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Abstract

The combining of information: Investigating and synthesizing what is possibly common in

clinical observations or studies via likelihood.

A thesis submitted by Keith O’Rourke of Worcester College towards a D.Phil. degree in

the Department of Statistics, University of Oxford, Trinity Term, 2003 and passed in Trinity

Term, 2007.

The thesis is to develop an analytical framework for a flexible but rigorous model based

investigation and synthesis of randomized clinical trials - regardless of outcome measure, prob-

ability model assumed or published summary available. This involves the identification of

relevant statistical theory, the development and adaptation of necessary techniques and the

application of these to a number of examples.

A new strategy for the investigation and synthesis of RCTs regardless of outcome measure,

probability model assumed or published summary available was developed to accomplish this.

No such general strategy has been explicitly set out before. It provides a quite general method,

and with adequate sample information, results in arguably correct and adequate techniques

for the assumptions made.

A new method of numerical integration was developed to incorporate flexible random

effects models; an importance sampling approach was developed to obtain the needed observed
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summary likelihoods and a Monte Carlo based diagnostic to assess the adequacy of sample

information was produced but remains to be further researched.
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1 Short history of likelihood for meta-analysis

1.1 Pre-Fisher

Meta-analysis, or at least the combination of observations “not necessarily made by the same

astronomer and or under different conditions”, figured prominently in the initial development of

statistical theory in the 18th and 19th centuries[29][14][21]. There was a belief (or at least a hope)

that something could be gained from combining the observations however, exactly how the ob-

servations should be combined to achieve exactly what gain was far from obvious. This spurred

the development of "Bayesian-like”methods that utilized the likelihood as a means of combining

observations and offered justifications of this method of combination as providing the most “prob-

able” true value (though originally conceived somewhat less directly as the most probable error

of measurement made in the observations). The justifications though, were not as well formalized

and understood as current Bayesian justifications of, for instance, the most probable value of an

unknown parameter, given an explicitly known prior probability distribution for that unknown

parameter[14]. The confusion in the justifications in fact, was wide-spread before and some time

after Fisher’s thesis of 1912[8], when according to Hald, Fisher vaguely drew attention to some

of the diffi culties. An exception may have been Keynes’1911 paper[18] which will be mentioned

below where the role of various assumptions was very clearly delineated.

Often, justifications of intuitively reasonable combinations that involved either the mean or

various weighted means of multiple observations were argued about and sought. In fact, the
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early attempts to justify combinations based on “likelihood” were largely abandoned when the

mathematical analysis under the “primitive”probability models assumed for the observations was

found intractable at the time[14]. One early attempt was by Daniel Bernoulli in a 1778 paper

entitled “The most probable choice between several discrepant observations and the formation

therefrom of the most likely induction.”which was reprinted in Biometrika 1961[17].

In the English translation, most references to what was being combined in the paper were to

observations, but the term observers was also used - suggesting that observations were not highly

distinguished as coming from the same or different investigators/studies. In this he enunciated a

principle of maximum likelihood “of all the innumerable ways of dealing with errors of observations

one should choose the one that has the highest degree of probability for the complex of observations

as a whole.”He believed that the mean was a poor combination using intuitive arguments that

observations further from the “centre” should be given less weight, except in the case where the

observations were believed to be Uniformly distributed - where he incorrectly (from a likelihood

combination perspective) believed all observations should be equally weighted.

He assumed a semicircular distribution and derived the likelihood function as

L =

n∏
i=1

√
a2 − (yi − µ)2

and tried to maximize L2 with respect to µ but was unable to do this for more than 2 observations,

as it lead to an equation of the fifth degree. For just 2 observations, it was maximized by the mean.

For some numerical examples with 3 observations he noted that L2 was maximized by weighted

means. The idea of using a probability model to determine the best combination was definitely

there, and he did realize that the probability of individual independent observations multiplied to

provide the joint probability of the complex of observations. Interestingly, he actually used the

smallest observation as the origin i.e.

yi − µ =
(
yi − y(1)

)
−
(
µ− y(1)

)
which emphasizes the correction that needs to be added to y(1) - u− y(1) as the unknown. Unfor-
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tunately for him, if instead of ∂L2/∂u = 0 he had used ∂ logL/∂u = 0 he would have found

∑ yi − µ
a2 − (yi − µ)2

= 0∑ yi
a2 − (yi − µ)2

− µ
∑ 1

a2 − (yi − µ)2
= 0

µ
∑ 1

a2 − (yi − µ)2
=

∑ yi
a2 − (yi − µ)2

µ =
∑ yi

a2 − (yi − µ)2
/
∑ 1

a2 − (yi − µ)2
.

