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Summary. This paper proposes Metropolis adjusted Langevin and Hamiltonian Monte Carlo
sampling methods defined on the Riemann manifold to resolve the shortcomings of existing
Monte Carlo algorithms when sampling from target densities that may be high dimensional
and exhibit strong correlations. The methods provide fully automated adaptation mecha-
nisms that circumvent the costly pilot runs required to tune proposal densities for Metropolis-
Hastings or indeed Hamiltonian Monte Carlo and Metropolis Adjusted Langevin Algorithms.
This allows for highly efficient sampling even in very high dimensions where different scalings
may be required for the transient and stationary phases of the Markov chain. The proposed
methodology exploits the Riemannian geometry of the parameter space of statistical models
and thus automatically adapts to the local structure when simulating paths across this man-
ifold providing highly efficient convergence and exploration of the target density. The perfor-
mance of these Riemannian Manifold Monte Carlo methods is rigorously assessed by per-
forming inference on logistic regression models, log-Gaussian Cox point processes, stochastic
volatility models, and Bayesian estimation of dynamical systems described by nonlinear dif-
ferential equations. Substantial improvements in the time normalised Effective Sample Size
are reported when compared to alternative sampling approaches. Matlab code at http:
//www.dcs.gla.ac.uk/inference/rmhmc allows replication of all results reported.

1. Introduction

For an unnormalised probability density function,p̃(θ) whereθ ∈ R
D, the normalised density

follows asp(θ) = p̃(θ)/
∫

p̃(θ)dθ, which for many statistical models is analytically intractable.
Monte Carlo estimates of integrals with respect top(θ), which commonly appear in Bayesian
statistics, are therefore required. The predominant methodology for sampling from such a prob-
ability density is Markov chain Monte Carlo (MCMC) see e.g. (Robert, 2004; Gelmanet al., 2004;
Liu, 2001). The most general algorithm defining a Markov process with invariant densityp(θ) is
theMetropolis-Hastingsalgorithm (Metropoliset al., 1953; Hastings, 1970), which is arguably one
of themost successful and influentialMonte Carlo algorithms (Beichl and Sullivan, 2000) .

The Metropolis-Hastings algorithm proposes transitionsθ 7→ θ∗ with densityq(θ∗|θ), which
are then accepted with probabilityα(θ, θ∗) = min{1, p(θ∗)q(θ|θ∗)/p(θ)q(θ∗|θ)}. This accep-
tance probability ensures that the Markov chain is reversible with respect to the stationary target
densityp(θ) and satisfies detailed balance, see for example Robert (2004); Neal (1993a, 1996); Liu
(2001). Typically, the proposal distributionq(θ∗|θ) which drives the Markov chain takes the form
of a random walk, e.g.q(θ∗|θ) = N (θ∗|θ,Λ) is aD-dimensional Normal distribution with mean
θ and covarianceΛ.
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High acceptance rates can be achieved by proposing smaller transitions, however larger amounts
of time will then be required to make long traversals of parameter space. In high dimensions, when
D is large, the random walk becomes inefficient resulting in low acceptance rates, poor mixing of the
chain and highly correlated samples. A consequence of this is a small effective sample size (ESS)
from the chain, see Robert (2004); Neal (1996); Liu (2001). Whilst there have been a number of
suggestions to overcome this inefficiency, guaranteeing detailed balance and ergodicity of the chain
places constraints on what can be achieved in alleviating this problem (Andrieu and Thoms, 2008;
Robert, 2004; Neal, 1993a). Design of a good general purposeproposal mechanism providing large
proposal transitions that are accepted with high probability remains something of an engineering
art-form.

Major steps forward in this regard were made when a proposal process derived from a discre-
tised Langevin diffusion with a drift term based on the gradient information of the target density was
suggested in the Metropolis Adjusted Langevin Algorithm (MALA) (Roberts and Stramer, 2003).
Likewise the Hamiltonian Monte Carlo (HMC) method (Duaneet al., 1987) was proposed in the
statistical physics literature as a means of efficiently simulating states from a physical system which
was then applied to problems of statistical inference (Neal, 1993a,b, 1996; Liu, 2001). In HMC, a
deterministic proposal process based on Hamiltonian dynamics is employed along with additional
stochastic proposals that together provide an ergodic Markov chain capable of making large transi-
tions that are accepted with high probability.

Despite the potential efficiency gains to be obtained in MCMCsampling from such proposal
mechanisms inherent in MALA and HMC, the tuning of these MCMCmethods remains a major
issue especially for challenging inference problems. Thispaper seeks to address these issues in a
systematic manner by adopting an overarching geometric framework for the overall development of
MCMC methods such as these.

A brief review of MALA and HMC within the context of statistical inference are provided in
the following two sections. In Section 4 differential geometric concepts employed in the study of
asymptotic statistics are considered within the context ofMCMC methodology. Section 5 proposes
a generalisation of MALA that takes into account the naturalgeometry of the target density making
use of the definition of a Langevin diffusion on a Riemann manifold. Likewise in Section 6 a
generalisation of HMC, Riemann manifold HMC (RM-HMC) is presented, which takes advantage
of the manifold structure of the parameter space and allows for more efficient proposal transitions
to be made. Finally, in Sections 7 to 10, this new methodologyis demonstrated and assessed on
a number of interesting statistical problems, i.e. Bayesian logistic regression, stochastic volatility
modeling, log-Gaussian Cox point processes, and parameterinference in dynamical systems.

2. Metropolis Adjusted Langevin Algorithm

Consider the random vectorθ ∈ R
D with densityp(θ) and denote the log density asL(θ) ≡

log p(θ), then the Metropolis Adjusted Langevin Algorithm (MALA) isbased on a Langevin diffu-
sion, with stationary distributionp(θ), defined by the stochastic differential equation (SDE)

dθ(t) =
1

2
∇θL(θ(t))dt+ db(t) (1)

whereb denotes aD-dimensional Brownian motion. A first-order Euler discretisation of the SDE
gives the following proposal mechanism

θn+1 = θn +
ǫ2

2
∇θL(θn) + ǫzn (2)
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wherez ∼ N (z|0, I) andǫ is the integration step size. Convergence to the invariant distribution,
p(θ), is no longer guaranteed for finite step sizeǫ due to the first-order integration error introduced.
This discrepancy can be corrected by employing a Metropolisacceptance probability after each
integration step thus ensuring convergence to the invariant measure. Asz is an isotropic standardised
Normal variate and denotingµ(θn, ǫ) = θn + ǫ2

2 ∇θL(θn) then the discrete form of the SDE (2)
defines a proposal densityq(θ∗|θn) = N (θ∗|µ(θn, ǫ), ǫ2I) with acceptance probability of standard
formmin{1, p(θ∗)q(θn|θ∗)/p(θn)q(θ∗|θn)}.

The optimal scaling,ǫ, for MALA has been theoretically analysed in the limit asD → ∞ for
factorisablep(θ), (Roberts and Rosenthal, 1998). Although the drift term in the proposal mech-
anism for MALA in (2) defines the direction for the proposal based on the gradient information
(albeit the Euclidean form) it is clear that the isotropic diffusion will be inefficient for strongly cor-
related variablesθ with widely differing variances forcing the stepsize to accommodate the variate
with smallest variance. This issue can be circumvented by employing a pre-conditioning matrix,
M, such thatθn+1 = θn + ǫ2M∇θL(θn)/2 + ǫ

√
Mzn (Roberts and Stramer, 2003). It is un-

clear how this should be defined in any principled manner, indeed a global level of pre-conditioning
may well be inappropriate for differing transient and stationary regimes of the Markov process as
demonstrated in (Christensenet al., 2005).

