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Summary. This paper proposes Metropolis adjusted Langevin and Hamiltonian Monte Carlo
sampling methods defined on the Riemann manifold to resolve the shortcomings of existing
Monte Carlo algorithms when sampling from target densities that may be high dimensional
and exhibit strong correlations. The methods provide fully automated adaptation mecha-
nisms that circumvent the costly pilot runs required to tune proposal densities for Metropolis-
Hastings or indeed Hamiltonian Monte Carlo and Metropolis Adjusted Langevin Algorithms.
This allows for highly efficient sampling even in very high dimensions where different scalings
may be required for the transient and stationary phases of the Markov chain. The proposed
methodology exploits the Riemannian geometry of the parameter space of statistical models
and thus automatically adapts to the local structure when simulating paths across this man-
ifold providing highly efficient convergence and exploration of the target density. The perfor-
mance of these Riemannian Manifold Monte Carlo methods is rigorously assessed by per-
forming inference on logistic regression models, log-Gaussian Cox point processes, stochastic
volatility models, and Bayesian estimation of dynamical systems described by nonlinear dif-
ferential equations. Substantial improvements in the time normalised Effective Sample Size
are reported when compared to alternative sampling approaches. Matlab code at htt p:
/1w dcs. gl a. ac. uk/ i nf erence/ r mhnt allows replication of all results reported.

1. Introduction

For an unnormalised probability density functigi{p) where® < RP”, the normalised density
follows asp(0) = p(6)/ [ 5(0)d6, which for many statistical models is analytically intraiske.
Monte Carlo estimates of integrals with respectpt@), which commonly appear in Bayesian
statistics, are therefore required. The predominant nadetlogy for sampling from such a prob-
ability density is Markov chain Monte Carlo (MCMC) see e.Bobert, 2004; Gelmaet al,, 2004;
Liu, 2001). The most general algorithm defining a Markov psscwith invariant density(0) is
theMetropolis-Hastingslgorithm (Metropolist al, 1953; Hastings, 1970), which is arguably one
of themost successful and influentibnte Carlo algorithms (Beichl and Sullivan, 2000) .

The Metropolis-Hastings algorithm proposes transitins> 6* with densityq(6*|0), which
are then accepted with probability @, 0*) = min{1, p(6*)q(6|0*)/p(6)q(6*|0)}. This accep-
tance probability ensures that the Markov chain is revérsilith respect to the stationary target
densityp(0) and satisfies detailed balance, see for example Robert)( 2064l (1993a, 1996); Liu
(2001). Typically, the proposal distributiari@*|0) which drives the Markov chain takes the form
of a random walk, e.gq(6*|0) = N(6*|@, A) is a D-dimensional Normal distribution with mean
6 and covariance..



High acceptance rates can be achieved by proposing smralhsittons, however larger amounts
of time will then be required to make long traversals of pagtenspace. In high dimensions, when
D islarge, the random walk becomes inefficient resultingiwndaceptance rates, poor mixing of the
chain and highly correlated samples. A consequence ofdtdsimall effective sample size (ESS)
from the chain, see Robert (2004); Neal (1996); Liu (2001 hilg¥ there have been a number of
suggestions to overcome this inefficiency, guaranteeitgjldd balance and ergodicity of the chain
places constraints on what can be achieved in alleviatiisgottoblem (Andrieu and Thoms, 2008;
Robert, 2004; Neal, 1993a). Design of a good general pugpagmsal mechanism providing large
proposal transitions that are accepted with high prolgbi#imains something of an engineering
art-form.

Major steps forward in this regard were made when a propasakgs derived from a discre-
tised Langevin diffusion with a drift term based on the gesdinformation of the target density was
suggested in the Metropolis Adjusted Langevin AlgorithmAIM) (Roberts and Stramer, 2003).
Likewise the Hamiltonian Monte Carlo (HMC) method (Duaateal., 1987) was proposed in the
statistical physics literature as a means of efficientlysating states from a physical system which
was then applied to problems of statistical inference (NE293a,b, 1996; Liu, 2001). In HMC, a
deterministic proposal process based on Hamiltonian djcsism employed along with additional
stochastic proposals that together provide an ergodic dMeckain capable of making large transi-
tions that are accepted with high probability.

Despite the potential efficiency gains to be obtained in MC8&thpling from such proposal
mechanisms inherent in MALA and HMC, the tuning of these MCKt€thods remains a major
issue especially for challenging inference problems. Phiser seeks to address these issues in a
systematic manner by adopting an overarching geometriegweork for the overall development of
MCMC methods such as these.

A brief review of MALA and HMC within the context of statisét inference are provided in
the following two sections. In Section 4 differential gednieeconcepts employed in the study of
asymptotic statistics are considered within the conteGMC methodology. Section 5 proposes
a generalisation of MALA that takes into account the natgesimetry of the target density making
use of the definition of a Langevin diffusion on a Riemann rf@di Likewise in Section 6 a
generalisation of HMC, Riemann manifold HMC (RM-HMC) is pemted, which takes advantage
of the manifold structure of the parameter space and allowmbre efficient proposal transitions
to be made. Finally, in Sections 7 to 10, this new methodolegyemonstrated and assessed on
a number of interesting statistical problems, i.e. Baye&igistic regression, stochastic volatility
modeling, log-Gaussian Cox point processes, and paramétegnce in dynamical systems.

2. Metropolis Adjusted Langevin Algorithm

Consider the random vecté € R with densityp(6) and denote the log density #Z40) =
log p(@), then the Metropolis Adjusted Langevin Algorithm (MALA) lsed on a Langevin diffu-
sion, with stationary distributiop(8), defined by the stochastic differential equation (SDE)

do(t) = %Vgﬁ(O(t))dt +db(t) (1)

whereb denotes a)-dimensional Brownian motion. A first-order Euler discsation of the SDE
gives the following proposal mechanism

2
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wherez ~ N (z|0,I) ande is the integration step size. Convergence to the invariestriloltion,
p(8), is no longer guaranteed for finite step sizdue to the first-order integration error introduced.
This discrepancy can be corrected by employing a Metroalteptance probability after each
integration step thus ensuring convergenceto the invariaasure. As is an isotropic standardised
Normal variate and denoting(6™,¢) = 0™ + %VQL‘(G”) then the discrete form of the SDE (2)
defines a proposal densifyg*|0™) = N (6*| (6", €), €2I) with acceptance probability of standard
formmin{1, p(6~)q(6"(6")/p(6")q(67|6")}.

The optimal scalinge, for MALA has been theoretically analysed in the limit Bs— o for
factorisablep(8), (Roberts and Rosenthal, 1998). Although the drift termhia proposal mech-
anism for MALA in (2) defines the direction for the proposakkd on the gradient information
(albeit the Euclidean form) it is clear that the isotropiffuiion will be inefficient for strongly cor-
related variable® with widely differing variances forcing the stepsize to aeenodate the variate
with smallest variance. This issue can be circumvented byl@ing a pre-conditioning matrix,
M, such tha@™*! = 0" 4+ 2MVyL(0")/2 + ev/Mz" (Roberts and Stramer, 2003). It is un-
clear how this should be defined in any principled mannegédd global level of pre-conditioning
may well be inappropriate for differing transient and sta#iry regimes of the Markov process as
demonstrated in (Christensenal., 2005).

3. Hamiltonian Monte Carlo

We now give a brief introduction to the Hamiltonian Monte [Banethod, for a detailed description
and extensive review see (Neal, 2010). As in the previousoseconsider the random variable
0 € RP with densityp(0). In HMC an independent auxiliary varialgec R” with densityp(p) =

N (p|0,M) is introduced. The joint density follows in factorised foasp(6,p) = p(0)p(p) =
p(0)N (p|0,M). Denoting the log of the desired density A89) = log p(0), the negative joint
log-likelihood is

H(0,p) = —L(6) + %1og ((2m)P M) + %pTMflp (3)

The physical analogy of this negative joint log-likelihoisda Hamiltonian (Duanet al., 1987;
Leimkuhler and Reich, 2004), which describes the sum ofergi@ energy function- £(0) defined
atthe positior®, and a kinetic energy terp' M ~!p /2 where the auxiliary variablp is interpreted
as a momentum variable and the covariance mattigenotes a mass matrix.

The score function with respectandp, of the log joint density over the two random variables
has a physical interpretation as the time evolution, witipeet to a fictitious time, of the dynamic
system as given by Hamilton’s equations,

d@ 0H d oOH
= =MTp gt =5y = VeL(O) )
The solution flow for the differential equation®(7), p(7)) = ®,(6(0), p(0)), (a) preserves

the total energy i.eH (6(7),p(7)) = H(6(0),p(0)) and hence the joint densipf0(7), p(7)) =
p(0(0), p(0)), (b) preserves the volume elemet(r)dp(r) = d0(0)dp(0), and (c) is time re-
versible (Leimkuhler and Reich, 2004). For practical agadions of interest the differential equa-
tions (4) cannot be solved analytically and numerical meéshare required. There is a class of
numerical integrators for Hamiltonian systems which willly satisfy the criteria (b) and (c), vol-
ume preservation and time reversibility, and approxinyaatisfy (a) energy conservation to a given
order of error, see (Leimkuhler and Reich, 2004). The Stotveelet or Leapfrog integrator was
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employed in the original paper of Duaee al. (1987), and in various statistical applications e.g.
(Liu, 2001; Neal, 1993b, 2010) as described below,

p(T+€/2) = p(r)+eVeLl(0(7))/2 (5)
O(t+e¢) = 0O(7) +6M_1p(7+e/2) (6)
p(t+e) = p(t+4+¢€/2)+eVeLl(O(T+¢€))/2 7

Since the joint likelihood is factorisable (i.e. in phyditerms, the Hamiltonian is separable), it
is obvious by inspection that each complete Leapfrog stepaions (5), (6) and (7)) is reversible
by the negation of the integration step-size,Likewise as the Jacobians of the transformations
(0,p) — (6,p+ eVeL(0)/2) and(0, p) — (6 + eM~'p, p) have unit determinant then volume
is preserved. As total energy is only approximately corsgmvith the Stormer-Verlet integrator
then a corresponding bias is introduced into the joint dgmgnich can be corrected by an accept-
reject step. Due to the volume preserving property of thegirator the determinant of the Jacobian
matrix for the mapping defined b¥.- does not need to be taken into account in the Hastings ratio
of the acceptance probability. Therefore for a mapgifigp) — (0 + §0,p + ép) = (0*,p*)
obtained from a number of Stormer-Verlet integration steporresponding acceptance probabil-
ity is min[1,exp{—H (6*,p*) + H(0, p)}|, and due to the reversibility of the dynamics the joint
density and hence the marginal®) andp(p) are left invariant. If the integration error in the total
energy is small then the acceptance probability will renaaia high level.