This shows that µ̂ is the weighted average of the observations, the weights being the reciprocal of

the squared density, that is, increasing with the distance from µ. It is also unfortunate that he did

not consider multiplying individual observation likelihoods assuming Uniform(u− h, u+ h) with

h known, as the mathematics is simple and the best combination involves only the most extreme

observations on each side of the centre —about the most different combination from the one he

intuitively thought best in this case (the equally weighted mean which puts equal weight on all

observations).

Somewhat later, circa 1800, Laplace and Gauss fully investigated the multiplying of proba-

bilities of individual observations as the means of combination of observations given a common

parameter[21]. Laplace initially concentrated on the probable errors, and often specifically the

most probable error, given all the observations (and a more or less explicit assumption of a prior

uniform distribution on the possible errors). Gauss moved towards concentrating on the probable

values rather than errors and specifically the most probable value given all the observations (and

a very explicit assumption of a prior uniform distribution on the possible values). Gauss was also

perhaps the first with some real practical success. He reversed the reasoning that Bernoulli had

used earlier — rather than trying to establish that the mean is the best combination for some

“motivated by first principles” distribution, and he found the distribution for which “likelihood

multiplication”would determine that the best combination was the mean. According to Hald, he

did not check the distribution empirically[14].

In 1839 Bienayme had remarked that the relative frequency of repeated samples of binary

outcomes often show larger variation than indicated by a single underlying proportion and proposed

a full probability-based random effects model (suggested earlier by Poisson) to account for this.
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Here, the concept of a common underlying proportion was replaced by a common distribution

of underlying proportions. It is interesting that a random effects model where what is common

in observations is not a parameter, but a distribution of a parameter, followed so soon after

the development of likelihood methods for combination under the assumption of just a common

parameter.

The 1911 paper of Keynes mentioned above, acknowledged and revisited Gauss’s derivation of

the Normal distribution as the only symmetric distribution whose best combination was the mean

and also investigated this for the median and the mode. Here, simply for interest in itself, the

result of the Normal distribution as the only symmetric distribution whose best combination is

the mean, is presented in modern form but following that given in Keynes’paper.

The assumption of a symmetric distribution obviously does not imply that

f (yi;µ) = Beθ(µ−yi)
2

.

It is required to show that

n∑
i=1

∂
∂µf(yi, µ)

f (yi;µ)
= 0 being equivalent to

n∑
i=1

(µ− yi) = 0

along with symmetry does imply this.

The most general form of
∑n
i=1 (µ− yi) = 0 is

∑n
i=1 g (µ) (µ− yi) = 0, where g is an arbitrary

function of µ. Assuming g (µ) to be twice differentiable, without loss of generality, one may write

g (µ) = ϕ′′ (µ). Since yi is arbitrary, the equivalence requires

∂
∂µf(yi, µ)

f (yi;µ)
= ϕ′′ (µ) (µ− yi)

or

log f (yi;µ) =

∫
ϕ′′ (µ) (µ− yi) dµ+ ψ (yi) ,

where ψ (yi) is an arbitrary function of yi. Integration by parts gives

log f (yi;µ) = ϕ′ (µ) (µ− yi)− ϕ (µ) + ψ (yi) .
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Now, it is required that f (yi;µ) be symmetric about µ, i.e. invariant under y → 2µ− y. Thus

ϕ′ (µ) (µ− yi)− ϕ (µ) + ψ (yi) = ϕ′ (µ) (yi − µ)− ϕ (µ) + ψ (2µ− yi)

or

2ϕ′ (µ) (µ− yi) = ψ (2µ− yi)− ψ (yi) .

Taylor expand ψ (2µ− yi) about µ = yi.