3. Hamiltonian Monte Carlo

We now give a brief introduction to the Hamiltonian Monte Carlo method, for a detailed description
and extensive review see (Neal, 2010). As in the previous section consider the random variable
θ ∈ R

D with densityp(θ). In HMC an independent auxiliary variablep ∈ R
D with densityp(p) =

N (p|0,M) is introduced. The joint density follows in factorised formasp(θ,p) = p(θ)p(p) =
p(θ)N (p|0,M). Denoting the log of the desired density asL(θ) ≡ log p(θ), the negative joint
log-likelihood is

H(θ,p) = −L(θ) + 1

2
log
(

(2π)D|M|
)

+
1

2
pTM−1p (3)

The physical analogy of this negative joint log-likelihoodis a Hamiltonian (Duaneet al., 1987;
Leimkuhler and Reich, 2004), which describes the sum of a potential energy function−L(θ) defined
at the positionθ, and a kinetic energy termpTM−1p/2 where the auxiliary variablep is interpreted
as a momentum variable and the covariance matrixM denotes a mass matrix.

The score function with respect toθ andp, of the log joint density over the two random variables
has a physical interpretation as the time evolution, with respect to a fictitious timeτ , of the dynamic
system as given by Hamilton’s equations,

dθ

dτ
=

∂H

∂p
= M−1p

dp

dτ
= −∂H

∂θ
= ∇θL(θ) (4)

The solution flow for the differential equations,(θ(τ),p(τ)) = Φτ (θ(0),p(0)), (a) preserves
the total energy i.e.H(θ(τ),p(τ)) = H(θ(0),p(0)) and hence the joint densityp(θ(τ),p(τ)) =
p(θ(0),p(0)), (b) preserves the volume elementdθ(τ)dp(τ) = dθ(0)dp(0), and (c) is time re-
versible (Leimkuhler and Reich, 2004). For practical applications of interest the differential equa-
tions (4) cannot be solved analytically and numerical methods are required. There is a class of
numerical integrators for Hamiltonian systems which will fully satisfy the criteria (b) and (c), vol-
ume preservation and time reversibility, and approximately satisfy (a) energy conservation to a given
order of error, see (Leimkuhler and Reich, 2004). The Stormer-Verlet or Leapfrog integrator was
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employed in the original paper of Duaneet al. (1987), and in various statistical applications e.g.
(Liu, 2001; Neal, 1993b, 2010) as described below,

p(τ + ǫ/2) = p(τ) + ǫ∇θL(θ(τ))/2 (5)

θ(τ + ǫ) = θ(τ) + ǫM−1p(τ + ǫ/2) (6)

p(τ + ǫ) = p(τ + ǫ/2) + ǫ∇θL(θ(τ + ǫ))/2 (7)

Since the joint likelihood is factorisable (i.e. in physical terms, the Hamiltonian is separable), it
is obvious by inspection that each complete Leapfrog step (equations (5), (6) and (7)) is reversible
by the negation of the integration step-size,ǫ. Likewise as the Jacobians of the transformations
(θ,p) 7→ (θ,p+ ǫ∇θL(θ)/2) and(θ,p) 7→ (θ + ǫM−1p,p) have unit determinant then volume
is preserved. As total energy is only approximately conserved with the Stormer-Verlet integrator
then a corresponding bias is introduced into the joint density which can be corrected by an accept-
reject step. Due to the volume preserving property of the integrator the determinant of the Jacobian
matrix for the mapping defined byΦτ does not need to be taken into account in the Hastings ratio
of the acceptance probability. Therefore for a mapping(θ,p) 7→ (θ + δθ,p + δp) = (θ∗,p∗)
obtained from a number of Stormer-Verlet integration stepsthe corresponding acceptance probabil-
ity is min[1, exp{−H(θ∗,p∗) + H(θ,p)}], and due to the reversibility of the dynamics the joint
density and hence the marginalsp(θ) andp(p) are left invariant. If the integration error in the total
energy is small then the acceptance probability will remainat a high level.

The Stormer-Verlet integration steps provide a deterministic proposal mechanism such thatθ∗ =
θ + δθ andp∗ = p + δp and overall HMC sampling from the invariant densityp(θ) can be
considered as a Gibbs sampler where the momentump acts simply as an auxiliary variable

p|θ ∼ p(p|θ) = p(p) = N (p|0,M) (8)

θ∗|p ∼ p(θ∗|p) ∝ exp (−H(θ∗,p+ δp)) (9)

where samples fromp(θ∗|p) are obtained by running the Stormer-Verlet integrator for acer-
tain number of steps to give proposed movesθ∗ andp∗ and accepting or rejecting with probability
min[1, exp{−H(θ∗,p∗) +H(θ,p)}]. This Gibbs sampling scheme produces an ergodic, time re-
versible Markov chain satisfying detailed balance whose stationary marginal density isp(θ) (Duane
et al., 1987; Liu, 2001; Neal, 1996, 2010).

It should be noted that the combination of equations (5) and (6) in a single step of the integrator
yields an update of the form

θ(τ + ǫ) = θ(τ) +
ǫ2

2
M−1∇θL(θ(τ)) + ǫM−1p(τ) (10)

which is nothing more than a discrete pre-conditioned Langevin diffusion as employed in MALA
(Roberts and Stramer, 2003) (see Neal (1993a, 1996, 2010) for further discussion on this point).
Viewed in this form it is clear that the choice of the mass matrix, M, as in MALA, is going to be
critical for the performance of HMC, and like MALA there is noguiding principle as to how this
should be chosen and tuned.

The demonstrated ability of HMC to overcome random walks in MCMC sampling suggests it
should be a highly successful tool for Bayesian inference. Astudy suggests in excess of 300 citations
of the original (Duaneet al., 1987) paper within the literature devoted to Molecular Modelling and
Simulation, Physics and Chemistry. However there are a muchsmaller number of citations in the
literature devoted to Statistical Methodology and Application, e.g. (Liu, 2001; Neal, 1996, 1993b;
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Gustafson, 1997; Ishwaran, 1999; Husmeieret al, 1999; Hanson, 2001), indicating that it has not
been widely adopted as a practical inference method.

Whilst the choice of the step sizeǫ and number of integration steps can be tuned based on the
overall acceptance rate of the HMC sampler, as already mentioned it is unclear how to select the
values of the weight matrixM in any automated or principled manner that does not require some
knowledge of the target density, similar to the situation with MALA. Although rules of thumb are
suggested (Liu, 2001; Neal, 1993a, 1996, 2010) these typically rely on knowledge of the marginal
variance of the target density, which is of course not known at the time of simulation and thus
requires preliminary pilot runs of HMC, this is also the casefor MALA although asymptotic settings
are suggested in Christensenet al.(2005). The experimental sections of this paper will demonstrate
how crucial this tuning is to obtain acceptable performanceof HMC and MALA.

The potential of both the MALA and HMC methodology may be morefully realised by em-
ploying transitions that take into account thelocal structureof the target density when proposing
moves to different likelihood regions, as this may improve the overall mixing of the chain. There-
fore rather than employing a fixed global covariance matrix in the proposal densityN (p|0,M), a
position specific covariance could be adopted. Furthermore, thedeterministicproposal mechanism
of HMC, when viewed as the deterministic component of the discrete pre-conditioned Langevin dif-
fusion, equation (10), relies on the likelihood gradient pre-conditioned by the inverse of a globally
constant mass matrix. We turn our attention now to geometricconcepts which will be shown to be
of fundamental importance in addressing these shortcomings.

4. Exploiting Geometric Concepts in MCMC

The relationship between differential geometry and statistics has recently been employed in the de-
velopment of, primarily asymptotic, statistical theory see e.g. (Amari and Nagaoka, 2000; Kass,
1989; Murray and Rice, 1993; Barndorff-Nielsenet al, 1986; Critchleyet al, 1993; Lauritzen, 1987;
Dawid, 1975; Efron, 1975). Geometric concepts of distance,curvature, manifolds, geodesics (short-
est paths between two points), and invariants are of naturalinterest in statistical methodology and
in the following we shall exploit some of these in the development of MCMC methods.