The Stormer-Verletintegration steps provide a deterrtigoposal mechanism such thgit =
6 + 00 andp* = p + dp and overall HMC sampling from the invariant densjt{@) can be
considered as a Gibbs sampler where the momeptacts simply as an auxiliary variable

pl0 ~ p(pl0) =p(p)=N(plo,M) (8)
0" lp ~ p(0*|p) x exp(—H(0",p+ ip)) (9)

where samples from(6*|p) are obtained by running the Stormer-Verlet integrator foeg
tain number of steps to give proposed mogéandp* and accepting or rejecting with probability
min[1, exp{—H (6*,p*) + H(0, p)}]. This Gibbs sampling scheme produces an ergodic, time re-
versible Markov chain satisfying detailed balance whoagatary marginal density j50) (Duane
etal, 1987; Liu, 2001; Neal, 1996, 2010).

It should be noted that the combination of equations (5) &héh(a single step of the integrator
yields an update of the form

O( +¢) = 0(r) + TM ™' VoL (8(r)) + M~ p(7) (10)

which is nothing more than a discrete pre-conditioned Laimgdiffusion as employed in MALA

(Roberts and Stramer, 2003) (see Neal (1993a, 1996, 204 @)rther discussion on this point).
Viewed in this form it is clear that the choice of the mass imaivl, as in MALA, is going to be

critical for the performance of HMC, and like MALA there is iguiding principle as to how this
should be chosen and tuned.

The demonstrated ability of HMC to overcome random walks i@NMC sampling suggests it
should be a highly successful tool for Bayesian inferencgtudly suggests in excess of 300 citations
of the original (Duanet al,, 1987) paper within the literature devoted to Molecular Mitidg and
Simulation, Physics and Chemistry. However there are a muodiller number of citations in the
literature devoted to Statistical Methodology and Appgima, e.g. (Liu, 2001; Neal, 1996, 1993b;
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Gustafson, 1997; Ishwaran, 1999; Husmeieal, 1999; Hanson, 2001), indicating that it has not
been widely adopted as a practical inference method.

Whilst the choice of the step sizeand number of integration steps can be tuned based on the
overall acceptance rate of the HMC sampler, as already oreadiit is unclear how to select the
values of the weight matriM in any automated or principled manner that does not reqoirees
knowledge of the target density, similar to the situatiothWwlALA. Although rules of thumb are
suggested (Liu, 2001; Neal, 1993a, 1996, 2010) these tijpredy on knowledge of the marginal
variance of the target density, which is of course not knowtha time of simulation and thus
requires preliminary pilot runs of HMC, this is also the ceeMALA although asymptotic settings
are suggested in Christensetral. (2005). The experimental sections of this paper will denrais
how crucial this tuning is to obtain acceptable performasfdéMC and MALA.

The potential of both the MALA and HMC methodology may be mhriy realised by em-
ploying transitions that take into account tleeal structureof the target density when proposing
moves to different likelihood regions, as this may imprdve overall mixing of the chain. There-
fore rather than employing a fixed global covariance matrithie proposal density/ (p|0, M), a
position specific covariance could be adopted. Furtherntbegleterministicproposal mechanism
of HMC, when viewed as the deterministic component of theréi® pre-conditioned Langevin dif-
fusion, equation (10), relies on the likelihood gradierg-ponditioned by the inverse of a globally
constant mass matrix. We turn our attention now to geometmcepts which will be shown to be
of fundamental importance in addressing these shortcaning

4. Exploiting Geometric Concepts in MCMC

The relationship between differential geometry and stasiias recently been employed in the de-
velopment of, primarily asymptotic, statistical theornes=g. (Amari and Nagaoka, 2000; Kass,
1989; Murray and Rice, 1993; Barndorff-Nielsetral, 1986; Critchleyet al, 1993; Lauritzen, 1987,
Dawid, 1975; Efron, 1975). Geometric concepts of distangejature, manifolds, geodesics (short-
est paths between two points), and invariants are of nainbeiest in statistical methodology and
in the following we shall exploit some of these in the devetgmt of MCMC methods.

The formal definition of distance between two density funrasi first appeared in (Rao, 1945)
with the same result appearing later in (Jeffreys, 1948). ishadce metric based on a first or-
der expression for the symmetric Kullback Liebler divergetetween two densitigs and g,
Ds(pllq) = D(pllq) + D(q||p) was derived. Noting that to first ordg(y; 0 + §0) = p(y; 0) +
50™Vep(y; 0) + O(2) and adog(1 + ¢) =~ e thenDs (p(y; 0 + 30)||p(y; 0)) is

560" By {ve log p(y; 8)Ve log p(y: e)T} 36 = 56T G(0)50 (11)

whereG(0) is the Fisher Information matrix. Rao noted that as the ma@&({0) is by definition
positive definite it is a metric of a Riemannian manifold. éfere the space of probability density
functions is endowed with a natural, Riemannian, geom@&iyen this geometry Rao went further
and showed that expressions for the curvature of the malrafudl shortest paths (geodesics) on the
manifold between two densities could, in principle, be d&dti(Rao, 1945). These ideas have been
formalised in the study dhformation GeometryAmari and Nagaoka, 2000).

It should be noted that the Fisher metric also emerges fraglypgeometric arguments (Skilling,
2006) and it is straightforward to show for a probability piex, p* > 0, Zf;lpi = 1 the metric
iS gij = 5ij/pi whered;; = 1iff ¢ = j. It then follows that a small displacemedithas length
(00)* = 3, 0p'dp’ gi; = 3=, (6p*)*/p" which is nothing more than the Fisher Information for a
discrete probability distribution, suggesting this as filmedamental metric for probability spaces.
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However it can be argued that the choice of metric is problepeddent, for example the require-
ment for asymmetry in statistical inference is capturedaRreferred Point metric and associated
geometry (Critchleyet al, 1993). As a Bayesian perspective is being adopted in tigempthe ex-
amples reported employ the joint likelihood of data and peatrs when defining the metric tensor
i.e. —Eyg {(’)2/802 logp(y, @ } which is the Fisher Information plus the negative Hessiathef
log-prior. For further discussion on ways to capture pnidoimativeness in the metric tensor see
e.g. (Tsutakawa, 1972; Ferreira, 1981). This freedom t@sddhe metric does however open up
a new line of investigation regarding the intrinsic geometbtained by the choice and design of
metrics and the characteristics which make them apprediéatspecific MCMC applications.

In summary the parameter space of a statistical model is m&inian manifold. Therefore
the natural geometric structure of the density mqdé) is defined by the Riemannian manifold
and associated metric tensor. Given this geometric streicifithe parameter space of statistical
models the appropriate adoption of the position specifiaime(0), within an MCMC scheme
should yield more effective transitions in the overall alggon. We now show how the Riemannian
manifold structure may be exploited within a correct MCM@rfrework for the Metropolis Adjusted
Langevin Algorithm.

5. Riemann Manifold Metropolis Adjusted Langevin Algorithm

Given the geometric structure for probability models a Lerig diffusion with invariant measure
p(0),0 € RP can be defined directly upon the Riemannian manifold withriméénsorG (6)
(Roberts and Stramer, 2003; Chung, 1982; Kent, 1978). Tuhastic differential equation defining
the Langevin diffusion on the manifold is

do(t) = %%c(a(t))dt + db(t) (12)

where the natural gradient (Amari and Nagaoka, 2008)4£(0(t)) = G~1(0(t))VeL(6(t)) and
the Brownian motion on the Riemannian manifold follows as

dby(t) = [G(6())|~ 1/22 5, O (G 0)uIGOW)?) i+ (VET@Db0)  (13)

Clearly in a Euclidean space where the metric tensor is amitgiematrix then (12) reduces
to the standard form of SDE (1). The first term on the right hsidé of (13) relates to the local
curvature of the manifold and reduces to zero if curvatusveywhere constant. The second right
hand term provides a position specific axis alignment of th@svBian motion based on the local
metric by transformation of the independent Brownian nmott(t).

The discrete form of the above SDE employing a first order iHategrator follows as

2
n+1 _ n 6_ n n _ 2 aG(e ) —1 n
6! _01.+2(G L(0") VoL (™)) GZ( GjG(a)ij
+ ii T (e 28 + (ev/GT(@M2")
2 = 80J 7

= (0" + (eJwan)z")i
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defining a proposal mechanism with densjtg*|6") = N (0*|u(0™,¢),e>G~1(0™)) and accep-
tance probabilitymin{1, p(8*)q(6™|0*)/p(6™)q(6*|6™)} to ensure convergence to the invariant
densityp(0). Immediately it is clear that the proposal mechanism makeges approximately
along the manifold embedded R” rather than theD-dimensional Euclidean space and these
moves respect the curvature at each point of the manifolLid®scode describing the full manifold
MALA (mMALA) scheme is given in Appendix (D). For a flat manlfbwith constant curvature
this reduces further to a position specific pre-conditioMiéd_A proposal.

2
gn+l — 0n+%G—1(0n)v9£(0n)+e G-1(07)z"

Of course even if the curvature of the manifold is not contsttamabove simplified proposal mecha-
nism, used in conjunction with the acceptance probability still define a correct MCMC method
which converges to the target measure. However dependehtarharacteristics of the curvature
the proposal process may not be so efficient in converginpeacstationary distribution and this
shall be explored further in the experimental evaluatiomilllistrate this geometric approach and
gain some insight into mMALA a simple example is now given.

5.1. An lllustrative Example: The Normal Distribution as Invariant Density
For NV observations drawn from the Normal distributidf(z|u, o) the metric tensor based on the
Fisher Information is

Gl o) = < N{)UQ 2N(}02 > (14)

and this defines a Riemann manifold with constant curvaturiewis a Hyperbolic space on the
upper-half plane defined by the horizontal and vertical doates;: ando (Amari and Nagaoka,
2000) . The distance between two densif\é&e|u, o) andN (z|u + du, o 4+ do) as defined on this
manifold is (6u? + 2d02)/0? indicating that as the value of increases the distance between the
densities decreases. The first-order Euler approximatmrthe standard Langevin diffusion with
invariant measure proportional ¢, AV (x|, o) follows as

2
€
Hnt1 = fn+ m Ez (21 — pn) + €z (15)
2 2
- € 59 Ne
Ont+1 = Un+ﬁ g (21 — pn) *EJFEZ (16)

l

When the diffusion is defined on the Riemann manifold spetliigthe metric tensor (14) then the
approximate diffusion follows as

62 EmT.
n = n - — HMn e n 17
1 u+2N;(xz M)Jr\/ﬁz 17)
ot Y (= )t — T2 (18)
On+1 = On 4No, l Ty — fn 4 \/ﬁzn

The discrete diffusion based on a Euclidean metric (15, &6)ahdiffusion termaz,, whose scaling
is fixed by the integration step sizdrrespective of position. On the other hand the approximate



Fig. 1. The above contours represent the sample estimate of p(u, o|X) where a sample of size
N = 30 was drawn from M (X|x = 0,0 = 10). Both MALA and mMALA discrete diffusions were
forward simulated from initial points o = 5 and oo = 40 with a step size ¢ = 0.75 for 200 steps. The
left-hand panel shows a sample path of the MALA proposal process. As the space is hyperbolic and
a Euclidean metric is employed the proposals take inefficient steps of almost equal length thoughout.
On the other hand the mMALA proposals, right hand pane, are defined based on the metric for the
Hyperbolic space with constant negative curvature and as such the distances covered by each step
reflect the natural distances on the manifold resulting in much more efficient traversal of the space.

