Removing the blindifold

Visualising statistical models

Hadley Wickham

Assistant Professor
Dobelman Family Junior Chair Department of Statistics
Rice University

why?

Access

Understand

Understand

Understand

Understand

Visualisation
 +Uncovers the unexpected
 - Slow
 - Cognitive biases

Model

+ Mathematically well founded
+Fast
- Only discovers
what we anticipate

Understand

Neural networks

Display the model

in the data space
Look at many members of a collection Explore the process of fitting, not just the end result

Neural networks

- Modelled on the way that brains work
- Normally treated as a black box. Can we gain more insight into how they work?
- Single hidden-layer neural network: nnet R package

Display the model in data space

$$
\begin{aligned}
& \text { How do neural } \\
& \text { networks work? }
\end{aligned}
$$

$y_{j}=\operatorname{logit}\left(\alpha_{j}+\sum w_{i j} x_{i}\right)$

Look at all members of the collection

class

- B
- A
pred

1.0
0.8
0.6
0.4
0.2
0.0

$$
\begin{aligned}
& \text { How did I find } \\
& \text { that model? }
\end{aligned}
$$

Classification algorithm $\mathrm{f}: \mathrm{R}^{\mathrm{p}} \rightarrow\{1,2, \ldots, \mathrm{k}\}$

Input

Classification algorithm $\mathrm{f}: \mathrm{R}^{\mathrm{p} \rightarrow\{1,2, \ldots, k\}}$

Input
 Prediction

Classification algorithm $\mathrm{f}: \mathrm{R}^{\mathrm{p} \rightarrow\{1,2, \ldots, k\}}$

Probabilities

Most also provide class membership probabilities
$f: R^{p} \rightarrow[0,1]^{k}$

Classification algorithm f: $R^{p \rightarrow\{1,2, \ldots, k\}}$

Input
Prediction

Most also provide class membership probabilities
$\mathrm{f}: \mathrm{R}^{\mathrm{p}} \rightarrow[0,1]^{\mathrm{k}}$

How to find the boundaries?

How to find the boundaries?

Random sample

How to find the boundaries?

Random sample Classify

How to find the boundaries?

Random sample Classify

Low advantage

How to find the boundaries?

Random sample Classify

Low advantage

Crude method, but works for all classification algorithms and for moderate dimensionality

rinsembles of linear models

Display the model

 in the data space Look at many members of a collection Explore the process of fitting, not just the end result
Data

- Fertility in French-speaking Swiss provinces in the late 1800's
- Predict fertility based on:
- proportion of agricultural workers
- average performance on an army examination
- amount of higher education
- proportion of Catholics
- infant mortality

Model

- Linear modes with all combinations of covariates (2^{p} models)
- What can looking at all models tell us that looking at just a few can't?

Conclustions

Other methods

- MANOVA
- Self-organising maps (clusterfly)
- Hierarchical clustering (clusterfly)
- Classification methods (classifly)
- Projection pursuit (tourr)

The future

- Better iteration between modelling and visualisation
- Foundations to make interactive graphics easy to produce in R