ψ (2µ− yi) = ψ (yi) + 2ψ
′ (yi) (µ− yi) + 2ψ′′ (yi) (µ− yi)2 +

∞∑
j=3

2j

j!
ψ(j) (yi) (µ− yi)j ,

which results in

ϕ′ (µ) (µ− yi) = ψ′ (yi) (µ− yi) + ψ′′ (yi) (µ− yi)2 +
∞∑
j=3

2j−1

j!
ψ(j) (yi) (µ− yi)j ,

which simplifies to

ϕ′ (µ) = ψ′ (yi) + ψ
′′ (yi) (µ− yi) +

∞∑
j=3

2j−1

j!
ψ(j) (yi) (µ− yi)j−1 .

But ϕ′ (µ) is a function of µ alone for arbitrary yi, which implies that ψ
′′ (yi) = a constant along

with ψ′ (yi)− yiψ′′ (yi) = 0, which implies that ψ (yi) = ky2i . Then

ϕ′ (µ) = 2kµ ⇒ ϕ (µ) = kµ2 + C.

Substituting in the equation for log f ((yi;µ)),

log f (yi;µ) = 2kµ (µ− yi)− kµ2 − C + ky2i

= k (µ− yi)2 − C,

or

f (yi;µ) = Aek(µ−yi)
2

.

Note that ∫
f (yi;µ) dyi = 1 ⇒ k < 0.
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Keynes’ paper provides a good indication of the central role played by the combination of

observations in statistics prior to Fisher. Apparently though, only Keynes, Gauss, Laplace and

perhaps a few others were fully aware of the need for, and arbitrariness of, a prior distribution for

the probability justifications for the combination, and both Gauss and Laplace became at some

point uncomfortable with this and turned to sampling distribution-based justifications instead[14].

In particular, Gauss developed optimal combinations based on a restriction to unbiased linear

combinations of unbiased estimates (i.e. least squares or inverse variance weighted combinations).

This approach allowed for varying but known differences in the variances of the estimates and

implicitly assumed the estimates and variance were uncorrelated so that weighted averages of

unbiased estimates would give unbiased combinations (which is, of course, trivially true for known

variances).

Somewhat later, based on Laplace’s expositions of his own and Gauss’s work, Airy made an

extension for the estimation of unknown variances in 1861[1]. He also made a related extension to

Bienayme’s "random effects model" by developing methods based on within day and between day

variances of observations to allow for imperfect but partial replication of independent estimates.

Consideration of the within day sampling errors had shown that in some applications, observations

on different days were not in fact replicating in the usual sense —they had larger variations than

would be expected from the within day sampling errors. It was conceptualized that there was some

unknown day error and that some allowance should be made for this.

The two-stage summary approach to meta-analysis used today is close to this approach, but

where the implicit assumption is often violated as, for instance, with effect measures which are

slightly correlated with their variances.[15] Fisher though, as we will see below, returned to likeli-

hood (separated from the prior) and again provided arguments for likelihood multiplication as the

“best”basis for combining observations in the early 1900s. Pearson wrote an editorial on Airy’s

book[21] and Fisher, as a graduate student, either studied Airy’s book or related ones on the com-

bination of observations[14]. Pearson meta-analysed medical examples in the early 1900s, drawing

attention to opportunities suggested by the heterogeneous study outcomes. Fisher and Cochran

meta-analysed agricultural trials in the 1930s[11][3]. Fisher drew attention to the need to carefully

consider the reasons for less than perfect replications between trials (i.e. whether in fact it was

a treatment interaction with place and time or differing measurement errors) and various ways of

dealing with it for different inferential purposes. It apparently is one of Fisher’s few publications on
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random effects models (private conversation with D. Sprott and J. A. Nelder). Cochran explicated

the full Normal − Normal random effects model with a likelihood-based meta-analysis in 1937.

Further details are given in O’Rourke[21].

1.2 Early Fisher

In some ways, perhaps most interesting of all, Fisher in his 1925[9] and 1934[10] papers in which

he mainly developed his theory of statistics, thought through the issues of multiple experiments

when addressing the loss of information when summarizing data. In the 1925 paper, he points out

that if there is no loss of information in a summary (i.e. when there are suffi cient statistics) then

the summary of two combined samples from the same population must be some function of the two

summaries of the individual samples without recourse to the individual observations from either

sample. He then concludes the paper with a section on ancillary statistics whose purpose was

defined as providing a true, rather than approximate, weight for combining the multiple individual

sample summaries.