25} 25}
20f 20}
15F 15f
o) o]
10f 10f
5F 5t
-10 10 -10 10

0 0
u H
Fig. 2. In this example the same data sample is used and initial starting points are o = 15 and
oo = 2. The step size is reduced to ¢ = 0.2 in order that MALA converges and 1000 proposal steps
are taken. As previously in the left hand panel it is clear that the Euclidean metric of MALA does not

exploit the Hyerbolic geometry and overshoots dramatically at the start, whereas in the right hand
panel it is clear that mMMALA converges efficiently due to the exploitation of the metric.
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Langevin diffusion obtained by employing the Riemanniartringensor (17, 18) produces a term
emanzn/\/ﬁ for the mean parameter aa,g[anzn/\/ﬁ for the variance which are position depen-
dent thus ensuring appropriate scaling of the diffusione ifttegration step size,, is effectively
dimensionless whilst requires dimension proportional g, thus indicating proposal inefficiency
with ¢ set at a fixed value as demonstrated in Figures (1) and (2gnEixe detailed investigation
of the performance of MMALA will be provided in the experintaisections.

6. Riemann Manifold Hamiltonian Monte Carlo

Following on from the previous section the Hamiltonian whiorms the basis of HMC will now
be defined in general form on a Riemann manifold. Zlochin aahB (2001) originally attempted
to exploit this manifold structure in HMC however their udemumerical integration method that
did not guarantee reversibility or volume preservatiorvpreed them from developing a correct
MCMC procedure.

The definition of the Hamiltonian on a Riemann manifold isgthtforward and is a technique
employed in geometric mechanics to solve partial difféaedrtuations (Calin and Chang, 2004).
From equation (4), it follows thagh = M@, so the norm of eac under the metridVI is ||8]|3; =
6™6 = p™™M !p. In a more general form, as the statistical model is defined Bremannian
manifold, the metric tensor defines the position specifiemsuch thai|6||2, ) = 7G(6)0 =

p'G~1(0)p and thus the kinetic energy term can be defined via the inveeteic (Calin and
Chang, 2004). In order to ensure that the Hamiltonian camteepreted as a log-density and
that the desired marginal density f6ris obtained, the addition of the normalising constant for
the Gaussian is included in the potential energy term. Toerethe Hamiltonian defined on the
Riemann manifold follows as

H(6,p) = ~£(8) + 5105 ((2m)"|G(O)]) + ;p"G(6) p (19)

so thatexp(—H (0, p)) = p(0,p) = p(0)p(p|0) and the marginal density

p(0) x / exp(—H(6,p))dp = exp{L£(0)}

- emice)) P

{%pTG(e)lp} dp = exp {L(0)}

is the desired target density.

Unlike the previous case for HMC this joint density is no lengactorisable and therefore the
log-likelihood does not correspond to a separable Hamdton The conditional distribution for
momentum values given parameter values is a zero-mean i@awgish the point specific metric
tensor acting as the covariance mawip|6) = N (p|0, G(0)), which will resolve the scaling
issues associated with HMC, as will be demonstrated in thewing sections. The dynamics are
defined by Hamiltons equations as

do; OH

i OH _ 0L(0 _,0G(8 _10G(8 -
Cclli; = *aZ: 62'1«) f%Tr {G(O) ! 89(1- )} +%pTG(0) ! 6651« La(0)'p (1)

The Hamiltonian dynamics on the manifold are simulated Hyisg the continuous time deriva-
tives and it is straightforward to see that they satisfy hitle’s theorem of volume preservation
(Leimkuhler and Reich, 2004). However, for the discretegnator it is not so straightforward.
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Naively employing the discrete Stormer-Verlet Leapfroggrator (equations (5), (6) and (7)) gives
transformations of the fornj@,p) — (6,p — ep(0,p)) and(6,p) — (6 + (0, p),p), nei-
ther of which admits a Jacobian with unit determinant. Initaid, it is straightforward to see that
reversibility for & andp is not satisfied for finite step-size asG(0(7)) # G(6(r + ¢)) and
p(7)TF(8)p(7) # p(T+¢)"F(0)p(7 +¢). Therefore proposals generated from this integrator will
not satisfy detailed balance in a Hybrid Monte Carlo scheviikat is required is a time reversible
volume preserving numerical integrator for solving thisirseparable Hamiltonian to ensure a cor-
rect MCMC algorithm. Such a second-order semi-explicigmator can be formed by the use of
first-order implicit Euler integrators. This is referredas the Generalised Leapfrog algorithm, see
Leimkuhler and Reich (2004) for details, and follows below.

1 n € n _n+s
P = p = SVeH(0"p ) (22)
o+l — 0n+§ VPH(en,anr%)+VPH(0n+1,pn+%) (23)
€
prtl = pn+% B §V9H(0"H,pn+%) (24)

If the Hamiltonian is separable then the Generalised Legpfeduces to the standard Stormer-
Verlet Leapfrog integrator. For the case of interest whageHamiltonian is non-seperable then
(22) and (23) are defined implicitly. These require to be sdland we employ simple fixed point
iterations run to convergence for this purpose, typicadeen 5 to 6 iterations were required in the
experiments conducted. The repeated application of theeadteps provides the means to obtain a
deterministic proposal that is guided not only by the deirednformation of the target density, as in
HMC or MALA, but also exploits the local geometric structawfehe manifold as determined by the
metric tensor. Intuitively, comparing the two Hamiltong(8) and (19) shows that the constant mass
matrix M, defining a globally constant metric, is now replaced withplosition specific metric thus
removing the requirement to tune the values of the elemdnid owhich so dramatically affects
the performance of HMC. Since the integration scheme detaibove is both time reversible and
volume preserving employing it as a proposal process pesvadcorrect MCMC scheme satisfying
detailed balance and convergence to the desired targetydehise overall Riemannian Manifold
HMC (RM-HMC) scheme can once again be written as a Gibbs sampl

pl6 ~ p(pl0) =N(p|0,G(0)) (25)
0" lp ~ p(07|p) xexp{—H(6",p+Ip)} (26)

where samples from(6*|p) are obtained by running the Generalised Leapfrog integfat@ cer-

tain number of steps to give proposed mogéandp* and accepting or rejecting with probability
min[l, exp{—H (0*,p*) + H (0, p)}]. As for standard HMC this Gibbs sampling scheme produces
an ergodic, time reversible Markov chain satisfying detalbalance and whose stationary marginal
density isp(6) (Duaneet al,, 1987; Liu, 2001; Neal, 1996, 2010). However in this caseehe

no need to manually select and tune the mass matrix as it isedidit each step by the underlying
geometry. Pseudo-code is provided in Appendix (D)

An interesting point to note is that the Hamiltonian flow (g@ns of the differential equations)
for a purely kinetic Hamiltonian i.e. in the absence of a ptitd energy term is a geodesic flow
(Calin and Chang, 2004). In other words paths produced bgahgion of Hamiltons equations
follow the geodesics (paths of least distance between $oimt the manifold. For the case that
we consider where there also is a potential term then the #hoevocally geodesic (McCoret al,
2002). This observation presents an interesting area fardfutheoretical analysis and characteri-
sation of the properties of the RM-HMC method.
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Table 1. Summary of datasets for logistic regression

Name Covariatesl§) Data Points V) Dimension ofg3 (b)
Pima Indian 7 532 8
Australian Credit 14 690 15
German Credit 24 1000 25
Heart 13 270 14
Ripley 2 250 7
Caravan 86 5822 87

Figures 3 and 4 provide an intuitive visual demonstratiothefdifferences in HMC and RM-
HMC when converging to and sampling from a target densityilliistrate the RM-HMC sampling
scheme and evaluate performance against alternative MCktBauds, a number of example appli-
cations are now presented. We begin with posterior samfdinigogistic Regression models.

7. RM-HMC and mMALA for Bayesian Logistic Regression

Consider anV x D design matrixX comprisingN samples each witlh covariates and a binary
response variable € {0,1}". Denoting the logistic link function as(-), a Bayesian logistic
regression model of the binary response (Gelmial., 2004; Liu, 2001) is obtained by the intro-
duction of regression coefficientsc R” with an appropriate prior, which for illustrative purposes
is given as3 ~ N(0, aI) wherea is given. Neglecting constants, the log joint-likeliho@dléws

in standard form as

N
log (. 81X, ) = £(8) ~ 5- 678 = BXTt ~ 3" log(1 + exp(37X])) ~ 568 (27)

n=1

whereX,, . denotes the vector that is thé" row of the N x D matrix X. The derivative of the
log joint-likelihood isV £(83) — a3 and its second derivative follows 8V £(3) — a~1I which

is comprised of the matrix of second derivatives of the Iik@bd and the log-prior. As already
mentioned throughout the practical examples to includesffext of the prior on the geometry we
form the metric tensor based on the negative of the expentafi this second derivative, which
is the Fisher Information plus the negative Hessian of tlgepgdor. The metric tensor therefore
follows as

G(B) = Eyx,p,a {~VVL(B) + o 'T} = XTAX + o 'I (28)

where the diagonaV x N matrix A has elementd.,, , = o(87X] )(1 — ¢(8"X] )). Finally
the derivative matrices of the metric tensor take the féi@(3)/93; = XTAVX where the
N x N diagonal matrixV? has element§l — 20(3"X! ))X,;. The above identities are all that
are required to define the RM-HMC and mMALA sampling methadsich will be illustrated in
the following experimental section.

