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Visualisation

Model

+ Uncovers the
unexpected

- Slow

- Cognitive
biases

+ Mathematically
well founded

+ Fast

- Only discovers
what we
anticipate
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Neural
networks
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Display the model
N the data space

Look at many
members of a collection

Strategies for model visualisation




Neural networks

e Modelled on the way that brains work

e Normally treated as a black box. Can
we gain more insight into how they
work?

e Single hidden-layer neural network:
nnet R package
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Display the model In
data space
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—How do neural
networks work!




variables













| ook at all members
of the collection
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How did | find
that model!




i

Gradient descent
Many random starts
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Classification algorithm
f: RP—{1, 2, ..., k}

Input




Classification algorithm
f: RP—{1, 2, ..., k}

Input Prediction




Classification algorithm
f: RP—{1, 2, ..., k}

Input Prediction robabilities

Most also provide class
membership probabillities

f: RP—[0,1]K




Classification algorithm
f: RP—{1, 2, ..., k}

Input Prediction

robabilities galelz1gj=le=

P(best) -
Most also provide class P(second best

membership probabillities
f: RP—[0,1]K
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How to find the boundaries?
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How to find the boundaries?

Random sample Classify
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How to find the boundaries?

Random sample Classify Low advantage
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How to find the boundaries?

Random sample Classify Low advantage
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Crude method, but works for
all classification algorithms and
for moderate dimensionality
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Ensembles of
linear models
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Look at many
members of a collection

Strategies for model visualisation




Data

o Fertility in French-speaking Swiss
provinces in the late 1800's

e Predict fertility based on:

e proportion of agricultural workers

® average performance on an army examination
e amount of higher education

e proportion of Catholics

e infant mortality
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Moael

e |Linear modes with all combinations of
covariates (2° models)

e \What can looking at all models tell us
that looking at just a few can’t?
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® O O x| model-variable/c-edges: Scatterplot X/ model: Scatterplot (current)

Fee Edges QOptions
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Conclusions
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Other methods

MANOVA
Self-organising maps (clusterfly)
Hierarchical clustering (clusterfly)

Classification methods (classifly)

Projection pursuit (tourr)




The future

e Better iteration between modelling and
visualisation

¢ Foundations to make interactive
graphics easy to produce in R