In the case of a [small] number of large samples, he shows that the likelihood from all the

individual observations collected from all the samples can be recovered from the MLEs of the mul-

tiple individual samples via a weighted average of those MLEs with weights equal to the observed

information (second derivative of the log-likelihood evaluated at the MLE) of each individual sam-

ple. Essentially this is because, for large samples, the log-likelihoods are approximate quadratic

polynomials and their addition only involves their maximums (MLEs) and curvatures (observed

informations evaluated at the MLE essentially estimated without error and taken as known).

Following Hald[14] and using modern notation

l = logL(θ,yall) =
∑
k

logL(θ,yk) =
∑
k

lk

and therefore

l
′
(θ̂) =

∑
k

l
′

k(θ̂).

By Taylor series expansion about θ̂k

l
′

k(θ̂) = l
′

k(θ̂k) + (θ̂ − θ̂k)l
′′

k (θ̂k) + ...
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∑
k

l
′

k(θ̂) =
∑
k

l
′

k(θ̂k) +
∑
k

(θ̂ − θ̂k)l
′′

k (θ̂k) + ...

∑
k

l
′

k(θ̂) =
∑
k

0 +
∑
k

(θ̂ − θ̂k)l
′′

k (θ̂k) + ...

∑
k

l
′

k(θ̂) =
∑
k

(θ̂ − θ̂k)l
′′

k (θ̂k) + ...

but
∑
k l

′

k(θ̂) = 0 so ∑
k

(θ̂ − θ̂k)l
′′

k (θ̂k) ≈ 0

θ̂
∑
k

l
′′

k (θ̂k)−
∑
k

θ̂kl
′′

k (θ̂k) ≈ 0

θ̂
∑
k

l
′′

k (θ̂k) ≈
∑
k

θ̂kl
′′

k (θ̂k)

θ̂ ≈
∑
k θ̂kl

′′

k (θ̂k)∑
k l

′′
k (θ̂k)

Since each of the estimates θ̂k is asymptotically Normal(θ, 1/nI), the combination based simply

on the unweighted average θ =
∑
k θ̂k/m would have variance 1/mnI. Note, however, that the

above combination recovers the likelihood from the full data and the θ̂ from this is asymptotically

Normal(θ, 1/l
′′
(θ̂)).

The advantage is perhaps more easily seen in terms of variances from the finite sample version

given by Rao[24] -

"Suppose that we have two independent samples X and Y , giving information on the
same parameter θ, from which estimates T1(x) and T2(y) obtained are such that

E[T1(X)] = E[T2(Y )] = θ,

V [T1(X)] = v1,V [T2(Y )] = v2,

where v1 and v2 are independent of θ. Further, suppose that there exist statistics
A1(X) and A1(Y ) such that

E[T1|A1(X) = A1(x)] = θ,

E[T2|A2(Y ) = A2(y)] = θ,
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V [T1|A1(X) = A1(x)] = v1(x),

V [T2|A2(Y ) = A2(y)] = v2(y),

where x and y are observed values of X and Y , respectively, and v1(x) and v2(y) are
independent of θ. Then, we might consider the conditional distributions of T1 and T2
given A1 and A2 at the observed values and report the variances of T1 and T2 as v1(x)
and v2(y), respectively, as an alternative to v1 and v2. What is the right thing to do?

Now, consider the problem of combining the estimates T1 and T2 using the reciprocals
of v1, v2 and v1(x), v2(y) as alternative sets of weights:

t1 = (
T1
v1
+
T2
v2
)/(

1

v1
+
1

v2
),

t2 = (
T1
v1(x)

+
T2
v2(y)

)/(
1

v1(x)
+

1

v2(y)
).

It is easy to see that the unconditional variances of t1 and t2 satisfy the relation

V (t1) ≥ V (t2)

[by application of the Guass-Markov Theorem, conditional on x and y]."