The formal definition of distance between two density functions first appeared in (Rao, 1945)
with the same result appearing later in (Jeffreys, 1948). A distance metric based on a first or-
der expression for the symmetric Kullback Liebler divergence between two densitiesp and q,
DS(p||q) = D(p||q) + D(q||p) was derived. Noting that to first orderp(y; θ + δθ) = p(y; θ) +
δθT∇θp(y; θ) +O(2) and aslog(1 + ǫ) ≈ ǫ thenDS(p(y; θ + δθ)||p(y; θ)) is

δθTEy|θ

{

∇θ log p(y; θ)∇θ log p(y; θ)
T
}

δθ = δθTG(θ)δθ (11)

whereG(θ) is the Fisher Information matrix. Rao noted that as the matrix G(θ) is by definition
positive definite it is a metric of a Riemannian manifold. Therefore the space of probability density
functions is endowed with a natural, Riemannian, geometry.Given this geometry Rao went further
and showed that expressions for the curvature of the manifold and shortest paths (geodesics) on the
manifold between two densities could, in principle, be derived (Rao, 1945). These ideas have been
formalised in the study ofInformation Geometry(Amari and Nagaoka, 2000).

It should be noted that the Fisher metric also emerges from purely geometric arguments (Skilling,
2006) and it is straightforward to show for a probability simplex,pi ≥ 0,

∑D
i=1 p

i = 1 the metric
is gij = δij/p

i whereδij = 1 iff i = j. It then follows that a small displacementδl has length
(δl)2 =

∑

i,j δp
iδpjgij =

∑

i (δp
i)2/pi which is nothing more than the Fisher Information for a

discrete probability distribution, suggesting this as thefundamental metric for probability spaces.
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However it can be argued that the choice of metric is problem dependent, for example the require-
ment for asymmetry in statistical inference is captured in the Preferred Point metric and associated
geometry (Critchleyet al, 1993). As a Bayesian perspective is being adopted in this paper, the ex-
amples reported employ the joint likelihood of data and parameters when defining the metric tensor
i.e. −Ey|θ

{

∂2/∂θ2 log p(y, θ)
}

which is the Fisher Information plus the negative Hessian ofthe
log-prior. For further discussion on ways to capture prior informativeness in the metric tensor see
e.g. (Tsutakawa, 1972; Ferreira, 1981). This freedom to choose the metric does however open up
a new line of investigation regarding the intrinsic geometry obtained by the choice and design of
metrics and the characteristics which make them appropriate for specific MCMC applications.

In summary the parameter space of a statistical model is a Riemannian manifold. Therefore
the natural geometric structure of the density modelp(θ) is defined by the Riemannian manifold
and associated metric tensor. Given this geometric structure of the parameter space of statistical
models the appropriate adoption of the position specific metric, G(θ), within an MCMC scheme
should yield more effective transitions in the overall algorithm. We now show how the Riemannian
manifold structure may be exploited within a correct MCMC framework for the Metropolis Adjusted
Langevin Algorithm.

5. Riemann Manifold Metropolis Adjusted Langevin Algorithm

Given the geometric structure for probability models a Langevin diffusion with invariant measure
p(θ), θ ∈ R

D can be defined directly upon the Riemannian manifold with metric tensorG(θ)
(Roberts and Stramer, 2003; Chung, 1982; Kent, 1978). The stochastic differential equation defining
the Langevin diffusion on the manifold is

dθ(t) =
1

2
∇̃θL(θ(t))dt+ db̃(t) (12)

where the natural gradient (Amari and Nagaoka, 2000) is∇̃θL(θ(t)) = G−1(θ(t))∇θL(θ(t)) and
the Brownian motion on the Riemannian manifold follows as

db̃i(t) = |G(θ(t))|−1/2
D
∑

j=1

∂

∂θj

(

G−1(θ(t))ij |G(θ(t))|1/2
)

dt+
(

√

G−1(θ(t))db(t)
)

i
(13)

Clearly in a Euclidean space where the metric tensor is an identity matrix then (12) reduces
to the standard form of SDE (1). The first term on the right handside of (13) relates to the local
curvature of the manifold and reduces to zero if curvature iseverywhere constant. The second right
hand term provides a position specific axis alignment of the Brownian motion based on the local
metric by transformation of the independent Brownian motion,b(t).

The discrete form of the above SDE employing a first order Euler integrator follows as

θn+1
i = θn

i +
ǫ2

2

(

G−1(θn)∇θL(θn)
)

i
− ǫ2

D
∑

j=1

(

G−1(θn)
∂G(θn)

∂θj
G−1(θn)

)

ij

+
ǫ2

2

D
∑

j=1

(

G−1(θn)
)

ij
Tr

(

G−1(θn)
∂G(θn)

∂θj

)

+
(

ǫ
√

G−1(θn)zn
)

i

= µ(θn, ǫ)i +
(

ǫ
√

G−1(θn)zn
)

i
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defining a proposal mechanism with densityq(θ∗|θn) = N (θ∗|µ(θn, ǫ), ǫ2G−1(θn)) and accep-
tance probabilitymin{1, p(θ∗)q(θn|θ∗)/p(θn)q(θ∗|θn)} to ensure convergence to the invariant
densityp(θ). Immediately it is clear that the proposal mechanism makes moves approximately
along the manifold embedded inRD rather than theD-dimensional Euclidean space and these
moves respect the curvature at each point of the manifold. Pseudo-code describing the full manifold
MALA (mMALA) scheme is given in Appendix (D). For a flat manifold with constant curvature
this reduces further to a position specific pre-conditionedMALA proposal.

θn+1 = θn +
ǫ2

2
G−1(θn)∇θL(θn) + ǫ

√

G−1(θn)zn

Of course even if the curvature of the manifold is not constant the above simplified proposal mecha-
nism, used in conjunction with the acceptance probability,will still define a correct MCMC method
which converges to the target measure. However dependent onthe characteristics of the curvature
the proposal process may not be so efficient in converging to the stationary distribution and this
shall be explored further in the experimental evaluation. To illustrate this geometric approach and
gain some insight into mMALA a simple example is now given.

5.1. An Illustrative Example: The Normal Distribution as Invariant Density
ForN observations drawn from the Normal distributionN (x|µ, σ) the metric tensor based on the
Fisher Information is

G(µ, σ) =

(

N/σ2 0
0 2N/σ2

)

(14)

and this defines a Riemann manifold with constant curvature which is a Hyperbolic space on the
upper-half plane defined by the horizontal and vertical coordinatesµ andσ (Amari and Nagaoka,
2000) . The distance between two densitiesN (x|µ, σ) andN (x|µ+ δµ, σ+ δσ) as defined on this
manifold is(δµ2 + 2δσ2)/σ2 indicating that as the value ofσ increases the distance between the
densities decreases. The first-order Euler approximationsfor the standard Langevin diffusion with
invariant measure proportional to

∏

l N (xl|µ, σ) follows as

µn+1 = µn +
ǫ2

2σ2
n

∑

l

(xl − µn) + ǫzn (15)

σn+1 = σn +
ǫ2

2σ3
n

∑

l

(xl − µn)
2 − Nǫ2

2σn
+ ǫz (16)

When the diffusion is defined on the Riemann manifold specified by the metric tensor (14) then the
approximate diffusion follows as

µn+1 = µn +
ǫ2m
2N

∑

l

(xl − µn) +
ǫmσn√

N
zn (17)

σn+1 = σn +
ǫ2m

4Nσn

∑

l

(xl − µn)
2 − ǫ2mσn

4
+

ǫmσn√
2N

zn (18)