7.1. Experimental Results for Bayesian Logistic Regression
We present results from the analysis of 6 datasets (Mieh#&., 1994; Ripley, 1996), summarised
in Table 1. These datasets exhibit a wide range of charatitarivhich provides a challenging test
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Fig. 3. The above contours were plotted from the stochastic volatility model investigated later in
the paper. The latent volatilities and the parameter 5 are set to their true values, while the log-joint
likelihood given different values of the parameters o and ¢ is shown by the contour plot. The left
hand plot shows the evolution of a Markov chain using HMC with a unit mass matrix, while the right
hand plot shows the evolution of a chain from the same starting point using RM-HMC. Note how the
use of the metric allows RM-HMC to converge much quicker to the target density.
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Fig. 4. Here we see a close-up of the Markov chain paths shown in Figure 3. It is clear that RM-
HMC effectively normalises the gradients in each direction, whereas HMC, with a unit mass matrix,
exhibits stronger gradients along the horizontal direction compared to the vertical direction, and
therefore takes longer to explore the space fully. A carefully tuned mass matrix may improve HMC
sampling, while RM-HMC deals with this automatically.
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for any applied sampling method; the number of covariategea from 2 to 87, the number of
data points ranges from 250 to 5877, and the standard davsadif the induced marginal posterior
distributions range from 0.0004 to 9.9. We investigate the of RM-HMC and mMALA applied
to this problem and also implement the following samplinghoes for comparison:-

(&) Component-Wise Adaptive Metropolis-Hastings (Roli#004) (Chapter. 7)
(b) Joint Updating Gibbs Sampler (Holmes and Held, 2005)

(c) Metropolis Adjusted Langevin Algorithm (Roberts anda®ter, 2003)

(d) Hybrid Monte Carlo (Duanet al,, 1987; Neal, 1993a; Liu, 2001)

(e) Iterated Weighted Least Squares (Gamerman , 1997)

Given each dataset we wish to sample from the posterioftuliion over the regression coefficients
B3, and in each experiment wide Gaussian prior distributioasewvemployed such that(g;) ~
N(0,100). A linear logistic regression model with intercept was uf®deach of the datasets with
the exception of the Ripley dataset, for which a cubic poigied regression model was employed.
Each method was run 10 times with every dataset and the a/eraglts were recorded. We re-
produce the results of Holmes and Held (2005) by allowing®6B0rn in iterations so that each
sampler reaches the stationary distribution and has timed#pt as necessary. The next 5000
iterations were used to collect posterior samples for eddheomethods and the CPU time re-
quired to collect these samples was recorded. Each methedmydemented in the interpreted
language Matlab to ensure fair comparison. We comparedefativie efficiency of these meth-
ods by calculating the effective sample size (ESS) usingtsterior samples for each covariate,
ESS =N(@1+2%, v(k))~ whereN is the number of posterior samples any (k) is the sum
of the K monotone sample autocorrelations as estimated by thalimtnotone sequence estimator
(see Geyer (1992)). The standard error around the mean ESBsgahar2 x 10~2 for all results.
Such an approach was also taken by Holmes and Held (2005pighwhey report theneanESS,
averaged over each of the covariates. However, we feel thilsl @ive a rather inflated measure of
the true ESS, since ideally we want a measure of the numbangdles which are uncorrelated over
all covariates. In this paper we therefore reportitiaimumESS of the sampled covariates. This
minimum ESS is then normalised relative to the CPU time bgudating the time taken to obtain 1
sample which is effectively uncorrelated across all catas.

7.1.1. Metropolis-Hastings

We employed an adaptive Metropolis-Hastings (M-H) schesueh that each covariate was updated
individually with its stepsize being adapted in every 1@¥ations during burn-in to achieve an
acceptance rate of betwe@0% and40%. The stepsize was then fixed at the end of the burn-
in period. With Metropolis-Hastings it is sometimes useafulemploy sub-sampling, in order to
remove the autocorrelations in the posterior samples.eTalllemonstrates that since our current
measure of efficiency is time normalised, it automaticalkets into account the trade-off between
the additional computational cost of drawing more sampdes, the improved ESS that results.
We see that the computational effort required to take aulthli steps through parameter space is
generally greater than the benefit of increased ESS thdtsgesuch that the time taken to produce
one effectively independent sample increases as the nunfiloéscarded samples increases using
subsampling. In the main experiments we therefore comparéest case scenario which results
from not employing subsampling.
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Table 2. Bayesian Logistic Regression with Metropolis Sam-
pling - investigating the effect of subsampling on our time nor-
malised efficiency measure

Subsample every: 1 2 5 10 20 50

Dataset
Australian 059 091 099 1.03 097 0.97
German 2.02 287 396 470 497 484
Pima 029 035 034 036 0.39 0.38
Heart 0.65 086 1.20 153 133 144
Ripley 0.22 040 051 056 056 0.59

7.1.2. Auxiliary Variable Gibbs Sampler

The auxiliary variable Gibbs sampler of Holmes and Held &00as implemented with a joint
update of{z, 3}, wherez € R¥ is the auxiliary variable designed to improve mixing of tfe c
variate samples. We implemented the algorithm based ondhedetailed pseudo-code given in
the appendix of their paper, and in contrast to the M-H atbarithis method has the advantage of
requiring no tuning of parameters. The main computatioxg¢ase however is in the repeated sam-
pling from truncated normal distributions, for which we ilemented code based on the efficient
method defined in Johnsat al. (1999).

7.1.3. Metropolis Adjusted Langevin Algorithm

We implemented a MALA sampler with proposed covariates dpeirawn from the multivariate
normal distribution\V (3 + V log(n{B})h/2, hl p), wherel , is the D-dimensional identity matrix
andh controls the scaling of the proposal variance. We followatieice of Roberts and Rosenthal
(1998) by scaling: like O(D*%), whereD is the number of covariates, such that we achieve an
acceptance rate of betwe¢dls and70%.

7.1.4. Hybrid Monte Carlo

Hybrid Monte Carlo has promised to offer more efficient sangpfrom high dimensional prob-
ability distributions by effectively reducing the amouritrandom walk present in the parameter
values being proposed. This has indeed been shown to begbdararelatively simple, although
high-dimensional, multivariate normal distributions,wever there has been little application to
more complex data models. We believe the reason for thigrliee amount of tuning required to
obtain reasonable mixing and rates of acceptance, as wiligidighted in the following section.
The two main parameters which require tuning are the numitdeapfrog stepsV, and the size of
each leapfrog step, It has been suggested that choosing the leapfrog stepdiseptroportional to
the marginal standard deviation of the target distribuéitimg each dimension drastically improves
mixing, particularly when such marginals are of greatlyyag orders of magnitude. Setting differ-
ent leapfrog stepsizes along different directions can lévaltgntly encoded in the so-called mass
matrix (Neal, 1993a, 1996). However, this approach cleadyires advance knowledge of the dis-
tribution being sampled from, and in a practical setting thformation is very rarely available. The
use of exploratory runs of a Metropolis sampler to obtaitidhestimates of the target distribution
has been suggested (Hajian, 2007), however there is thewbassociated computational cost and
the fact that this may not be feasible for very complex disiibns.
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Table 3. RM-HMC with generalised leapfrog integration
scheme - investigating the effect of parameter settings
on sampling efficiency with German Credit dataset

e, Maxe MeanTime(s) MinESS s/Min ESS

1 1/2 149.5 637 0.234
2 1/2 224.7 2085 0.108
3 1/2 287.9 4791 0.060

Following the advice of Neal (1993a, 1996), we fix the size adteleapfrog step to a value
slightly smaller than the smallest marginal standard dmriaof the model parameter posteriors,
and set the number of leapfrog stepsuch that the maximum distance that can be travelled in a
single move¢L, is larger than the largest standard deviation of the matgisrameter distributions.
A larger step size would result in large rejection ratesevhismaller number of steps would result
in very slow exploration of the target distribution.

In our experiments we make the, rather optimistic assumpttmat this information is known
when implementing HMC, presumably after a number of exptwyeruns of the algorithm, and set
¢ small enough to obtain a high acceptance rat&({%) andeL = 3 allowing the chain to traverse
a distance larger than the standard deviation of the largagginal posterior for all datasets, see
Table 10. This approach works well for distributions in whtbe marginal standard deviations are
of a similar magnitude, however the algorithm soon beconoesptitationally very expensive to
run in situations where they greatly differ and the numbédeapfrog steps required for adequate
mixing consequently becomes very large.

7.1.5. lterated Weighted Least Squares

We consider in addition the second order method Iterateghted Least Squares (IWLS) (Gamer-
man , 1997), which makes use of second derivatives in itsdygetrs proposal steps. It should be
noted that the term involving the second derivatives for BMk indeed different from the metric
tensor expression employed in RM-HMC and mMALA, and we skaél how this impacts on the
results shortly. This method is relatively straightfordiém implement and has the advantage that it
requires no tuning, similar to the auxiliary variable Gildasnpler of Holmes and Held (2005).

7.2. Comparison of MCMC Methods

We begin by investigating the RM-HMC method in detail for ai¢he more challenging of our six
datasets, German Credit, which consists of 24 covariatb4 @00 datapoints. We then compare the
results for all six datasets employing the alternative dangpnethods described previously.

The maximum total distance which a chain may travel in a sipgbposed move is given by,
and for any given value afL. we chose small enough such that the acceptance ratio was ati¥ge
and then adjustefl appropriately. Table 3 shows the results of the generalesgairog integration
scheme using a variety of choices for these parameters. Wvelfinat sampling generally became
more efficient as the maximum total distance travelled byadrglal, was increased, i.e. when the
chain was able to traverse a distance greater than the wiétch marginal distribution.

Following these guidelines, we find that the RM-HMC and mMAkAmpling methods work
very well for a variety of datasets and RM-HMC is fairly robts the choice of algorithm param-
eters. For comparison with the alternative sampling methae chose the settings for RM-HMC
based on the above analysis. We employed the generalisgfidgacheme, setting for each
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Table 4. Australian Credit Dataset, D = 14, N = 690, 15 regression coefficients -
Comparison of sampling methods

Method Time ESS (Min, Med, Max) s/Min ESS Rel. Speed

Metropolis 9.1 (15, 208, 691) 0.61 x 27
Aux. Var. 757.2 (46, 1074, 1454) 16.5 x1
MALA No Convergence (-,--) - -
HMC No Convergence G-,- ") - -

IWLS 4.9 (3.7,8.7,52.5) 1.32 x12.5

mMALA 11.8 (730, 872, 1033) 0.0162 x 1019

mMALA Simp. 2.6 (459, 598, 726) 0.0057 x 2895

RM-HMC 115.3 (4940, 5000, 5000) 0.023 X717

RM-HMC (Stud. t) 145.8 (1745, 1916, 2282) 0.084 x 196

dataset equal to the smallest stepsize for which the acueptate was reasonably high (0%),
and the number of integration steps such #iat~ 3. The scaling for mMALA was chosen to
obtain an acceptance rate of arouitd:. We repeated the sampling experiments 10 times and av-
eraged the results, which are shown for each of the datas@&bies 4 to 8. It is interesting to see
that MALA generally performs poorly. Whereas all other nogth converge within 5000 burn-in
iterations for all datasets, MALA needs as many as 2 millterations to converge due to the very
small stepsize required to achieve an acceptance raticeady. This is particularly the case for
the Australian Credit and Heart datasets, which exhibiy \@nge differences in scale between the
largest and smallest marginal standard deviations (sde T8, resulting in extremely slow explo-
ration of the target distribution, indeed even after 2 milliterations the Langevin guided chains
had still not reached their stationary distributions. @eaome method of scaling the regression
coefficients would improve the mixing, however this is agaifieasible unless information regard-
ing the marginal posterior distributions is known in adwan8imilarly the standard HMC method
fails to converge for the Australian Credit dataset, siteestepsize is so small that the number of
integration steps required becomes computationally iotfwa to implement. Figure 5 shows the
trace and autocorrelation plots for 1000 posterior samypdesy the Heart dataset. The difference
in autocorrelation is quite striking, both from inspectiofithe traces and from examination of the
autocorrelation plots themselves. The autocorrelatich@RM-HMC samples drop towards zero
far quicker than for any of the other methods.

As the number of covariates in the dataset increases, sovéiralbperformance of RM-HMC
and mMALA decreases due to the increased computationakhwficalculating partial derivatives
with respect to each of the covariates. Indeed we see thatHiRI@- is only about twice as effi-
cient as Metropolis with the Caravan dataset, with mMALAfpening worse still. The simplified
MMALA scheme (where the curvature terms are removed) on tiner d(hand performs far better,
employing an approximation of the local geometry with a mrezfuced computational cost.