In the 1934 paper, he addressed the same question for small samples (where the log-likelihoods

can be of any form) and concluded that, in general, single estimates will not suffi ce but that the

entire course of the likelihood function would be needed. He then defined the necessary ancillary

statistics in addition to the MLE in this case as the second and higher differential coeffi cients at

the MLE (given that these are defined). These would allow one to recover the individual sample

log-likelihood functions (although he did not state the conditions under which the Taylor series

approximation at a given point recovers the full function - see Bressoud[2]) and with their addition,

the log-likelihood from the combined individual observations from all the samples.

The concept of ancillary statistics has changed somewhat since - in fact very soon afterwards,

as a year later Fisher treated “ancillary” as a broader term of art not specifically wedded to

local behavior of the likelihood function[30]. This was its original conceptualization though —

how to “correctly”(without loss of information) combine results from separate sample summaries,

given a choice of what the separate sample summaries should be but no access to the individual

observations in the separate samples. Here, “correctly”is defined as getting some multiple of the

likelihood function from all the observations but with access only to the collection of summaries.

It is perhaps tempting to suggest that Fisher’s key ideas in his theory of statistics (the breadth

of which is for instance reflected in Efron’s claim that modern statistical theory has added only

one concept, that of invariance, which is not well accepted[7] ) arose from his thinking of statistics

10



as the combination of estimates. Fortunately for us, Fisher as much said so in a 1935 paper read

at the Royal Statistical Society[12]. In discussing overcoming the preliminary diffi culty of multiple

criteria for judging estimates —better for what? —he argued

“Whatever other purpose our estimate may be wanted for, we may require at least that
it shall be fit to use, in conjunction with the results drawn from other samples of a like
kind, as a basis for making an improved estimate. On this basis, in fact, our enquiry
becomes self contained, and capable of developing its own appropriate criteria, without
reference to extraneous or ulterior considerations.”

And later in the next paragraph —

“ . . . , where the real problem of finite samples is considered, the requirement that our
estimates from these samples may be wanted as materials for a subsequent process of
estimation [combined somehow with results drawn from samples of a like kind?] is
found to supply the unequivocal criteria required.”[italics in the original]

1.3 Late Fisher

Fisher continued to exhibit numerous references to multiple estimates or studies in his 1956 book

Statistical Methods and Scientific Inference[13]. For instance, on page 75, he states

“It is usually convenient to tabulate its [the likelihoods] logarithm, since for independent
bodies of data such as might be obtained by different investigators, the “combination
of observations”requires only that the log-likelihoods be added.”

On page 163 he further notes

“In practical terms, if from samples of 10 two or more different estimates can be cal-
culated, we may compare their values by considering the precision of a large sample
of such estimates each derived from a sample of only 10, and calculate for preference
that estimate which would at this second stage [meta-analysis stage] give the highest
precision.”

Finally on page 165 he concludes

“. . . it is the Likelihood function that must supply all the material for estimation, and
that the ancillary statistics obtained by differentiating this function are inadequate only
because they do not specify the function fully.”

Given this, it is suggested that Fisher considered the theory of estimation as validly based on

the idea of retaining "all" of the likelihood in the estimates "summarized" from studies so that the
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overall likelihood-based on the individual observations from similar studies could be re-constituted

by just using the studies’estimates. This metaphor or model of estimation was continually referred

to through many of his publications - though perhaps even few familiar with Fisher’s work have

noticed that (AWF Edwards, private communication). Fisher was even cited as being the main

impetus for one of the earliest papers on p-value censorship[28]. There is some note of it given in

Savage [26], which suggested to the author that Fisher’s papers should be reviewed for this, and

also in Rao[24].

In conclusion, the early development of statistics in the context of combination of observations

and Fisher’s numerous and continued references to multiple estimates or summaries in his statistical

writing suggests that statistical theory should be easily relatable to meta-analysis as some of the

roots and elaborations of statistical theory were based on meta-analytical considerations.

1.4 Post-Fisher

The history chapter in this thesis started with the combination of observations made by different

astronomers and geodesists in the late 1700’s and early 1800’s and then concluded with some

excerpts from Fisher’s 1956 book. Unfortunately, the quantitative combination of estimates from

randomized clinical trials was quite rare before about 1980 so there is a need to bridge the gap.