The discrete diffusion based on a Euclidean metric (15, 16) has a diffusion termǫzn whose scaling
is fixed by the integration step sizeǫ irrespective of position. On the other hand the approximate
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Fig. 1. The above contours represent the sample estimate of p(µ, σ|X) where a sample of size
N = 30 was drawn from N (X|µ = 0, σ = 10). Both MALA and mMALA discrete diffusions were
forward simulated from initial points µ0 = 5 and σ0 = 40 with a step size ǫ = 0.75 for 200 steps. The
left-hand panel shows a sample path of the MALA proposal process. As the space is hyperbolic and
a Euclidean metric is employed the proposals take inefficient steps of almost equal length thoughout.
On the other hand the mMALA proposals, right hand pane, are defined based on the metric for the
Hyperbolic space with constant negative curvature and as such the distances covered by each step
reflect the natural distances on the manifold resulting in much more efficient traversal of the space.
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Fig. 2. In this example the same data sample is used and initial starting points are µ0 = 15 and
σ0 = 2. The step size is reduced to ǫ = 0.2 in order that MALA converges and 1000 proposal steps
are taken. As previously in the left hand panel it is clear that the Euclidean metric of MALA does not
exploit the Hyerbolic geometry and overshoots dramatically at the start, whereas in the right hand
panel it is clear that mMALA converges efficiently due to the exploitation of the metric.
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Langevin diffusion obtained by employing the Riemannian metric tensor (17, 18) produces a term
ǫmσnzn/

√
N for the mean parameter andǫmσnzn/

√
2N for the variance which are position depen-

dent thus ensuring appropriate scaling of the diffusion. The integration step sizeǫm is effectively
dimensionless whilstǫ requires dimension proportional toσn thus indicating proposal inefficiency
with ǫ set at a fixed value as demonstrated in Figures (1) and (2). Extensive detailed investigation
of the performance of mMALA will be provided in the experimental sections.

6. Riemann Manifold Hamiltonian Monte Carlo

Following on from the previous section the Hamiltonian which forms the basis of HMC will now
be defined in general form on a Riemann manifold. Zlochin and Baram (2001) originally attempted
to exploit this manifold structure in HMC however their use of a numerical integration method that
did not guarantee reversibility or volume preservation prevented them from developing a correct
MCMC procedure.

The definition of the Hamiltonian on a Riemann manifold is straightforward and is a technique
employed in geometric mechanics to solve partial differential equations (Calin and Chang, 2004).
From equation (4), it follows thatp = Mθ̇, so the norm of eacḣθ under the metricM is ‖θ̇‖2M =

θ̇TMθ̇ = pTM−1p. In a more general form, as the statistical model is defined ona Riemannian
manifold, the metric tensor defines the position specific norm such that‖θ̇‖2G(θ) = θ̇TG(θ)θ̇ =

pTG−1(θ)p and thus the kinetic energy term can be defined via the inversemetric (Calin and
Chang, 2004). In order to ensure that the Hamiltonian can be interpreted as a log-density and
that the desired marginal density forθ is obtained, the addition of the normalising constant for
the Gaussian is included in the potential energy term. Therefore, the Hamiltonian defined on the
Riemann manifold follows as

H(θ,p) = −L(θ) + 1

2
log
(

(2π)D|G(θ)|
)

+
1

2
pTG(θ)−1p (19)

so thatexp(−H(θ,p)) = p(θ,p) = p(θ)p(p|θ) and the marginal density

p(θ) ∝
∫

exp(−H(θ,p))dp =
exp {L(θ)}
√

2πD|G(θ)|

∫

exp

{

−1

2
pTG(θ)−1p

}

dp = exp {L(θ)}

is the desired target density.
Unlike the previous case for HMC this joint density is no longer factorisable and therefore the

log-likelihood does not correspond to a separable Hamiltonian. The conditional distribution for
momentum values given parameter values is a zero-mean Gaussian with the point specific metric
tensor acting as the covariance matrixp(p|θ) = N (p|0,G(θ)), which will resolve the scaling
issues associated with HMC, as will be demonstrated in the following sections. The dynamics are
defined by Hamiltons equations as

dθi
dτ

=
∂H

∂pi
=
(

G(θ)−1p
)

i
(20)

dpi
dτ

= −∂H

∂θi
=

∂L(θ)
∂θi

− 1

2
Tr
[

G(θ)−1 ∂G(θ)

∂θi

]

+
1

2
pTG(θ)−1 ∂G(θ)

∂θi
G(θ)−1p (21)

The Hamiltonian dynamics on the manifold are simulated by solving the continuous time deriva-
tives and it is straightforward to see that they satisfy Liouville’s theorem of volume preservation
(Leimkuhler and Reich, 2004). However, for the discrete integrator it is not so straightforward.
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Naively employing the discrete Stormer-Verlet Leapfrog integrator (equations (5), (6) and (7)) gives
transformations of the form(θ,p) 7→ (θ,p − ǫϕ(θ,p)) and (θ,p) 7→ (θ + ǫφ(θ,p),p), nei-
ther of which admits a Jacobian with unit determinant. In addition, it is straightforward to see that
reversibility for θ andp is not satisfied for finite step-sizeǫ, asG(θ(τ)) 6= G(θ(τ + ǫ)) and
p(τ)TF(θ)p(τ) 6= p(τ + ǫ)TF(θ)p(τ + ǫ). Therefore proposals generated from this integrator will
not satisfy detailed balance in a Hybrid Monte Carlo scheme.What is required is a time reversible
volume preserving numerical integrator for solving this non-separable Hamiltonian to ensure a cor-
rect MCMC algorithm. Such a second-order semi-explicit integrator can be formed by the use of
first-order implicit Euler integrators. This is referred toas the Generalised Leapfrog algorithm, see
Leimkuhler and Reich (2004) for details, and follows below.

pn+ 1

2 = pn − ǫ

2
∇θH(θn,pn+ 1

2 ) (22)

θn+1 = θn +
ǫ

2

[

∇pH(θn,pn+ 1

2 ) +∇pH(θn+1,pn+ 1

2 )
]

(23)

pn+1 = pn+ 1

2 − ǫ

2
∇θH(θn+1,pn+ 1

2 ) (24)

If the Hamiltonian is separable then the Generalised Leapfrog reduces to the standard Stormer-
Verlet Leapfrog integrator. For the case of interest where the Hamiltonian is non-seperable then
(22) and (23) are defined implicitly. These require to be solved and we employ simple fixed point
iterations run to convergence for this purpose, typically between 5 to 6 iterations were required in the
experiments conducted. The repeated application of the above steps provides the means to obtain a
deterministic proposal that is guided not only by the derivative information of the target density, as in
HMC or MALA, but also exploits the local geometric structureof the manifold as determined by the
metric tensor. Intuitively, comparing the two Hamiltonians (3) and (19) shows that the constant mass
matrixM, defining a globally constant metric, is now replaced with the position specific metric thus
removing the requirement to tune the values of the elements of M, which so dramatically affects
the performance of HMC. Since the integration scheme detailed above is both time reversible and
volume preserving employing it as a proposal process provides a correct MCMC scheme satisfying
detailed balance and convergence to the desired target density. The overall Riemannian Manifold
HMC (RM-HMC) scheme can once again be written as a Gibbs sampler

p|θ ∼ p(p|θ) = N (p|0,G(θ)) (25)

θ∗|p ∼ p(θ∗|p) ∝ exp {−H(θ∗,p+ δp)} (26)

where samples fromp(θ∗|p) are obtained by running the Generalised Leapfrog integrator for a cer-
tain number of steps to give proposed movesθ∗ andp∗ and accepting or rejecting with probability
min[1, exp{−H(θ∗,p∗)+H(θ,p)}]. As for standard HMC this Gibbs sampling scheme produces
an ergodic, time reversible Markov chain satisfying detailed balance and whose stationary marginal
density isp(θ) (Duaneet al., 1987; Liu, 2001; Neal, 1996, 2010). However in this case there is
no need to manually select and tune the mass matrix as it is defined at each step by the underlying
geometry. Pseudo-code is provided in Appendix (D)

An interesting point to note is that the Hamiltonian flow (solutions of the differential equations)
for a purely kinetic Hamiltonian i.e. in the absence of a potential energy term is a geodesic flow
(Calin and Chang, 2004). In other words paths produced by thesolution of Hamiltons equations
follow the geodesics (paths of least distance between points) on the manifold. For the case that
we consider where there also is a potential term then the flowsare locally geodesic (McCordet al,
2002). This observation presents an interesting area for further theoretical analysis and characteri-
sation of the properties of the RM-HMC method.



