 2,000 with sampling rates of 5% and 10% (n = 100 or
200).

— The size variable X takes the values 71, 72, ..., 2070. The
inclusion probabilities ©t are proportional to X.

Simulations: 1000 replicates

Compare:
— Empirical bias, width of posterior probability/CI
— Empirical root mean squared error (RMSE)
— Noncoverage rate of 95% CI
JSM Washington 2009
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Simulation study (1): artificial
populations

LINUP EXP

I I I I I I I I
0.00 0.05 0.10 0.15 0.20 0.00 0.05 0.10 0.15 0.20

Figure 1 Two simulated populations, X-axis: inclusion probability; Y-axis: Y*
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Simulation study (1): RMSE
(low=good)

Table 1 Empirical RMSE x 1,000 of six estimators (Minimum RMSE is in bold print)

Population ;21: HK | LR | PR | PR_GR | BPSP | BPSP_GR
LINUP 010 | 55 | 57 | 47| 52 47 52
N=2,000 | 050 |66 | 52 | 48 | 51 49 51
n=100

090 | 27 | 24 | 24| 24 24 24
EXP 010 | 52 |60 | 55| 52 52 53
N=2,000 | 650 | 67 | 57 | 44 | 54 48 53
n=100

090 | 25 | 13|13 | 13 13 13

i/\( BPSP method yields estimates with small RMSE
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Simulation study (1): CI noncoverages (nominal = 5)

Table 2 Noncoverage rate of 95% CI x 100 of six estimators (noncoverage rate
most close to 5 is in bold print)

Population | Trye LR PR_GR BPSP_GR
HK PR BPSP

prop. V1 | V2 Vil V2 V1 | v2
LINUP | 0.10 |16.7]24.7]185| 83[218]16.0| 89| 189/ 142
N=126800 050 | 73| 69]108| 57| 75| 96| 54| 79| 90
n=

090 | 79| 83|11.1] 70| 88| 92| 68| 88| 9.3
EXP 0.10 | 14.8247|17.71109|192]14.9| 97| 185/ 14.3
N=2,000 | 050 | 89| 87/12.8/125| 9.1|104| 83105/ 10.0

n=100
0.90 6.7 (1221122 9.7112.3| 9.1 97(111.2| 9.0

* V1: variance estimator using linearization; V2: jackknife variance estimator

* BPSP method has confidence coverage closer to nominal level,
especially when true prop. =0.10
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Simulation study (2)
e Tax auditing data (Compumine 2007)

— 3,119 income tax returns

— Y: whether the income tax return 1s incorrect
(p=0.517)

— X: the amount of the realized profit

— PPS sampling using X as the size variable
— n =300 or 600
— 1,000 replicates of stmulation

JSM Washington 2009
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Simulation study (2): Tax auditing
data

Probit p-spline regression Probit linear regression
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Simulation study (2): results

Table 3 Comparison of various estimators for empirical bias, root mean squared error,
and average width and noncoverage rate of 95% CI, in the tax return example

bias*100 RMSE*100 | average width*100 | noncoverage*100

Methods 3000 600| 300| 600 300 600 300 600
HK 24| -1.8] 124| 102 36 29 14.1 10.2
LR 67| 55| 119 92 27 21 43.5 45.6
PR -11.6| -10.1| 124]| 10.6 18 14 69.8 83.4
PR_GR 12| -03] 11.5| 8.8 33 26 16.1 11.4
BPSP 6.8 27| 93| 52 27 19 14.2 5.0
BPSP_GR 07| 02| 12.0] 10.1 34 26 15.9 12.8

* The variance of GR estimator is estimated using linearization

* BPSP estimator performs well; PR estimator is biased and has
poor confidence coverage because of model misspecification
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Why does model do better?

Assumes smooth relationship — HT weights can
“bounce around”

Predictions use sizes of the non-sampled cases

— HT estimator does not use these

— Often not provided to users (although they could be)
Little & Zheng (2007) also show gains for model
when sizes of non-sampled units are not known

— Predicted using a Bayesian Bootstrap (BB) model
— BB is a form of stochastic weighting
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Summary

Compared design-based and model-based
approaches to survey weights

Model approach 1s attractive because of flexibility,
inferential clarity

Advocate survey inference under “weak models”
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