Meta-analysis for psychological and educational research started somewhat earlier, and by 1976

Glass highlighted the desirability of the tradition of combining estimates from different studies and

apparently first coined the term meta-analysis. Some authors argue that meta-analysis methods for

clinical research were initially based on this activity in psychological and educational research. In

educational and psychological research however, studies would very often use different outcomes or

scales, and to this end, Glass proposed the use of an index of effect magnitude that did not depend

on the arbitrary scaling of the outcomes so that combining in some sense, made sense. Presumably,

in response to this, Hedges and Olkin wrote a book[15] in 1985 directed (as the authors indicated)

at providing different statistical methods from those of Fisher & Cochran that were designed to

specifically deal with this new and different kind of meta-analysis - that of combining different

outcomes using an index of magnitude. In 1990, Olkin[20], quoting Fisher, again highlighted this

arguably different class of meta-analyses (which apparently are more common in psychology and

education than clinical research) of determining the combined significance of independent tests on

outcomes “that may be of very different kinds”(by combining their p_values.)[21].

12



Hedges and Olkin’s book, although a substantial and now classic book for combining different

outcomes using an index of magnitude, is somewhat out of place for the more usual situation

encountered in clinical research where a series of randomized clinical trials have identical or very

similar outcomes. Here Fisher and Cochran’s methods would be arguably more appropriate. (With

recent changes in clinical research, specifically the inclusion of Quality of Life measures which are

comprised of various scales, this may be less the case for those outcomes.)

DerSimonian and Laird[6], published in 1986 what was perhaps one of the first “modern”

papers on statistics for meta-analysis for randomized clinical trails. It drew on and referenced

a 1981 paper[25] that W. G. Cochran was the senior author on (published posthumously) that

was comprised of simulation studies of various estimators of combined estimates from Cochran’s

1937 Normal −Normal random effects model[3]. DerSimonian and Laird chose to adopt one the

closed form non-iterative formulas from this paper and adapted it for binary outcomes. Two more

methodological as well as statistical papers appeared in the next year - Sacks et al[16] and L’Abbe,

Detsky and O’Rourke[19] (the author of this thesis). The authors of these three papers had been

loosely collaborating since 1985. In particular, Chalmers had provided a draft of his quality scoring

system and DerSimonian and Laird had provided their draft paper to the author when the L’Abbe

group were developing their ideas and paper. There it was suggested that logistic regression be

used for conducting meta-analyses of randomized two group experiments with binary outcomes as

it provided a likelihood-based approach (the author was the statistician on the paper and wrote

the statistical appendix for it). First, the logistic regression is set up to include an indicator term

for study, a term for treatment group, and an interaction term (treatment by study). The indicator

term for study allows a separate baseline estimate for each study so that each study’s treatment

effect estimate contribution is relative to its own control group. The treatment group term allows

for a common treatment effect estimate and the interaction term allows for a separate treatment

effect estimate for each individual study (the same as one would get using each study’s data alone).

The consistency of study results is then quantitatively analyzed by investigating the variation in the

individual study treatment effect estimates and their confidence intervals and, less preferably, the

statistical significance of omitting the interaction term in the logistic regression. A warning about

the low power of this test was given along with a suggestion that clinical judgement was preferable.

With the omission of the interaction term, a common “pooled” treatment effect is constructed

along with estimates and likelihood ratio-based confidence intervals and tests. The likelihood for
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the confidence intervals for the common treatment parameter τ is obtained by profiling out the

within study baseline parameters ci

L(y1, ..., yn; τ , ĉ1, ..., ĉn)

which is of course equal to ∏
i

L(yi; τ , ĉi)

as the ĉi, s are mutually independent. Thus it was equivalent to the approach in this thesis, but

with the marginal likelihood being immediately given by suffi ciency and random effects neglected.