We consider also an alternative second order method, IWIlghaimakes use of terms in-
volving second derivatives and therefore some measureeofuhvature of the parameter space.
IWLS performs fairly poorly, indeed in the examples it penfis about the same as parameter-wise
Metropolis. Although IWLS is a second order method, it malss of a metric which appears to
be significantly less efficient than employing the expectistiér Information as in mMALA and
RM-HMC. In addition, we note that IWLS runs into severe nuiterproblems with the Caravan
dataset, due the fact that the second order derivativesgtogis are not guaranteed to be positive
semi-definite.
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Table 5. German Credit Dataset, D = 24, N = 1000, 25 regression coefficients
- Comparison of sampling methods
Method Time  ESS (Min, Med, Max) s/MinESS Rel. Speed
Metropolis 20.9 (10, 82, 601) 2.09 x1.1
Aux. Var. 1155.1 (1071, 2200, 2620) 1.08 x2.2
MALA 2.7 (3,5, 130) 0.9 x2.6
HMC 3161.6 (2707, 4201, 5000) 1.17 x2
IWLS 9.37 (4,9, 31) 2.34 x1
mMALA 36.2 (616, 769, 911) 0.059 %x39.6
mMALA Simp. 4.1 (463, 611, 740) 0.009 x 260
RM-HMC 287.9 (4791, 5000, 5000) 0.06 %39
RM-HMC (Stud. t)  360.5 (1665, 2412, 2942) 0.22 x10.6
Table 6. Pima Indian Dataset, D = 7, N = 532, 8 regression coefficients -
Comparison of sampling methods
Method Time  ESS (Min, Med, Max) s/MinESS Rel. Speed
Metropolis 4.1 (14, 37, 201) 0.29 x1.9
Aux. Var. 565.4 (1176, 1877, 2340) 0.48 x1.1
MALA 1.63 (3, 10, 39) 0.54 x1
HMC 1499.1 (3149, 3657, 3941) 0.48 x1.1
IWLS 3.2 (6, 16, 34) 0.53 x1
mMMALA 4.4 (1124, 1266, 1409) 0.0039 x138
mMALA Simp. 1.9 (1022, 1185, 1312) 0.0019 x 284
RM-HMC 50.9 (5000, 5000, 5000) 0.01 x54
RM-HMC (Stud. t) 56.0 (2090, 2146, 3105) 0.027 x20
Table 7. Heart Dataset, D = 13, N = 270, 14 regression coefficients - Comparison of
sampling methods
Method Time ESS (Min, Med, Max) s/Min ESS Rel. Speed
Metropolis 5.2 (8, 65, 530) 0.65 x 8.4
Aux. Var. 281.5 (721, 1276, 1761) 0.39 x14.1
MALA No Convergence - - - -
HMC 2018 (368, 2740, 2938) 5.48 x1
IWLS 2.9 (3, 6, 16) 0.97 x5.6
mMALA 6.4 (649, 793, 920) 0.01 x548
mMALA Simp. 1.7 (373, 486, 610) 0.004 x1191
RM-HMC 59.2 (4925, 5000, 5000) 0.012 x 457
RM-HMC (Stud. t) 67.0 (936, 1144, 1822) 0.072 x76.1

17



18

Table 8. Ripley Dataset, D = 2, N = 250, 7 regression coefficients - Compar-
ison of sampling methods

Method Time ESS (Min, Med, Max) s/Min ESS Rel. Speed

Metropolis 25 (11, 20, 251) 0.23 x15.6
Aux. Var. 258.6 (72, 374, 1967) 3.59 x1

MALA 1.1 (4, 8, 30) 0.28 x12.8
HMC 52.8 (1365, 1596, 1754) 0.039 x92.1
IWLS 1.7 (8, 26, 252) 0.21 x17.1
mMALA 3.0 (857, 975, 1098) 0.0035 x 1026
mMMALA Simp. 14 (682, 799, 927) 0.0021 x1710
RM-HMC 25.3 (4999, 5000, 5000) 0.0051 x 704
RM-HMC (Stud. t)  27.9 (813, 1266, 1463) 0.034 x 106

Table 9. Caravan Dataset, D = 86, N = 5822, 87 regression coefficients -
Comparison of sampling methods

Method Time  ESS (Min, Med, Max) s/MinESS Rel. Speed
Metropolis 388.7 (3.8, 23.9, 804) 101.9 x6.7
Aux. Var. 4628 (6.7, 570, 4788) 687 x1
MALA 17.4 (2.8,5.3,17.2) 6.2 x110.8
HMC 12,519 (33.8, 4032, 5000) 369.7 x1.9
IWLS N/A N/A N/A N/A
mMALA 305.3 (7.5,21.1,50.7) 305.3 x2.25
MMALA Simp. 48.9 (7.5, 18.4, 44) 6.5 x105.7
RM-HMC 45,760 (877, 1554, 2053) 52.1 x13.2
RM-HMC (Stud.t) 45,877 (279, 477, 705) 164 x4.2

Table 10. Summary of standard deviations of the marginal posterior
distributions for each dataset

Dataset Smallest Marg. S.D. Largest Marg. S.D. Ratio
Pima Indian 0.0043 0.9646 225
Australian Credit 0.00017 1.0667 6404
German Credit 0.0038 1.1492 303
Heart 0.004 2.9221 739
Ripley 1.2575 7.556 6

Caravan 0.042 9.916 236
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Fig. 5. Trace plots for 1000 posterior samples with the Heart dataset using (from top to bottom)
Metropolis, IWLS, auxiliary variable sampler, standard HMC, mMALA, Simplified mMALA and RM-
HMC. Autocorrelation plots are also shown for one of its parameters, which may be seen in the trace

plots to have a mean of around —7.
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7.3. Comparison of RM-HMC and mMALA Variants

We now investigate variants of RM-HMC and mMALA to see whettesults may be improved
based on slight alterations to the standard forms. We firsgider a simplified version of mMALA,
which assumes a locally flat metric tensor during each Melisstep and will still converge to
the stationary distribution due to the Metropolis adjusiinédt is clear that this is computationally
much less expensive than the full MMALA as it avoids the dalibon of metric tensor derivatives.
It is interesting that simplified mMMALA has worse ESS than toenplete mMMALA, which intu-
itively makes sense since proposed steps across the ntawitbhave greater error by not taking
into account any changes in curvature. The time normalise8 Bowever is much better, as the
computational complexity is far less.

Itis also interesting to investigate the use of an altevedtinetic energy function in RM-HME
This idea is also briefly mentioned in Liu (2001) although raraple is given. We consider there-
fore the use of a Student-t kinetic energy term, with the ith@a since the heavy tails might occa-
sionally mean a larger momentum is sampled, this could flgussult in less correlated samples
of the target distribution. We note that since the multi@tgriStudent-t distribution is symmetric,
then the resulting Hamiltonian is still reversible. The atipns describing the dynamics of such a
Hamiltonian follow as

o OH  ((v+d)G(8) '
dr  dp; \v+p'G(0)~lp i
dp _ _OH _OLO) 1y 7o 10G0O)]  (w+d) p'G(0) 1 2E90G(9)"'p

The simulations take slightly longer to run than with standldaaussian distributed momentum using
the same integration time steps. This is due to the increas®gutation required to sample from a
Student-t distribution, and also to the more involved cotation required to calculate the dynamics
of this new Hamiltonian. The results show that the ESS isallgtgignificantly less than that of a
Hamiltonian defined with Gaussian momentum. This is pogsilresult of a higher concentration
of mass producing momenta with values closer to zero, exargtithere will be occasional samples
of momentum with much larger magnitude.

In our simulations, manifold based methods outperform fathe other methods using small
to medium sized datasets (with the exception of when a Sttdgistribution is employed in the
kinetic energy term for RM-HMC). It is interesting to noteathdue to the dense matrix form of
the metric tensor and its inverse, the computational costdALA and RM-HMC on Bayesian
logistic regression will not scale favourably and it can bersthat their time-normalised efficiency
does indeed decrease as the number of regression coeffigiehe dataset increases. This issue
of scaling can however be eased somewhat by employing diethinMALA sampling, which
assumes a locally constant metric tensor and thus avoidmeie computation of the derivatives
of the metric tensor. A further, more complex, example based stochastic volatility model is
now considered where the metric tensor and its inverse amsesppermitting scaling of RM-HMC
to very high dimensions.

8. RM-HMC and mMALA for a Stochastic Volatility Model

A stochastic volatility model (SVM) studied in Liu (2001);id et al (1998) is defined with the
latent volatilities taking the form of an AR(1) process sticaty: = €5 exp (z:/2) with z;1 =

tas was suggested by one of the reviewers.
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bzt +1ni401 Wheree, ~ N(0,1), n: ~ N(0,02) andzr; ~ N(0,02/(1—¢?)) having joint likelihood

p(y.x.8.6.0) = [|_, plwlee. Bp(an) [[,__ pleelei s, 6, 0)m(B)n(@)m(o).  (29)

We may split up the sampling procedure into two steps, whictve shall see allows the im-
plementation of RM-HMC in a computationally efficient mannEirstly we may simulate, o, 8
from p(8, ¢, oly, x), where the priors are chosen tofae) o exp(3), o2 ~ Inv-x3(10,0.05) and
(¢ +1)/2 ~ Beta20, 1.5). Secondly we may sample the latent volatilities by simatfrom the
conditionalp(x|y, 8, ¢, o). We shall consider the use of mMMALA, RM-HMC, MALA and HMC
for the purpose of sampling both the parameters and latdatihites.

8.1. mMALA and RM-HMC for SVM Parameters

We require the partial derivatives of the joint log likeldebwith respect to the parameters to imple-
ment MALA and HMC, as well expressions for the metric tensut &s partial derivatives, in order
to employ mMALA and RM-HMC. All of these quantities may be alted straightforwardly (see
Appendix A for details). In particular, the Fisher Inforriwat is given by

f,—Z 0 0
0 27 2
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whereT is the number of observations. Prior information is incogted into the metric tensor by
adding this Fisher Information to the negative second glagigrivatives of the log priors (see Ap-
pendix A for details). We may then use any of these methodsaw damples from the conditional

posteriom (3, o, ly, x, ).

8.2. mMALA and RM-HMC for SVM Latent Volatilities

The gradient of the joint-log likelihood with respect to bauf the latent volatilities is required.
Defining the vectora = (z3,--- ,27)", v = (z2, - ,27_1)T,w = U%(u—qbv), s=(s1, - ,s7)"
suchthat; = 0.5(1—y?B 2 exp(—x;)), 01 = —0%(z1—dx2), anddr = —o~2(zr—prr_1), WE
define the vector = (d;, w',d2)" and the required gradient 8, log p(y, x|3, ¢,0) = VL =
S—r.

