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Outline of talk
1. Big picture: design vs. model-based 

inference, weighting vs. prediction
2. Comparisons of weighting, prediction and 

generalized regression
3. Advocate robust modeling strategies 
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My overarching philosophy: calibrated Bayes
• Survey inference is not fundamentally different 

from other problems of statistical inference
– But it has particular features that need attention

• Statistics is basically prediction: in survey setting, 
predicting survey variables for non-sampled units

• Inference should be model-based, Bayesian 
• Seek models that are “frequency calibrated”: 

– Incorporate survey design features
– Properties like design consistency are useful
– “objective” priors generally appropriate

• Little (2004, 2006); Little & Zheng (2007)
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Design vs. model-based survey inference
• Design-based (Randomization) inference

– Survey variables Y fixed, inference based on 
distribution of sample inclusion indicators, I

• Model-based inference: Survey variables Y also 
random, assigned statistical model, often with 
fixed parameters. Two variants:
– Superpopulation: Frequentist inference based on 

repeated samples from sample and superpopulation 
(hybrid approach)

– Bayes: add prior for parameters; inference based on 
posterior distribution of finite population quantities

• key distinction in practice is randomization or model
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Design-based vs. model-based inference
Design-based estimators

� design unbiased
� potentially very inefficient
� variance estimation is cumbersome, 

and CI may deviate from nominal
level at small sample size

Parametric model-based estimators

� subject to bias when the underlying 
model is misspecified

� efficient if model is correct
� variance estimation is more 

straightforward

Robust Bayesian predictive estimators

� robust to model misspecification
� efficient
� variance or CI is estimated from posterior

distribution, and the confidence coverage
is close to the nominal level

Zheng and Little 
(2003, 2005)
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Weighting
• A pure form of design-based estimation is to 

weight sampled units by inverse of inclusion 
probabilities
– Sampled unit i “represents” units in the population

• More generally, a common approach is:
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Prediction
• The goal of model-based inference is to predict the 

non-sampled values 

• Prediction approach captures design information 
with covariates, fixed and random effects, in the 
prediction model

• (objective) Bayes is superior conceptual 
framework, but superpopulation models are also 
useful
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Composite approaches
• Generalized Regression Estimator, e.g.

• Combines prediction and weighting
• Calibration by weighted residuals conveys 

robustness against model violations
• With proper attention to the model (Firth and 

Bennett 1998, calibration weighting is unnecessary 
and degrades the inference (examples below)

• Change the model, not the estimator
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The common ground
• Weighters can’t ignore models
• Modelers can’t ignore weights
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Weighters can’t ignore models
• Weighting units yields design-unbiased or design-

consistent estimates
– In case of nonresponse, under “quasirandomization”

assumptions

• Simple, prescriptive
– Appearance of avoiding an explicit model

• But poor precision, confidence coverage when 
“implicit model” is not reasonable
– Extreme weights a problem, solutions often ad-hoc 
– Basu’s (1971) elephants
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Modelers can’t ignore weights
• All models are wrong, some models are useful
• Models that ignore features like survey weights 

are vulnerable to misspecification
– Inferences have poor properties 
– See e.g. Kish & Frankel (1974), Hansen, Madow & 

Tepping (1983)

• But models can be successfully applied in survey 
setting, with attention to design features
– Weighting, stratification, clustering
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Prediction trumps weighting as a 
principle

• All statistics is fundamentally prediction
• It’s the model that matters: best way to interpret 

alternative estimators is to consider the model 
assumptions, and the implied predictions

• Weighted estimates imply predictions, but the 
weights implied by prediction models have no 
inherent interpretation, except in special cases

• Consider for example regression prediction
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Ex 1: regression prediction
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Performance of estimator depends on validity of model assumptions
Is the relationship between  and  linear? etc.Y Z

Weights are simply a by-product of the estimator:
Form of the weights provides no insight on whether or not this
is a good model
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Ex 2. One categorical post-stratifier Z

Z Y Z
Sample   Population
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This weight has an interpretation – adjusting the sample 
population to the known population proportion in post-
stratum j
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One categorical post-stratifier Z

Z Y Z
Sample   Population

reg wt
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Estimator breaks down in small samples:
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Model vs GR estimator
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 Random Effects Model: 
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(A) Standard weighting is ( ) 

Notes: (1)  proportions are not matched!

            (2) why not ( )?          
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Ex 3. One stratifier , one post-stratifier

1 2 1 2Z Z Y Z Z

2Z
Sample   Population

1Z
Design-based approaches
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(B) Deville and Sarndal (1987) modifies sampling
weights { } to adjusted weights { } that match 

poststratum margin, but are close to { } with 

respect to a distance measure ( , ).
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Questions: 
What is the principle for choosing the distance measure?
Should the { } necessarily be close to { }?i iw w
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2

Saturated model: { } ~ MNOM( , );

~ Nor( , )
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1 2 1 2Z Z Y Z Z
Sample   Population

mod
1 1 1 1 1 1
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What to do when  is small?