Riemann Manifold Langevin and Hamiltonian Monte Carlo 11

Table 1. Summary of datasets for logistic regression
Name Covariates (D) Data Points (N ) Dimension ofβ (b)

Pima Indian 7 532 8
Australian Credit 14 690 15
German Credit 24 1000 25

Heart 13 270 14
Ripley 2 250 7

Caravan 86 5822 87

Figures 3 and 4 provide an intuitive visual demonstration ofthe differences in HMC and RM-
HMC when converging to and sampling from a target density. Toillustrate the RM-HMC sampling
scheme and evaluate performance against alternative MCMC methods, a number of example appli-
cations are now presented. We begin with posterior samplingfor Logistic Regression models.

7. RM-HMC and mMALA for Bayesian Logistic Regression

Consider anN × D design matrixX comprisingN samples each withD covariates and a binary
response variablet ∈ {0, 1}N . Denoting the logistic link function asσ(·), a Bayesian logistic
regression model of the binary response (Gelmanet al., 2004; Liu, 2001) is obtained by the intro-
duction of regression coefficientsβ ∈ R

D with an appropriate prior, which for illustrative purposes
is given asβ ∼ N (0, αI) whereα is given. Neglecting constants, the log joint-likelihood follows
in standard form as

log p(t,β|X, α) = L(β)− 1

2α
βTβ = βTXTt−

N
∑

n=1

log(1 + exp(βTXT
n,·))−

1

2α
βTβ (27)

whereXn,· denotes the vector that is thenth row of theN × D matrix X. The derivative of the
log joint-likelihood is∇L(β)−α−1β and its second derivative follows as∇∇L(β)−α−1I which
is comprised of the matrix of second derivatives of the likelihood and the log-prior. As already
mentioned throughout the practical examples to include theeffect of the prior on the geometry we
form the metric tensor based on the negative of the expectation of this second derivative, which
is the Fisher Information plus the negative Hessian of the log-prior. The metric tensor therefore
follows as

G(β) = Et|X,β,α

{

−∇∇L(β) + α−1I
}

= XTΛX+ α−1I (28)

where the diagonalN × N matrixΛ has elementsΛn,n = σ(βTXT
n,·)(1 − σ(βTXT

n,·)). Finally
the derivative matrices of the metric tensor take the form∂G(β)/∂βi = XTΛViX where the
N × N diagonal matrixVi has elements(1 − 2σ(βTXT

n,·))Xni. The above identities are all that
are required to define the RM-HMC and mMALA sampling methods,which will be illustrated in
the following experimental section.

7.1. Experimental Results for Bayesian Logistic Regression
We present results from the analysis of 6 datasets (Michieet al., 1994; Ripley, 1996), summarised
in Table 1. These datasets exhibit a wide range of characteristics which provides a challenging test
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Fig. 3. The above contours were plotted from the stochastic volatility model investigated later in
the paper. The latent volatilities and the parameter β are set to their true values, while the log-joint
likelihood given different values of the parameters σ and φ is shown by the contour plot. The left
hand plot shows the evolution of a Markov chain using HMC with a unit mass matrix, while the right
hand plot shows the evolution of a chain from the same starting point using RM-HMC. Note how the
use of the metric allows RM-HMC to converge much quicker to the target density.

0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2
0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2
0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

Sigma

P
h

i

Sigma

P
h

i

Fig. 4. Here we see a close-up of the Markov chain paths shown in Figure 3. It is clear that RM-
HMC effectively normalises the gradients in each direction, whereas HMC, with a unit mass matrix,
exhibits stronger gradients along the horizontal direction compared to the vertical direction, and
therefore takes longer to explore the space fully. A carefully tuned mass matrix may improve HMC
sampling, while RM-HMC deals with this automatically.
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for any applied sampling method; the number of covariates ranges from 2 to 87, the number of
data points ranges from 250 to 5877, and the standard deviations of the induced marginal posterior
distributions range from 0.0004 to 9.9. We investigate the use of RM-HMC and mMALA applied
to this problem and also implement the following sampling methods for comparison:-

(a) Component-Wise Adaptive Metropolis-Hastings (Robert, 2004) (Chapter. 7)
(b) Joint Updating Gibbs Sampler (Holmes and Held, 2005)
(c) Metropolis Adjusted Langevin Algorithm (Roberts and Stramer, 2003)
(d) Hybrid Monte Carlo (Duaneet al., 1987; Neal, 1993a; Liu, 2001)
(e) Iterated Weighted Least Squares (Gamerman , 1997)

Given each dataset we wish to sample from the posterior distribution over the regression coefficients
β, and in each experiment wide Gaussian prior distributions were employed such thatπ(βi) ∼
N (0, 100). A linear logistic regression model with intercept was usedfor each of the datasets with
the exception of the Ripley dataset, for which a cubic polynomial regression model was employed.

Each method was run 10 times with every dataset and the average results were recorded. We re-
produce the results of Holmes and Held (2005) by allowing 5000 burn in iterations so that each
sampler reaches the stationary distribution and has time toadapt as necessary. The next 5000
iterations were used to collect posterior samples for each of the methods and the CPU time re-
quired to collect these samples was recorded. Each method was implemented in the interpreted
language Matlab to ensure fair comparison. We compared the relative efficiency of these meth-
ods by calculating the effective sample size (ESS) using theposterior samples for each covariate,
ESS = N(1+2

∑

k γ(k))
−1 whereN is the number of posterior samples and

∑

k γ(k) is the sum
of theK monotone sample autocorrelations as estimated by the initial monotone sequence estimator
(see Geyer (1992)). The standard error around the mean ESS was less than2× 10−2 for all results.
Such an approach was also taken by Holmes and Held (2005), in which they report themeanESS,
averaged over each of the covariates. However, we feel this could give a rather inflated measure of
the true ESS, since ideally we want a measure of the number of samples which are uncorrelated over
all covariates. In this paper we therefore report theminimumESS of the sampled covariates. This
minimum ESS is then normalised relative to the CPU time by calculating the time taken to obtain 1
sample which is effectively uncorrelated across all covariates.

7.1.1. Metropolis-Hastings

We employed an adaptive Metropolis-Hastings (M-H) scheme,such that each covariate was updated
individually with its stepsize being adapted in every 100 iterations during burn-in to achieve an
acceptance rate of between20% and40%. The stepsize was then fixed at the end of the burn-
in period. With Metropolis-Hastings it is sometimes usefulto employ sub-sampling, in order to
remove the autocorrelations in the posterior samples. Table 2 demonstrates that since our current
measure of efficiency is time normalised, it automatically takes into account the trade-off between
the additional computational cost of drawing more samples,and the improved ESS that results.
We see that the computational effort required to take additional steps through parameter space is
generally greater than the benefit of increased ESS that results, such that the time taken to produce
one effectively independent sample increases as the numberof discarded samples increases using
subsampling. In the main experiments we therefore compare the best case scenario which results
from not employing subsampling.



14

Table 2. Bayesian Logistic Regression with Metropolis Sam-
pling - investigating the effect of subsampling on our time nor-
malised efficiency measure

Subsample every: 1 2 5 10 20 50
Dataset

Australian 0.59 0.91 0.99 1.03 0.97 0.97
German 2.02 2.87 3.96 4.70 4.97 4.84

Pima 0.29 0.35 0.34 0.36 0.39 0.38
Heart 0.65 0.86 1.20 1.53 1.33 1.44
Ripley 0.22 0.40 0.51 0.56 0.56 0.59

7.1.2. Auxiliary Variable Gibbs Sampler
The auxiliary variable Gibbs sampler of Holmes and Held (2005) was implemented with a joint
update of{z,β}, wherez ∈ R

N is the auxiliary variable designed to improve mixing of the co-
variate samples. We implemented the algorithm based on the very detailed pseudo-code given in
the appendix of their paper, and in contrast to the M-H algorithm this method has the advantage of
requiring no tuning of parameters. The main computational expense however is in the repeated sam-
pling from truncated normal distributions, for which we implemented code based on the efficient
method defined in Johnsonet al. (1999).