To devise an mMMALA and RM-HMC sampler for the latent volditls, x, we also require an
expression for the metric tensor and its partial derivatiwéth respect to the latent volatilities.
For the data likelihood of the model(y|x, 3), the Fisher Information is a diagonal matrix with
0.5 for each element denoted ks;. The latent volatility is an AR(1) process having covarianc
matrix C with elements?{z;,,z;} = ¢/"lo?/(1 — $?) and as in the previous examples the metric
tensor is defined as the sum of the Fisher Information and ¢gative Hessian of the log-prior,
G =I5 + C1, conditional on current values of ¢, 3. Now the expression for the covariance
matrix is completely dense and is therefore computatigreadpensive to manipulate. Fortunately,
this AR(1) process admits a simple analytic expression Herrecision matrix in the form of
a sparse tridiagonal matrix, such that the diagonal elesnarg equal td1 + ¢?)/0?, with the
exception of the first and last diagonal elements which atmleip 1/02, and the super and sub
diagonal elements are equal tap/o>. Thus the metric tensor also has a tridiagonal form. For
large numbers of observations this sparse structure atjpeet gains in computational efficiency,
since the inverse of this tridiagonal metric tensor may bamated inO(n) as opposed to the usual
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Table 11. 2000 simulated observations with 5 = 0.65, o = 0.15 and ¢ = 0.98 - Com-
parison of sampling the parameters 3, o and ¢ after 20,000 posterior samples averaged
over 10 runs

Method Mean Time ESS3(0,0) S.E. B,0,¢) s/(Min ESS) Rel. Speed

MALA 41.7 (25.3,125,459) (2.7,0.6,3.1) 334 x45.7

HMC 946.3 (177,108, 270)  (4.5,2.6,7.9) 8.76 x17.4
mMALA 2547 (18.8,16.7,40.2) (0.9,0.7, 2.4) 152.5 x1
RM-HMC 381.9 (324,113,283) (5.6, 3.1, 6.8) 3.37 x45.3

Table 12. 2000 simulated observations with 8 = 0.65, o = 0.15 and ¢ = 0.98
- Comparison of sampling the latent volatilities after 20,000 posterior samples
averaged over 10 runs

Method Mean Time ESS (min, median, max) s/(Min ESS) Rel. 8pee

MALA 41.7 (7.9,15.1, 32.1) 5.28 x6.1

HMC 946.3 (566,903,1856) 1.67 x19.1
MMALA 2547 (79.7, 155.2, 344.5) 31.96 x1
RM-HMC 381.9 (963, 1723, 3412) 0.41 x77.9

O(n?®). We note that computationally efficient methods for maraginy tridiagonal matrices are
automatically implemented by the standard routines in aatl

We notice that the metric tensor in this case is not a funatior and so the associated par-
tial derivatives with respect to the latent volatilitiesarero. In this case a one step RM-HMC
integration scheme collapses to

2
X = Xo + %G*lvxc +eV/G1p (30)

wherep ~ A/(0,I) which is a discrete Langevin iteration that is precondiidiby the constant
matrix G~!. It is clear that this preconditioning will improve both theixing and overall ESS,
see (Lambert and Eilers, 2009) for a recent application isftifpe of preconditioning in MALA.

We point out that in the case of RM-HMC the preconditioningnmeemerges naturally from the
underlying geometric principles of RM-HMC.

8.3. Experimental Results for Stochastic Volatility Model
We now compare the computational efficiency of RM-HMC, mMAUAMC and MALA for sam-
pling both the parameters and the latent variables of thehastic volatility model as previously
defined, Tables (11) and (12). 2000 observations were statifeom the model with the parameter
valuess = 0.65,0 = 0.15 and¢ = 0.98 as given in Liu (2001). Using this data, 20000 posterior
samples were collected after a burn-in period of 10000 sasnfrhis sampling procedure was re-
peated 10 times. The efficiency was compared in terms of tionealised ESS, as in the previous
section, for the parameters and the latent volatilities. LMAvas tuned such that the acceptance
ratio was betweed0% and70%, and it was necessary to use a different tuning for the teatsi
phase than for the stationary phase. HMC was implemented asstep size df.015 and200 inte-
gration steps per parameter proposal, and a stepsiz@@¥ and300 integration steps per volatility
proposal. RM-HMC was implemented using a stepsiz@& ®&nd10 integration steps per parameter
proposal, and a stepsize @fi and50 integration steps per volatility proposal.

In terms of sampling the hyperparameters, manifold metbédslittle advantage over standard
sampling approaches due to the small dimensionality of tbblem. RM-HMC and MALA give
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Fig. 6. Posterior marginal densities for 3, o and ¢ respectively, employing RM-HMC to draw 20,000
samples of the parameters and latent volatilities using a simulated dataset consisting of 2000 obser-
vations. The true values are 8 = 0.65, o = 0.15 and ¢ = 0.98.

the best performance in terms of time normalised ESS. MALMKilgis a very poor ESS, however
the computation time is also extremely small compared tmther two methods. RM-HMC has
the highest raw ESS, but has much more computational ovéiteapared to MALA. When we
consider sampling the latent variable, RM-HMC offers geeatdvantages. In particular, it runs
faster than HMC, partly because of the computationally ieffictridiagonal structure of the metric
tensor and partly because RM-HMC follows the natural tegsadient through the parameter space
and requires significantly fewer leapfrog iterations tolerpthe target density. See Figure 3 and
4 for an illustration of the contrast between HMC and RM-HM&npling of the parameters of
this model. In this example, mMMALA performs very badly dueth@ need to take a Cholesky
decomposition of the inverse metric tensor of the lateritldes, which is a dense matrix, compared
to RM-HMC which only requires use of the tridiagonal metaasor. It should be noted that RM-
HMC again requires very little tuning compared to the othethmds; unlike MALA it does not
require different tuning in different parts of the parametpace, and unlike HMC it requires no
manual setting of a mass matrix. It would be interesting tmgare performance of mMALA and
RM-HMC to the Particle MCMC methodology (Andrieat al, 2010) for this particular model.

We now consider an example where the target density is egtyelnigh dimensional, which is
encountered when performing inference using spatial datiefed by a log-Gaussian Cox process.

9. RM-HMC and mMALA for Log-Gaussian Cox Point Processes

RM-HMC and mMALA are further studied using the example ofirghce in a log-Gaussian Cox
point process as detailed in (Christenggral, 2005). This is a particularly useful example in
that the target density is of high dimension with strong elations and provides a severe test of
MCMC capability. The data, model and experimental prot@sotiescribed in (Christensenal.,
2005) is adopted here. A 64 64 grid is overlayed on the arg@, 1]? with the number of points
in each grid cell denoted by the random variab¥s= {Y; ;} which are assumed conditionally
independent, given a latent intensity procdss) = {A(4,j)}, and are Poisson distributed with
meansnA(i, j) = mexp(X; ;), where m = 1/4096. The random variatle= {X;, ;} is a Gaus-
sian process with meafi{x} = u1, wherex = Vec(X), y = Vec(Y), and covariance function
Sy = orexp(—6(i,i,4,5')/648), whered(i,i’,j, ') = /(i —i")2 + (j — j')2. The
complete joint density is

64 Ty—1
p(y,x, 1,0, 8) x Hi,j exp{y;, jxij —mexp(z;;)}exp(—(x —pl) X7 (x—ul)/2) (31)
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We consider first the case where the hyperparameters of tregiance function are fixed and
we are interested in inferring the latent field only. Dengtih = logp(y,x|u,0,3) ande =
{mexp(z; )}, then the derivative with respect to the latent variabldis\is straightforwardly as
VxL =y —e— X~ !(x — ul), and the Fisher Information (where the expectation is takim
respect to the complete likelihood) follows @§x) = —Ey, 4je{VxVxL} = A + X!, where the
diagonal matrixA, whoseith diagonal element is defined asexp(u + (X)), follows from the
expectation of the exponential of normal random variables.

We note that for fixed hyperparameters, the metric tensari@sg the manifold for the random
field x is constant. The generalised leapfrog method therefotaps#s into a standard leapfrog
algorithm, with no need to employ any fixed point iterationBe computational cost of calculating
the required inverse of the metric tensor scale€é8’?), however once this quantity has been
calculated, a large number of leapfrog steps may be maddittlighadditional overhead, which as
we shall see results in very efficient sampling of the latamiables.

The second case we consider is where the hyperparametestsaraferred along with the
latent variables. Considering them jointly, now withe log p(y, x, o, 8|1), we see that the Fisher
Information matrix is block diagonal with block& + X~ andD, ' where the(l, m)th element
of Dg is %trace(z—lg—gjz—lg’e—i), and@ = [0, 3]. Unfortunately, jointly sampling the latent
variables and the hyperparameters proves to be compu#ifidno costly to implement, as the
metric tensor is now no longer fixed and so the generalisq@frleg integration scheme must be
implemented with fixed point iterations, during each of whilse metric tensor and its inverse have
to be recalculated. We therefore exploit the block diagstratture of the metric tensor, and employ
a Gibbs scheme in which we alternately sample fggsdy, o, 8, 1) andp(o, By, x, ). A standard
leapfrog integrator may then be used to generate samplég dditent variables, and a generalised
leapfrog scheme for obtaining samples from the 2 dimensloymerparameter space. The required
partial derivatives of the metric tensor with respect toliiperparameters follow straightforwardly
and are given in Appendix B.

Noting that the metric tensor for the latent variables hasetisionV x N, whereN = 4096
the O(N?) operations required in the RM-HMC scheme are clearly goinget computationally
costly. However, it should also be noted that in previoudissiof this Log-Gaussian Cox process,
(Christenseret al., 2005), a transformation of the latent Gaussian field is s&sny based on the
Cholesky decomposition & ~* + diag(x), which will therefore also scale &3(N3).

9.1. Experimental Results for Log-Gaussian Cox Processes

Following the example given by Christensen al. (2005), we fix the parameters = 1/33,

0% = 1.91 andu = log(126) — 02 /2. We generate a latent Gaussian fieddfrom the Gaussian
process and use these values to generate counydeden the latent intensity process. Given
the generated data and the fixed hyperparameters, wexinfeing mMALA, RM-HMC and the
MALA method as in Christensegt al. (2005). The algorithms were run on a single AMD Opteron
processor with 8GB of memory and were coded in Matlab for isbascy.

In many settings MALA, like HMC, is particularly sensitive the choice of scaling and very
often a reparameterisation of the target density is reddoethese methods to be effective. Indeed
this is seen to be the case with this particular example, @EXLA is unable to sampl& directly.
We therefore follow Christenseat al. (2005) and employ the transformati®n= 1 + LT, where
L is obtained by Cholesky factorisation such tfat — diagx)}~' = LL". Even after this re-
parameterisation, it is still necessary to carefully tumegcaling factor for this method to work at
all. This challenging aspect of employing MALA has been Btigated in detail by Christensen
al. (2005) who characterise the problem very well, advisingcare in its implementation, but are
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Fig. 7. Trace plots of the log joint-likelihood for the first 5000 samples of the latent variables of a log-
Gaussian Cox process. The left hand plot shows the convergence of the RM-HMC scheme which
is able to directly sample the latent variables x without the need for ad-hoc reparameterisations
and pilot runs for fine-tuning. The left-middle plot shows the convergence of the mMMALA scheme
which, since it also uses information about the manifold in the form of the metric tensor, is able to
directly sample without any reparameterisations. The right-middle plot shows the log joint-likelihood
for samples drawn by MALA using a reparameterisation of the latent variables. The scaling was
carefully tuned to allow traversal of the parameter space to the posterior mode. The right hand plot
shows the trace of the MALA sampler tuned for optimally sampling from the posterior mode. We
note that the algorithm is now unable to traverse the parameter space when initialised away from this
mode. Such fine-tuning and reparameterisation is frequently necessary when employing MALA.

ultimately unable to offer any panacea. In contrast to theesgary transformation and fine-tuning
required by MALA, both mMALA and RM-HMC allow us to directlyasnple the latent variables
withoutreparameterising the target density.