Random effects were later allowed for in a technical report[22] using a method from Cox and

Snell[5] that Venables and Ripley claim was first suggested by Finney in 1971[31] and is now often

referred to as quasi-likelihood - where the scale parameter, rather than being set equal to one,

is estimated by the deviance or Pearson Chi-square statistic divided by the residual degrees of

freedom. Quasi-likelihood though, is a much more general approach, not tied to specific estimates

of scale. To second order, this scale estimate has the effect of simply increasing the standard error

of the MLE as the MLE itself is unaffected. As reviewed in appendix E, Tjur gave reasons for

preferring that the MLE be unaffected, which McCullagh was then easily able to set aside. Many

authors though, simply reject this allowance for random effects by scale estimation as being ad hoc.

Stafford’s adjustment[27] was adopted earlier in this thesis, as it provides an asymptotic rationale

for the allowance for random effects which may overcome such objections to its use. But, unless

the likelihoods are essentially quadratic, as is usually the case with binary outcomes, it is unlikely

to modify the fixed effect likelihoods to adequately approximate possibly true level 2 likelihoods.

In Statistics in Medicine in 1986[23], Richard Peto provided an explanation for a statistical

method he had used in earlier applications. For ruling out the null hypothesis of no effect, he had

used a test based on the unweighted sum of observed minus expecteds Oi —Ei, and for combined

estimation of an odds ratio, he had used a weighted sum of Oi —Ei with the weights being the

inverse variance of Oi — Ei. These quantities could be directly motivated as being quadratic

approximations to maximum likelihood estimation under a conditional logistic regression model,

as for instance was shown in Cox[4] and referenced by Peto[32] in 1985. Of course there is always

more than one way to motivate a quantity —it is just suggesting this is one possible way.

In 1986, Peto emphasized entirely different justification of the use of Oi —Ei by starting with the
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question “But why use observed minus expecteds rather than some logistic model?”His answer had

two parts —one was that observed minus expecteds would be readily understandable to physicians

and that it provided a typical estimate of odds ratios that did not depend on assumptions of

the sort needed for logistic regression (although this does follow from assuming a conditional

logistic regression model and approximating the conditional MLE by the score statistic — see

O’Rourke[21]). Unfortunately, he did not define what he meant by “typical”nor the “depend[ence]

on assumptions". Perhaps most strikingly, he dismissed the use of random effects models using

very similar arguments that Fisher had used for the certain cases where Fisher thought random

effects specifically should not be considered — see O’Rourke[21]. It is perhaps more tenuous to

relate this Oi —Ei approach back to Fisher and Cochran than the approach of DerSimonian and

Laird and L’Abbe, Destky and O’Rourke but more or less indirectly the methods of Fisher and

Cochrane became central for the meta-analyses of randomized clinical trials.

The pressure for clinical researchers to actually carry out meta-analysis of randomized controlled

trials in their various fields had been building perhaps soon after Archie Cochrane published an

essay in 1979, in which he suggested that "It is surely a great criticism of our profession that

we have not organized a critical summary, by speciality or subspecialty, adapted periodically, of

all relevant randomized controlled trials" . In 1985, an international collaboration to prepare

systematic reviews of controlled trials in the field of pregnancy and childbirth, resulting in the

publication in 1989 of: "Effective Care in Pregnancy and Childbirth (ECPC): A Guide to Effec-

tive Care in Pregnancy and Childbirth (GECPC)", and "The Oxford Database of Perinatal Trials

(ODPT)". Encouraged by the reception given to the systematic reviews of care during pregnancy

and childbirth, Michael Peckham, first Director of Research & Development in the British Na-

tional Health Service, approved funding for "a Cochrane Centre" to facilitate the preparation of

systematic reviews of randomized controlled trials of health care, in 1992. Later that year, "The

Cochrane Centre" opened in Oxford, UK. In 1993, an international and comprehensive concept

of the Cochrane Collaboration was presented at a conference ("Doing more Good than Harm")

organized by Kenneth Warren and Frederic Mosteller at the New York Academy of Sciences, and

in June of that year the development of Cochrane Collaboration’s Handbook as a tangible means

to facilitate the preparation of systematic reviews of randomized controlled trials of health care

began with the arrival of the 1st Cochrane Visiting Fellow at the UK Cochrane Centre.

In 1993, a Cochrane Collaboration Workshop on statistical methods for data synthesis was
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conducted and a report drafted. The list of participants included D. Altman, P. Armitage, C.