Design: arbitrary collapsing, ad-hoc modification of weight
Model: Replace  by prediction from modified model
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Ex 3. One stratifier , one post-stratifier 2Z1Z
Model-based approach
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e.g. ~ Nor( , ),

0, ~ Nor(0, ) (Gelman 2007)

Setting = 0 yields additive model, 
otherwise shrinks towards additive model
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Ex 4. One continuous (post)stratifier Z

Z Y Z
Sample   Population
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Consider PPS sampling, Z = measure of size

Design: HT or Generalized Regression
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This motivates following robust modeling approach:
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Zheng and Little (2003, 2005) show reduce
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d RMSE, better 
confidence coverage than HT, GR estimators by simulation: 
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Probit p-spline regression model
• Chen, Elliott and Little (2009) extend p-spline model to a 

probit model for a binary outcome (Ruppert, Wand, and 
Carroll 2003): 

– the constants                    are m selected fixed knots.

– =                      for any real number u.
– Gibbs’ sampling used to generate posterior predictive 

distribution of nonsampled values
– 95% credible interval: split the tail area of posterior 

distribution equally between the upper and lower 2.5% 
endpoints.
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Simulation study (1)
• Unequal probability sampling design:

– PPS sampling: units are selected with probability 
proportional to a given size variable related to the survey 
variable under study.

• Population and sample:
– N = 2,000 with sampling rates of 5% and 10% (n = 100 or 

200).
– The size variable X takes the values 71, 72, ..., 2070. The 

inclusion probabilities � are proportional to X.
• Simulations: 1000 replicates
• Compare:

– Empirical bias, width of posterior probability/CI
– Empirical root mean squared error (RMSE)
– Noncoverage rate of 95% CI
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Simulation study (1): artificial 
populations
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Figure 1   Two simulated populations, X-axis: inclusion probability; Y-axis: Y*
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Simulation study (1): RMSE
(low=good)

1313131313250.90

5348544457670.50

5352525560520.10EXP
N=2,000
n=100

2424242424270.90

5149514852 660.50

5247524757550.10LINUP
N=2,000
n=100

BPSP_GRBPSPPR_GRPRLRHKTrue 
prop.

Population

Table 1   Empirical RMSE × 1,000 of six estimators (Minimum RMSE is in bold print)

BPSP method yields estimates with small RMSE
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Simulation study (1): CI noncoverages (nominal = 5)

9.011.29.79.112.39.712.212.26.70.90

10.010.58.310.49.112.512.88.78.90.50

14.318.59.714.919.210.917.724.714.80.10EXP
N=2,000
n=100

9.38.86.89.28.87.011.18.37.90.90

9.07.95.49.67.55.710.86.97.30.50

14.218.98.916.021.88.318.524.716.70.10LINUP
N=2,000
n=100

V2V1V2V1V2V1

BPSP_GR
BPSP

PR_GR
PR

LR
HKTrue 

prop.
Population

* V1: variance estimator using linearization; V2: jackknife variance estimator

Table 2   Noncoverage rate of 95% CI × 100 of six estimators (noncoverage rate 
most close to 5 is in bold print)

BPSP method has confidence coverage closer to nominal level,
especially when true prop. = 0.10
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Simulation study (2)
• Tax auditing data (Compumine 2007)

– 3,119 income tax returns
– Y: whether the income tax return is incorrect 

(p=0.517)
– X: the amount of the realized profit
– PPS sampling using X as the size variable
– n = 300 or 600
– 1,000 replicates of simulation
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Simulation study (2): Tax auditing 
data
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Simulation study (2): results
Table 3   Comparison of various estimators for empirical bias, root mean squared error, 
and average width and noncoverage rate of 95% CI, in the tax return example

12.815.9263410.112.00.2-0.7BPSP_GR

5.014.219275.29.3-2.7-6.8BPSP

11.416.126338.811.5-0.3-1.2PR_GR

83.469.8141810.612.4-10.1-11.6PR

45.643.521279.211.95.56.7LR

10.214.1293610.212.4-1.8-2.4HK

600300600300600300600300

noncoverage*100average width*100RMSE*100bias*100
Methods

* The variance of GR estimator is estimated using linearization

BPSP estimator performs well; PR estimator is biased and has 
poor confidence coverage because of model misspecification
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Why does model do better?
• Assumes smooth relationship – HT weights can 

“bounce around”
• Predictions use sizes of the non-sampled cases

– HT estimator does not use these
– Often not provided to users (although they could be)

• Little & Zheng (2007) also show gains for model 
when sizes of non-sampled units are not known
– Predicted using a Bayesian Bootstrap (BB) model
– BB is a form of stochastic weighting
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Summary
• Compared design-based and model-based 

approaches to survey weights
• Model approach is attractive because of flexibility, 

inferential clarity
• Advocate survey inference under “weak models”
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