Figure 7 shows the traces of the log joint-likelihood fortbotethods using the starting position
x;; = pfori,j =1,...,64. Note that for MALA these starting positions must be transied
into corresponding values fat. The RM-HMC sampler quickly converges to the true mode after
very minimal tuning of the integration stepsize based onirtkegration error, which corresponds
directly to the acceptance rate. mMALA also converges veligldy to the true posterior mode.
MALA converges in a similar number of iterations, but only fosuitable choice of scaling factor.
The right-middle plot in Figure 7 shows convergence whersttading factor is carefully tuned for
the transient phase of the Markov chain, however the rightihdot demonstrates how it fails to
converge at all given a scaling factor which is tuned forigtedrity. Detailed results of the sampling
efficiency of each method are given in table 13. In this exartid RM-HMC method required just
1.5 seconds per effectively independent sample comparadi®than 2 hours needed by MALA. In
addition to taking far longer to sample, MALA also generatesch more highly correlated samples
and as a result has a far worse effective sample size. Thialsaibe seen in figure 8 which shows
the inferred posterior latent field, the posterior latertoggss and the variance associated with the
Monte Carlo estimate. For RM-HMC, the variance in the estimancreases where there is little
data, i.e. in the top right hand corner of the field. mMALA higtgly more variability, while the
low ESS of the MALA methods methods manifests itself in pgit@gions of high variability across
the entire field. We note that MALA tuned for stationarity tglightly lower variance than MALA
tuned for the transient phase, as one would expect.

Conditionally sampling the hyperparameters, in addit@the latent variables, using RM-HMC
proves more costly, with 5000 posterior samples takingrad@®@0 hours of computation time. How-
ever, the posterior estimates for the hyperparameteregmond extremely well to their true values,
see Figure9.
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Fig. 8. Posterior latent fields and processes and associated variance, using each of the sampling
methods, compared to the true latent field and process. The data employed to infer the latent field is
also shown in the top left plot. RM-HMC produces the lowest variance estimates, which corresponds
with it having the highest ESS. For RM-HMC there is higher variance where there is less data,
however for the other methods there are patchy areas of high variance due to correlations in the
collected samples.
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Fig. 9. Kernel density estimates of the hyperparameter samples obtained from Gibbs style sampling
from the Log-Gaussian Cox model. The true values are o = 0.19 (left hand plot) and 8 = 0.03 (right
hand plot).

Table 13. Sampling the latent variables of a Log-Gaussian Cox Process - Comparison of
sampling methods

Method Time  ESS (Min, Med, Max) s/MinESS Rel. Speed
MALA with Trans. (Transient) 31,577 (3, 8, 50) 10,605 x1
MALA with Trans. (Stationary) 31,118 (4, 16, 80) 7836 x1.35
mMALA 634 (26, 84, 174) 24.1 x 440
RMHMC 2936 (1951, 4545, 5000) 15 x 7070

Inferring the latent field of a log-Gaussian Cox process \aittnely grained discretisation is
clearly a very challenging problem due to the high dimeralibonand strong spatial correlations
present between the latent variables. The major challesggxciated with employing MALA are
firstly finding a suitable reparameterisation of the targatgity, and secondly making a suitable
choice for the scaling factor according to whether the Margloain is in a transient or stationary
regime. In contrast, MMALA and RM-HMC do not exhibit such xhe technical difficulties.
We have demonstrated that RM-HMC is able to sample the lataidbles directly with minimal
tuning and effort and without the need for reparametedsa®y employing a Gibbs style sampling
scheme we were additionally able to sample the hyperpaeamet the covariance function in a
relatively computationally efficient manner. An investiga into the sparse approaches presented
in (Vanhatalo and Vehtari, 2007; Re¢ al, 2009) may provide further computational efficiencies.
We will now turn our attention to the very topical applicatiof statistical inference to nonlinear
differential equations.

10. RM-HMC for Nonlinear Differential Equation Models

An important class of problems recently gaining attent®thie statistical analysis of uncertainty
in dynamical systems defined by a system of nonlinear difteakequations (Ramsast al., 2007;
Calderhead and Girolami, 2009; Vyshemirsky and Girola@&. A dynamical system may be
described by a collection ¥ nonlinear ordinary differential equations and model partarsd
which define a functional relationship between the procese x(t), and its time derivative such
thatx(t) = f(x,0,t). A sequence of process observation§;), are usually contaminated with
some measurement error, which is modeleg(@s = x(t)+e(t), wheree(t) defines an appropriate
multivariate noise process, e.g. a zero-mean Gaussianvaithnces? for each of theV states. If
observations are made’Atdistinct time points, théV x 7' matrices summarise the overall observed
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system a& = X + E. In order to obtain values faX, the system of ODEs must be solved, so that
in the case of an initial value probleKy(0, x,) denotes the solution of the system of equations at the
specified time points for the parametérand initial conditions<0 The posterior density follows
by employing appropriate priors such th&d|Y, xo, o) o 7(0) [, N (Ys, |X(0 X0)n,, By L)

By considering the Gaussian noise model descrlbed aboverelh), = Iro2, we straightfor-
wardly obtain the following analytic expressions for thetrivgensor and its derivatives in terms of
the first and second order sensitivities of the states ofiffexential equations. Th&'-dimensional
vectors of first order sensitivities for théth component of state relative to thigh parameter are
denoted as,,; = 9%,,/00;. The metric tensor and its derivatives follow as

0G(0);; <~ [ Ospi _osT
Z ~1gT ij _ Z nig—1_.T 51771
z] = Snz n] aok 2 aok Zn Sn] + Snzzn 89k

One method of obtaining the required sensitivities at alktipoints, is to approximate them using
finite differences, however for our purposes this may bedneate. For this example we differenti-
ate the system of equations with respect to each of the paeesrand directly solve the first order
sensitivity equations defined as follows

L OR(x,0.t) _ N0, i O
i = T 5, < Oy 0,

Note that we must take the total derivative with respecdf tsince the states also depend on
the parameter values. We may augment the original systeimthétse new differential equations,
such that we may solve to obtain both the states and the isé@iestof the states. Similarly we
may augment the system with additional equations to solvthéosecond order sensitivities, which
are required for calculating the partial derivatives of thetric tensor with respect to the model
parameters. These equations follow as

B3ni . %, \ 1 0, 08| < 9%, ; O,
90, Z sz axlax t 5200, ) St oo | T ; 96,02, * 26,00,

=1

We now have everything required to implement RM-HMC and mMAsampling schemes for
dynamical system models defined by systems of nonlineaardiftial equations.

10.1. Experimental Results for Nonlinear Differential Equations
We present results comparing the sampling efficiency foptrameters of the Fitzhugh Nagumo
differential equations (Ramsay al.,, 2007),

3
Vc<VV—+R>, R<w> (32)
3 c
We obtain samples from the posterior distributjei®|Y, %o, o), and so in this examplX;,. =
V andX,. = R. The sampling schemes we employ are Metropolis-Hastings.AM HMC,
MMALA, simplified mMALA and RM-HMC, as first described in thestion on Bayesian logis-
tic regression. We again compare the simulations by cdloglahe effective sample size (ESS)
normalised by the computational time required to produeesdmples.
Before proceeding we require the first and second parti@ateres of the Fitzhugh Nagumo
equations in order to calculate the metric tensor for enmpfpynanifold sampling approaches to
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Fig. 10. Output for species V (left) and species R (right) of the Fitzhugh Nagumo model with param-
etersa = 0.2, b = 0.2, ¢ = 3. An example noisy dataset is shown by the red points.

explore the posterior distribution, these are detailedppéndix (C). In practice, all these expres-
sions may be obtained automatically using symbolic difidetion and we supply Matlab code for
this purpose.

10.1.1. Comparison of Sampling Schemes

We used 200 data points generated from the Fitzhugh Nagunt® @8del betweern = 0 and

t = 20 with the model parametets= 0.2, b = 0.2, ¢ = 3 and initial conditiond/(0) = —1 and
R(0) = 1. Gaussian distributed noise with standard deviation etguals was then added to the
data, see Figure 10.

Nonlinear ODEs generally induce corresponding nonlitiegrin the target distribution, which
may result in many local maxima. Careful attention mustefare be paid so that the Markov
chains do not converge to the wrong mode, but rather sampie fne correct distribution. All
the sampling methods employed in this section may be embeditein a population MCMC
framework to allow full exploration of and convergence te tiarget density (Calderhead al.,
2009), however for the purpose of comparing sampling effiyjeve employ a single Markov chain
initialised on the true mode. We collected 5000 posteriarsas and calculated the ESS for each
parameter, using the minimum value to calculate the timeeffectively independent sample. 10
simulations were run for each method, using the same datasgtall methods were implemented
in the interpreted language Matlab for consistency of caispa. All sampling methods were
implemented in the same manner as previously describeccin8e .

The results of our simulations are shown in Table 14. Stah#MC takes the longest time
for this problem due to the large number of leapfrog stepsétds to traverse the parameter space.
RM-HMC on the other hand requires relatively few leapfragpst as it takes into account the local
geometry to make better moves. We note however the addittongoutational cost of the leapfrog
steps, during each of which it is necessary to solve the sysfeODES to evaluate the gradients
and metric tensor. The first momentum update of RM-HMC istredly quick since only a vector-
matrix multiplication is necessary, however updating taeameter values requires the metric tensor
to be evaluated for each fixed point iteration in the Gensgdlieapfrog algorithm as the parameter
values converge, thus adding a considerable amount of catiruto the overall algorithm. The
mMmMALA methods offer the best performance for this particelgample, as they have the benefit of
using manifold information to guide the direction of the ithdut without the required fixed point
iterations thus only requiring the ODEs to be numericalllyed once per iteration. This suggests
that mMALA is perhaps particularly suited for settings iniaththere is a non-flat metric tensor
which is expensive to compute, as in this case.
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Table 14. Fitzhugh Nagumo: Summary of results for 10 runs of the model
parameter sampling scheme with 5000 posterior samples

Sampling Time (S) Mean ESS Total Time/ Relative
Method @, b, c) (Min mean ESS)  Speed
Metropolis 18.5 132, 130, 108 0.17 x3.9
MALA 14.4 125, 21, 46 0.67 x1
HMC 815 4668, 3483, 3811 0.23 x2.9
mMALA 34.9 1057, 925, 956 0.037 x18.1
mMMALA Simp. 14.9 1007, 479, 762 0.031 x21.6
RM-HMC 266 4302, 4202, 3199 0.083 x8

The Fitzhugh Nagumo model has only three parameters and avéhae MALA and HMC
perform adequately in this low dimensional setting, indéwdargest marginal parameter variance
is only four times larger than the smallest marginal varg&and/e would expect MALA and HMC
to perform worse in cases where there is a greater differentte marginal variances, since the
step size of each is restricted by the smallest marginahrned. Similarly, while component-wise
Metropolis performs adequately in this setting, we wouldest its performance to deteriorate in
higher dimensions where there are greater correlatiorreiparameters.