7.1.3. Metropolis Adjusted Langevin Algorithm
We implemented a MALA sampler with proposed covariates being drawn from the multivariate
normal distributionN (β +∇ log(π{β})h/2, hID), whereID is theD-dimensional identity matrix
andh controls the scaling of the proposal variance. We follow theadvice of Roberts and Rosenthal
(1998) by scalingh like O(D− 1

3 ), whereD is the number of covariates, such that we achieve an
acceptance rate of between40% and70%.

7.1.4. Hybrid Monte Carlo
Hybrid Monte Carlo has promised to offer more efficient sampling from high dimensional prob-
ability distributions by effectively reducing the amount of random walk present in the parameter
values being proposed. This has indeed been shown to be the case for relatively simple, although
high-dimensional, multivariate normal distributions, however there has been little application to
more complex data models. We believe the reason for this liesin the amount of tuning required to
obtain reasonable mixing and rates of acceptance, as will behighlighted in the following section.
The two main parameters which require tuning are the number of leapfrog steps,N , and the size of
each leapfrog step,ǫ. It has been suggested that choosing the leapfrog stepsize to be proportional to
the marginal standard deviation of the target distributionalong each dimension drastically improves
mixing, particularly when such marginals are of greatly varying orders of magnitude. Setting differ-
ent leapfrog stepsizes along different directions can be equivalently encoded in the so-called mass
matrix (Neal, 1993a, 1996). However, this approach clearlyrequires advance knowledge of the dis-
tribution being sampled from, and in a practical setting this information is very rarely available. The
use of exploratory runs of a Metropolis sampler to obtain initial estimates of the target distribution
has been suggested (Hajian, 2007), however there is the obvious associated computational cost and
the fact that this may not be feasible for very complex distributions.
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Table 3. RM-HMC with generalised leapfrog integration
scheme - investigating the effect of parameter settings
on sampling efficiency with German Credit dataset
ǫL Max ǫ Mean Time (s) Min ESS s/Min ESS

1 1/2 149.5 637 0.234
2 1/2 224.7 2085 0.108
3 1/2 287.9 4791 0.060

Following the advice of Neal (1993a, 1996), we fix the size of each leapfrog stepǫ to a value
slightly smaller than the smallest marginal standard deviation of the model parameter posteriors,
and set the number of leapfrog stepsL such that the maximum distance that can be travelled in a
single move,ǫL, is larger than the largest standard deviation of the marginal parameter distributions.
A larger step size would result in large rejection rates, while a smaller number of steps would result
in very slow exploration of the target distribution.

In our experiments we make the, rather optimistic assumption, that this information is known
when implementing HMC, presumably after a number of exploratory runs of the algorithm, and set
ǫ small enough to obtain a high acceptance rate (> 70%) andǫL ≈ 3 allowing the chain to traverse
a distance larger than the standard deviation of the largestmarginal posterior for all datasets, see
Table 10. This approach works well for distributions in which the marginal standard deviations are
of a similar magnitude, however the algorithm soon becomes computationally very expensive to
run in situations where they greatly differ and the number ofleapfrog steps required for adequate
mixing consequently becomes very large.

7.1.5. Iterated Weighted Least Squares
We consider in addition the second order method Iterated Weighted Least Squares (IWLS) (Gamer-
man , 1997), which makes use of second derivatives in its Metropolis proposal steps. It should be
noted that the term involving the second derivatives for IWLS is indeed different from the metric
tensor expression employed in RM-HMC and mMALA, and we shallsee how this impacts on the
results shortly. This method is relatively straightforward to implement and has the advantage that it
requires no tuning, similar to the auxiliary variable Gibbssampler of Holmes and Held (2005).

7.2. Comparison of MCMC Methods
We begin by investigating the RM-HMC method in detail for oneof the more challenging of our six
datasets, German Credit, which consists of 24 covariates and 1000 datapoints. We then compare the
results for all six datasets employing the alternative sampling methods described previously.

The maximum total distance which a chain may travel in a single proposed move is given byǫL,
and for any given value ofǫL we choseǫ small enough such that the acceptance ratio was above70%
and then adjustedL appropriately. Table 3 shows the results of the generalisedleapfrog integration
scheme using a variety of choices for these parameters. We found that sampling generally became
more efficient as the maximum total distance travelled by a chain,ǫL, was increased, i.e. when the
chain was able to traverse a distance greater than the width of each marginal distribution.

Following these guidelines, we find that the RM-HMC and mMALAsampling methods work
very well for a variety of datasets and RM-HMC is fairly robust to the choice of algorithm param-
eters. For comparison with the alternative sampling methods, we chose the settings for RM-HMC
based on the above analysis. We employed the generalised leapfrog scheme, settingǫ for each
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Table 4. Australian Credit Dataset, D = 14, N = 690, 15 regression coefficients -
Comparison of sampling methods

Method Time ESS (Min, Med, Max) s/Min ESS Rel. Speed

Metropolis 9.1 (15, 208, 691) 0.61 ×27
Aux. Var. 757.2 (46, 1074, 1454) 16.5 ×1
MALA No Convergence (-, -, -) - -
HMC No Convergence (-, -, -) - -
IWLS 4.9 (3.7, 8.7, 52.5) 1.32 ×12.5

mMALA 11.8 (730, 872, 1033) 0.0162 ×1019
mMALA Simp. 2.6 (459, 598, 726) 0.0057 ×2895

RM-HMC 115.3 (4940, 5000, 5000) 0.023 ×717
RM-HMC (Stud. t) 145.8 (1745, 1916, 2282) 0.084 ×196

dataset equal to the smallest stepsize for which the acceptance rate was reasonably high (> 70%),
and the number of integration steps such thatǫL ≈ 3. The scaling for mMALA was chosen to
obtain an acceptance rate of around70%. We repeated the sampling experiments 10 times and av-
eraged the results, which are shown for each of the datasets in Tables 4 to 8. It is interesting to see
that MALA generally performs poorly. Whereas all other methods converge within 5000 burn-in
iterations for all datasets, MALA needs as many as 2 million iterations to converge due to the very
small stepsize required to achieve an acceptance ratio above40%. This is particularly the case for
the Australian Credit and Heart datasets, which exhibit very large differences in scale between the
largest and smallest marginal standard deviations (see Table 10), resulting in extremely slow explo-
ration of the target distribution, indeed even after 2 million iterations the Langevin guided chains
had still not reached their stationary distributions. Clearly some method of scaling the regression
coefficients would improve the mixing, however this is againunfeasible unless information regard-
ing the marginal posterior distributions is known in advance. Similarly the standard HMC method
fails to converge for the Australian Credit dataset, since the stepsize is so small that the number of
integration steps required becomes computationally impractical to implement. Figure 5 shows the
trace and autocorrelation plots for 1000 posterior samplesusing the Heart dataset. The difference
in autocorrelation is quite striking, both from inspectionof the traces and from examination of the
autocorrelation plots themselves. The autocorrelation ofthe RM-HMC samples drop towards zero
far quicker than for any of the other methods.

As the number of covariates in the dataset increases, so the overall performance of RM-HMC
and mMALA decreases due to the increased computational burden of calculating partial derivatives
with respect to each of the covariates. Indeed we see that RM-HMC is only about twice as effi-
cient as Metropolis with the Caravan dataset, with mMALA performing worse still. The simplified
mMALA scheme (where the curvature terms are removed) on the other hand performs far better,
employing an approximation of the local geometry with a muchreduced computational cost.