Baigent, J. Berlin, M. Bracken, R. Collins, K. Dickersin, D. Elbourne, R. Gray, K. McPherson, A.

Oxman, M. Palmer, R. Peto, S. Pocock, K. Schulz and S. Thompson, all of whom were statisticians,

epidemiologists or physicians with expertise in statistical methods for data synthesis. The workshop

was convened to develop guidelines on statistical methods for data synthesis for the Cochrane

Collaboration’s eventual handbook and to identify useful research topics in that area.

In the report, the deliberations are outlined and a set of implications for the Cochrane Collabo-

ration are given. It was assumed that only published summary statistics would be available for the

foreseeable future, although the preferability of having individual participant data was indicated.

Issues of inclusion criteria for systematic reviews were not considered except for those having to

do with methodological quality. There was a major discussion on effect measures with greatest

emphasis on binary outcomes where the relative merits of odds ratio versus relative risk were dis-

cussed at length. Here the odds ratio was favoured as a default, but it was stated that the relative

risk and risk difference should not be ruled out as options. Some felt the choice of effect measure

should depend in some part on a test of heterogeneity, while others disagreed. Several participants

felt it would be preferable to use different measures for presentation than were used for analyzing

the data. Continuous outcome measures received much less attention with weighted mean differ-

ences being suggested as appropriate, along with the possible consideration of standardizing by

the control group standard deviation (to get an “effect size”). Most felt the area merited deeper

study - diffi culties being anticipated about choice of effect measure, the issue of data distribution,

use of medians rather than means, handling of before and after measurements, weighing of studies

and missing data. Further research on these was recommended. The issue of binary and contin-

uous data also arose with some suggestion of automatic transformation of continuous outcome to

binary, but further study was recommended. Here some of the issues now resolved by this thesis

were being identified and highlighted 20 years ago.

As for approaches to aggregation, many but not all, recommended the use of a test of het-

erogeneity with the issue of low power being identified as a concern along with a suggested Type

I error level of .10 rather than the customary .05. As for aggregation, given the determination

that "substantial" heterogeneity is not present, after some discussion and a suggestion that results

would be similar, a fixed effect models was decide upon as the default approach. Considerable

disagreement ensued, however, when the discussion turned to the preferred approach under condi-
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tions of statistically demonstrable heterogeneity. Both random and fixed effect models had strong

proponents. The report cautions that characterizing in a few words the differences between fixed

and random effects proponents would be challenging.

Some claimed the fixed effect approach was “assumption free” and is not [should not be] di-

rectly influenced by heterogeneity while others claimed that it would produce an artificially narrow

confidence interval, as it does not reflect between-trial variance. They suggested random effects

did not make as stringent an assumption as there being no differences between the underlying true

treatment effects in the individual trials and hence was preferable. Common ground under these

widely contrasting views was then summarized : the analyst should attempt to explore the reasons

for the heterogeneity and explain it, especially with regard to varying methodological quality, that

the ruling out of an overall null hypothesis of no effect in all trials need not distinguish the alterna-

tive to be fixed or random but “at least one of the trials”has an effect; that whether heterogeneity

was present or not, the fixed effect estimate is an informative average measure of treatment effect;

and, finally, that as random effects methods have rather amorphous assumptions, it was an area

requiring more research into the importance of the assumptions and robustness to them. Here,

the pragmatic concern arose regarding random effects methods giving relatively more weight to

smaller studies when these often are of poorer quality and more subject to publication bias.

The entire discussion regarding appropriate approaches for aggregation under conditions of

heterogeneity pertained to binary data. The same general principles, however, were thought to

apply to continuous data and it was mentioned that the same discussion about fixed versus random

effects models had occurred many years ago, relative to continuous data. They felt they should

acknowledge that various fixed and random effects approaches were available and that future

research should compare DerSimonian and Laird’s approach to those based on maximum likelihood

methods.

This thesis (passed in 2007) provides a general approach for both discrete and continuous

data, regardless of reported summaries, based on the observed summary likelihood. Additionally,

DerSimonian and Laird’s approach can be compared to likelihood methods using numerous assumed

distributions for random effects. It is a bit surprising that it has taken 20 years for this to be

undertaken.
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