11. Conclusions and Discussion

In this paper Riemannian Manifold Metropolis Adjusted anahtiltonian Monte Carlo sampling
methods have been proposed and evaluated in an attemptrimvieygpon existing MCMC method-
ology when sampling from target densities that may be of kiighension and exhibit strong cor-
relations. It is argued that the methods are fully automatedrms of tuning the overall proposal
mechanism to accommodate target densities which may éxtibing correlations, widely vary-
ing scales in each dimension, and significant changes ingbmgtry of the manifold between the
transitional and stationary phases of the Markov chain.

By exploiting the natural Riemannian structure of the parnspace of statistical models the
proposed methods can be viewed as generalisations of bot &id MALA methods and as such
overcome the oftentimes complex manual tuning requiredoti Imethods. In high dimensional
problems such as inferring the 4096 dimensional latent Sandield, MALA and HMC fail com-
pletely due to the high levels of spatial correlation in thgeht field and can only proceed after
a transformation is used to break those correlations. ItrastmMALA and RM-HMC proceed
without the need for such a transformation or indeed anyghpscific tuning.

Clearly there are two main overheads when employing mMALARM-HMC, the first being
the ability to develop analytical expressions, or stablmerical alternatives, for the metric ten-
sor (once it has been chosen) and the associated derivafiiessecond is the worst caéd N?)
scaling of solving the linear systems when updating therpater vectors i.e. inverting the metric
tensor, especially for high dimensional problems. Thedsstithe O(N?) scaling is something
which deserves further consideration. In some statistiwadlels there is a natural sparsity in the
metric tensor, the SVM is a case in point where due to thisgira RM-HMC was computationally
more efficient than mMALA and HMC. In other models this is rfod tase, for example the logistic
regression model and the Log-Gaussian Cox model. It shauitbted that adaptive MCMC meth-
ods, see e.g. Andrieu and Thoms (2008), also incur the samlelicubic scaling. At the very high
dimensional end of the scale a decorrelating transformasioequired for MALA and HMC and
this will also incur anO(N?3) scaling however further work to characterise the incurremguta-
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tional costs at the intermediate dimensionality regimé mélof value. As far as the computational
issues are concerned automatic or adjoint differentiatiethods may prove to be of use, and Han-
son (2002) has proposed adjoint methods for HMC. There agglgla number of numerical and
computational avenues of investigation that may be foltbimethis regard.

In this paper all the examples that have been consideredhzl/analytic expressions for the
Fisher Information. However there are whole families ofisteal models for which the Fisher
Information is not available in closed analytic form, misdumodels being an obvious example. In
these cases it may be possible to either estimate the expisteer Information (Spall, 2005) or
employ the observed Fisher Information, although numeissaes such as the loss of guaranteed
positive-definiteness would require consideration. Itrislear what type of manifold structure this
would induce so the theoretical and practical implicatiohthe difference between the expected
and observed information matrices would be worthy of furingestigation. This leads onto the
discussion about the particular choice of metric to be eggaladf one takes the view that the Fisher
Information is but one possible metric that could be adoptdrnatives have already been consid-
ered in the literature, e.g. the Preferred Point metrict¢@ley et al, 1993) although not within the
context of MCMC and this presents a new area of analysis arty $6 characterise the principles
of optimality in appropriate metric design for MCMC.

A note of caution regarding the exploitation of the geometduced by the Fisher Information
metric in inference problems is spelled out in (Skilling0B). Two distributions may be a short
distance apart on the probability simplex, however if theapgeter sub-manifold (which we are
interested in) is locallyoughthey may well be distantly separated and hence followindlsscale
detailed paths on the sub-manifold will be highly ineffidieifhis is not an observation made in
this paper however there are many examples where this mayeveal real problem, for example
inference over dynamic systems that exhibit complex limitles is challenging due to the small
scale structure induced in the likelihood (Calderhetdl. 2009). Further theoretical and applied
investigation will help to understand this issue more fully

The work of (Christenseet al., 2005; Roberts and Rosenthal, 1998; Roberts and Stran@s) 20
have provided theoretical analysis of limiting rates ofwengence, egodicity, optimal step sizes and
acceptance rates for MALA, and more recently HMC (Besiogl, 2010). This type of theoretical
study will be required for the mMALA and RM-HMC class of MCMCathods to characterise
their theoretical properties in a rigorous manner. The lgigihomising performance reported in
the experimental evaluation of mMMALA and RM-HMC on challérginference problems gives
further motivation for this theoretical analysis.

From the experimental evaluation the raw ESS values for RWizHar exceeds that of mMMALA
despite both methods being based on geometric principlestelare a number of reasons for this,
firstly the mMALA proposal is based on a single forward steghaf Euler integrator whilst the
proposal mechanism for RM-HMC can take multiple integmateps thus traveling further on the
manifold (parameter space) for each proposal. Secondigiticeete version of the Langevin diffu-
sion is being driven by a diffusion term defined by the megitsor at the current point rather than
the new one. Depending on the step size this will introduddéu inefficiency based on deviation
from the manifold of the effective path. Thirdly as has attgheen mentioned Hamiltonian flows
of the form employed in RM-HMC are locally geodesic flows (@and Chang, 2004; McCord
et al, 2002) suggesting a possible optimality, in terms of distarin the paths simulated across
the manifold by RM-HMC. This is an interesting point whiclgtgres further theoretical analysis
to characterise the nature of these local geodesics andheyway be exploited further in this
regard.

In summary the mMALA and RM-HMC methods provide novel MCM@ailithms whose per-
formance has been assessed on a diverse range of statimidals and in all cases has been shown
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to be superior to similar MCMC methods. The adoption of tleemetric viewpoint when design-
ing MCMC algorithms provides a framework in which to furttisvelop the theory, methodology,
and application of this promising avenue of statisticatiehce.
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A. Required Expressions for Stochastic Volatility Model
The full joint target distribution can be written as

T

T
p(y.x,8.0.0) = [[ pwilae, Bp(ar) [[ placler v, 0. 9)x(B)n(0)n(e)  (33)

t=1 t=2

where, similar to Liu (2001), we use the prigr§3) o exp(3), o ~ Inv-x?(10,0.05) and (¢ +
1)/2 ~ Bet&a20, 1.5). The partial derivatives of joint log likelihood, = p(y, x|, 0, ¢), are as
follows
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If we want to sample the parameters using mMALA or RM-HMC rthee also need expressions for
the metric tensor and its partial derivatives with respe¢t,i- and¢. We can obtain the following
expressions for the individual components of the metrisdeffor the likelihood
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Thus the metric tensor for the likelihood and partial detixes follow as
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We therefore require expressions for the second orderateds of the log priors, to get the met-
ric tensor over the full target distribution, and also thiedlorder derivatives of the log priors to
calculate the partial derivatives of the metric tensorséhillow straightforwardly.

B. Required Expressions for Log Gaussian Cox Process Model

The Fisher Information matrix for inferring the hyperpargers of the Gaussian Process follows in
standard form as

G(0);; = %trace (2‘1%2‘1%) (39)
g J

Application of standard derivative of trace operators es an analytic expression for the deriva-
tive of the metric tensor with respect to the parameters
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In our experiments we employ an infinitely differentiablat&inary covariance function to cal-
culate the(i,j)?" entry of the covariance matrix,

1
Ki,j = @1 exXp (_ﬁ(tj - ti)2) + 0‘61'3' (40)
2

The Fisher Information matrix above may therefore be olethinsing the first and second partial
derivatives of the covariance function. The first partiaiwiives follow as,
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The second partial derivatives may also be easily calaljated indeed out of the nine second
partial derivatives, only three of them are non-zero whiabes their computation.

0K, _ 0K, j _ 9?K; _ 9?K; _ K, B 9%K, ; »

902 99100  Opa00  0odp,  Dodps 0o
82K7’] 1 asz 82Kl] aK” ©1 9 9
— R 2 , = » I -(1—-3 t. — ﬁi
D102 w1 Ops O3 o1 wg( ©3)(t; )

C. Partial Derivatives for ODE Example

a "9a ¢ Ob ¢ ' dc

ov._ov @( V3 )8R18RR8R<Va+bR)
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All of the second derivatives df with respect to the model parameters are equal to zero, &d th
five non-zero second partial derivativesi®fare as follows,

dadc 2 9bdc 2’ 0cda 2 9cdb 2 02

R 1 0R R O°R 1 0R R 0*R _[(-V+a—0bR
=92 3
In addition, the second partial derivatives with respecaltostates and parameters are required

for writing the differential equation describing the sedarder sensitivities. There are again five
non-zero second partial derivatives with respect to thesi@nd parameters as follows
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D. Manifold MALA and RM-HMC Pseudocode

Algorithm 1 Manifold MALA

Initialise curren®

for IterationNum= 1 to NumSampleslo
Samplef"" based on Currer according to first order discretisation
Calculate current log-likelihood(6) and proposed log-likelihood(8"")
Calculatelog(p(6™%10)), log(p(0]6™Y)), log(Prior()), log(Prior(""))
Ratio= £(0"")+log(Prior(6™"))+log(p(8]6™"))—L(0)—log(Prior(8))—log(p(6""|0))
% Accept or reject according to Metropolis ratio
if Ratio> 0 OR Ratio> log(rand)then

Currentd = 0V

end if

end for
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Algorithm 2 RMHMC with Generalised Leapfrog

Initialise curren®
for IterationNum= 1 to NumSampleslo
Sample new momentug
Calculate currentl (6, p')
Randomise N (leapfrog steps)
0! = Currentd
for n = 1to N (leapfrog stepsjlo
% Update the momentum with fixed point iterations

150 — pn
for ¢ = 1 to NumOfFixedPointStepso
IA)z — pn _ %VgH(@n,f)l_l)
end for
pn+% _ f)z
% Update the parameters with fixed point iterations
0° = o
for i = 1 to NumOfFixedPointStepdo R
6" = 0" + SVLH(0",p"3) + SV H( !, pnt3)
end for
gn+l — gi
% Update the momentum exactly
pn+1 — pn+1 _ §VQH(07H_1, pn+%)
end for
Calculate proposed (6%, p™V)
Ratio= — log(Proposedhl+ log(CurrentH
% Accept or reject according to Metropolis ratio
if Ratio> 0 OR Ratio> log(rand)then
Currentd = 0V
end if
end for