We consider also an alternative second order method, IWLS, which makes use of terms in-
volving second derivatives and therefore some measure of the curvature of the parameter space.
IWLS performs fairly poorly, indeed in the examples it performs about the same as parameter-wise
Metropolis. Although IWLS is a second order method, it makesuse of a metric which appears to
be significantly less efficient than employing the expected Fisher Information as in mMALA and
RM-HMC. In addition, we note that IWLS runs into severe numerical problems with the Caravan
dataset, due the fact that the second order derivatives it employs are not guaranteed to be positive
semi-definite.
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Table 5. German Credit Dataset, D = 24, N = 1000, 25 regression coefficients
- Comparison of sampling methods

Method Time ESS (Min, Med, Max) s/Min ESS Rel. Speed

Metropolis 20.9 (10, 82, 601) 2.09 ×1.1
Aux. Var. 1155.1 (1071, 2200, 2620) 1.08 ×2.2
MALA 2.7 (3, 5, 130) 0.9 ×2.6
HMC 3161.6 (2707, 4201, 5000) 1.17 ×2
IWLS 9.37 (4, 9, 31) 2.34 ×1

mMALA 36.2 (616, 769, 911) 0.059 ×39.6
mMALA Simp. 4.1 (463, 611, 740) 0.009 ×260

RM-HMC 287.9 (4791, 5000, 5000) 0.06 ×39
RM-HMC (Stud. t) 360.5 (1665, 2412, 2942) 0.22 ×10.6

Table 6. Pima Indian Dataset, D = 7, N = 532, 8 regression coefficients -
Comparison of sampling methods

Method Time ESS (Min, Med, Max) s/Min ESS Rel. Speed

Metropolis 4.1 (14, 37, 201) 0.29 ×1.9
Aux. Var. 565.4 (1176, 1877, 2340) 0.48 ×1.1
MALA 1.63 (3, 10, 39) 0.54 ×1
HMC 1499.1 (3149, 3657, 3941) 0.48 ×1.1
IWLS 3.2 (6, 16, 34) 0.53 ×1

mMALA 4.4 (1124, 1266, 1409) 0.0039 ×138
mMALA Simp. 1.9 (1022, 1185, 1312) 0.0019 ×284

RM-HMC 50.9 (5000, 5000, 5000) 0.01 ×54
RM-HMC (Stud. t) 56.0 (2090, 2146, 3105) 0.027 ×20

Table 7. Heart Dataset, D = 13, N = 270, 14 regression coefficients - Comparison of
sampling methods

Method Time ESS (Min, Med, Max) s/Min ESS Rel. Speed

Metropolis 5.2 (8, 65, 530) 0.65 ×8.4
Aux. Var. 281.5 (721, 1276, 1761) 0.39 ×14.1
MALA No Convergence (-, -, -) - -
HMC 2018 (368, 2740, 2938) 5.48 ×1
IWLS 2.9 (3, 6, 16) 0.97 ×5.6

mMALA 6.4 (649, 793, 920) 0.01 ×548
mMALA Simp. 1.7 (373, 486, 610) 0.004 ×1191

RM-HMC 59.2 (4925, 5000, 5000) 0.012 ×457
RM-HMC (Stud. t) 67.0 (936, 1144, 1822) 0.072 ×76.1
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Table 8. Ripley Dataset, D = 2, N = 250, 7 regression coefficients - Compar-
ison of sampling methods

Method Time ESS (Min, Med, Max) s/Min ESS Rel. Speed

Metropolis 2.5 (11, 20, 251) 0.23 ×15.6
Aux. Var. 258.6 (72, 374, 1967) 3.59 ×1
MALA 1.1 (4, 8, 30) 0.28 ×12.8
HMC 52.8 (1365, 1596, 1754) 0.039 ×92.1
IWLS 1.7 (8, 26, 252) 0.21 ×17.1

mMALA 3.0 (857, 975, 1098) 0.0035 ×1026
mMALA Simp. 1.4 (682, 799, 927) 0.0021 ×1710

RM-HMC 25.3 (4999, 5000, 5000) 0.0051 ×704
RM-HMC (Stud. t) 27.9 (813, 1266, 1463) 0.034 ×106

Table 9. Caravan Dataset, D = 86, N = 5822, 87 regression coefficients -
Comparison of sampling methods

Method Time ESS (Min, Med, Max) s/Min ESS Rel. Speed

Metropolis 388.7 (3.8, 23.9, 804) 101.9 ×6.7
Aux. Var. 4628 (6.7, 570, 4788) 687 ×1
MALA 17.4 (2.8, 5.3, 17.2) 6.2 ×110.8
HMC 12,519 (33.8, 4032, 5000) 369.7 ×1.9
IWLS N/A N/A N/A N/A

mMALA 305.3 (7.5, 21.1, 50.7) 305.3 ×2.25
mMALA Simp. 48.9 (7.5, 18.4, 44) 6.5 ×105.7

RM-HMC 45,760 (877, 1554, 2053) 52.1 ×13.2
RM-HMC (Stud. t) 45,877 (279, 477, 705) 164 ×4.2

Table 10. Summary of standard deviations of the marginal posterior
distributions for each dataset

Dataset Smallest Marg. S.D. Largest Marg. S.D. Ratio

Pima Indian 0.0043 0.9646 225
Australian Credit 0.00017 1.0667 6404
German Credit 0.0038 1.1492 303

Heart 0.004 2.9221 739
Ripley 1.2575 7.556 6

Caravan 0.042 9.916 236
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Fig. 5. Trace plots for 1000 posterior samples with the Heart dataset using (from top to bottom)
Metropolis, IWLS, auxiliary variable sampler, standard HMC, mMALA, Simplified mMALA and RM-
HMC. Autocorrelation plots are also shown for one of its parameters, which may be seen in the trace
plots to have a mean of around −7.
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7.3. Comparison of RM-HMC and mMALA Variants
We now investigate variants of RM-HMC and mMALA to see whether results may be improved
based on slight alterations to the standard forms. We first consider a simplified version of mMALA,
which assumes a locally flat metric tensor during each Metropolis step and will still converge to
the stationary distribution due to the Metropolis adjustment. It is clear that this is computationally
much less expensive than the full mMALA as it avoids the calculation of metric tensor derivatives.
It is interesting that simplified mMALA has worse ESS than thecomplete mMALA, which intu-
itively makes sense since proposed steps across the manifold will have greater error by not taking
into account any changes in curvature. The time normalised ESS however is much better, as the
computational complexity is far less.

It is also interesting to investigate the use of an alternative kinetic energy function in RM-HMC†.
This idea is also briefly mentioned in Liu (2001) although no example is given. We consider there-
fore the use of a Student-t kinetic energy term, with the ideathat since the heavy tails might occa-
sionally mean a larger momentum is sampled, this could plausibly result in less correlated samples
of the target distribution. We note that since the multivariate Student-t distribution is symmetric,
then the resulting Hamiltonian is still reversible. The equations describing the dynamics of such a
Hamiltonian follow as

dθi
dτ

=
∂H

∂pi
=

(

(v + d)G(θ)−1p

v + pTG(θ)−1p

)

i

dpi
dτ

= −∂H

∂θi
=

∂L(θ)
∂θi

− 1

2
Tr
[

G(θ)−1 ∂G(θ)

∂θi

]

+
(v + d)

2

pTG(θ)−1 ∂G(θ)
∂θi

G(θ)−1p

v + pTG(θ)−1p

The simulations take slightly longer to run than with standard Gaussian distributed momentum using
the same integration time steps. This is due to the increasedcomputation required to sample from a
Student-t distribution, and also to the more involved computation required to calculate the dynamics
of this new Hamiltonian. The results show that the ESS is actually significantly less than that of a
Hamiltonian defined with Gaussian momentum. This is possibly a result of a higher concentration
of mass producing momenta with values closer to zero, even though there will be occasional samples
of momentum with much larger magnitude.

In our simulations, manifold based methods outperform all of the other methods using small
to medium sized datasets (with the exception of when a Student-t distribution is employed in the
kinetic energy term for RM-HMC). It is interesting to note that due to the dense matrix form of
the metric tensor and its inverse, the computational cost ofmMALA and RM-HMC on Bayesian
logistic regression will not scale favourably and it can be seen that their time-normalised efficiency
does indeed decrease as the number of regression coefficients in the dataset increases. This issue
of scaling can however be eased somewhat by employing simplified mMALA sampling, which
assumes a locally constant metric tensor and thus avoids expensive computation of the derivatives
of the metric tensor. A further, more complex, example basedon a stochastic volatility model is
now considered where the metric tensor and its inverse are sparse, permitting scaling of RM-HMC
to very high dimensions.

8. RM-HMC and mMALA for a Stochastic Volatility Model

A stochastic volatility model (SVM) studied in Liu (2001); Kim et al (1998) is defined with the
latent volatilities taking the form of an AR(1) process suchthatyt = ǫtβ exp (xt/2) with xt+1 =

†as was suggested by one of the reviewers.
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φxt+ηt+1 whereǫt ∼ N (0, 1), ηt ∼ N (0, σ2) andx1 ∼ N (0, σ2/(1−φ2)) having joint likelihood

p(y,x, β, φ, σ) =
∏T

t=1
p(yt|xt, β)p(x1)

∏T

t=2
p(xt|xt−1, φ, σ)π(β)π(φ)π(σ). (29)

We may split up the sampling procedure into two steps, which as we shall see allows the im-
plementation of RM-HMC in a computationally efficient manner. Firstly we may simulateφ, σ, β
from p(β, φ, σ|y,x), where the priors are chosen to bep(β) ∝ exp(β), σ2 ∼ Inv-χ2(10, 0.05) and
(φ + 1)/2 ∼ Beta(20, 1.5). Secondly we may sample the latent volatilities by simulating from the
conditionalp(x|y, β, φ, σ). We shall consider the use of mMALA, RM-HMC, MALA and HMC
for the purpose of sampling both the parameters and latent volatilities.

8.1. mMALA and RM-HMC for SVM Parameters
We require the partial derivatives of the joint log likelihood with respect to the parameters to imple-
ment MALA and HMC, as well expressions for the metric tensor and its partial derivatives, in order
to employ mMALA and RM-HMC. All of these quantities may be obtained straightforwardly (see
Appendix A for details). In particular, the Fisher Information is given by







2T
β2 0 0

0 2T
σ2

2φ
σ3(1−φ2)

0 2φ
σ3(1−φ2)

2φ2

(1−φ2)2 + T−1
1−φ2







whereT is the number of observations. Prior information is incorporated into the metric tensor by
adding this Fisher Information to the negative second partial derivatives of the log priors (see Ap-
pendix A for details). We may then use any of these methods to draw samples from the conditional
posteriorp(β, σ, φ|y,x, ).

8.2. mMALA and RM-HMC for SVM Latent Volatilities
The gradient of the joint-log likelihood with respect to each of the latent volatilities is required.
Defining the vectorsu = (x3, · · · , xT )

T,v = (x2, · · · , xT−1)
T,w = φ

σ2 (u−φv), s = (s1, · · · , sT )T

such thatsi = 0.5(1−y2i β
−2 exp(−xi)), δ1 = −σ−2(x1−φx2), andδT = −σ−2(xT−φxT−1), we

define the vectorr = (δ1,w
T, δ2)

T and the required gradient is∇x log p(y,x|β, φ, σ) ≡ ∇xL =
s− r.

To devise an mMALA and RM-HMC sampler for the latent volatilities,x, we also require an
expression for the metric tensor and its partial derivatives with respect to the latent volatilities.
For the data likelihood of the model,p(y|x, β), the Fisher Information is a diagonal matrix with
0.5 for each element denoted asI0.5. The latent volatility is an AR(1) process having covariance
matrixC with elementsE{xt+nxt} = φ|n|σ2/(1−φ2) and as in the previous examples the metric
tensor is defined as the sum of the Fisher Information and the negative Hessian of the log-prior,
G = I0.5 +C−1, conditional on current values ofσ, φ, β. Now the expression for the covariance
matrix is completely dense and is therefore computationally expensive to manipulate. Fortunately,
this AR(1) process admits a simple analytic expression for the precision matrix in the form of
a sparse tridiagonal matrix, such that the diagonal elements are equal to(1 + φ2)/σ2, with the
exception of the first and last diagonal elements which are equal to 1/σ2, and the super and sub
diagonal elements are equal to−φ/σ2. Thus the metric tensor also has a tridiagonal form. For
large numbers of observations this sparse structure allowsgreat gains in computational efficiency,
since the inverse of this tridiagonal metric tensor may be computed inO(n) as opposed to the usual
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Table 11. 2000 simulated observations with β = 0.65, σ = 0.15 and φ = 0.98 - Com-
parison of sampling the parameters β, σ and φ after 20,000 posterior samples averaged
over 10 runs

Method Mean Time ESS (β,σ,φ) S.E. (β,σ,φ) s/(Min ESS) Rel. Speed

MALA 41.7 (25.3, 12.5, 45.9) (2.7,0.6,3.1) 3.34 ×45.7
HMC 946.3 (177, 108, 270) (4.5, 2.6, 7.9) 8.76 ×17.4

mMALA 2547 (18.8, 16.7, 40.2) (0.9, 0.7, 2.4) 152.5 ×1
RM-HMC 381.9 (324, 113, 283) (5.6, 3.1, 6.8) 3.37 ×45.3

Table 12. 2000 simulated observations with β = 0.65, σ = 0.15 and φ = 0.98
- Comparison of sampling the latent volatilities after 20,000 posterior samples
averaged over 10 runs

Method Mean Time ESS (min, median, max) s/(Min ESS) Rel. Speed

MALA 41.7 (7.9, 15.1, 32.1) 5.28 ×6.1
HMC 946.3 (566,903,1856) 1.67 ×19.1

mMALA 2547 (79.7, 155.2, 344.5) 31.96 ×1
RM-HMC 381.9 (963, 1723, 3412) 0.41 ×77.9

O(n3). We note that computationally efficient methods for manipulating tridiagonal matrices are
automatically implemented by the standard routines in Matlab.

We notice that the metric tensor in this case is not a functionof x and so the associated par-
tial derivatives with respect to the latent volatilities are zero. In this case a one step RM-HMC
integration scheme collapses to

x = x0 +
ǫ2

2
G−1∇xL+ ǫ

√
G−1p (30)

wherep ∼ N (0, I) which is a discrete Langevin iteration that is preconditioned by the constant
matrix G−1. It is clear that this preconditioning will improve both themixing and overall ESS,
see (Lambert and Eilers, 2009) for a recent application of this type of preconditioning in MALA.
We point out that in the case of RM-HMC the preconditioning matrix emerges naturally from the
underlying geometric principles of RM-HMC.

8.3. Experimental Results for Stochastic Volatility Model
We now compare the computational efficiency of RM-HMC, mMALA, HMC and MALA for sam-
pling both the parameters and the latent variables of the stochastic volatility model as previously
defined, Tables (11) and (12). 2000 observations were simulated from the model with the parameter
valuesβ = 0.65, σ = 0.15 andφ = 0.98 as given in Liu (2001). Using this data, 20000 posterior
samples were collected after a burn-in period of 10000 samples. This sampling procedure was re-
peated 10 times. The efficiency was compared in terms of time normalised ESS, as in the previous
section, for the parameters and the latent volatilities. MALA was tuned such that the acceptance
ratio was between40% and70%, and it was necessary to use a different tuning for the transient
phase than for the stationary phase. HMC was implemented using a step size of0.015 and200 inte-
gration steps per parameter proposal, and a stepsize of0.003 and300 integration steps per volatility
proposal. RM-HMC was implemented using a stepsize of0.3 and10 integration steps per parameter
proposal, and a stepsize of0.1 and50 integration steps per volatility proposal.

In terms of sampling the hyperparameters, manifold methodsoffer little advantage over standard
sampling approaches due to the small dimensionality of the problem. RM-HMC and MALA give
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Fig. 6. Posterior marginal densities for β, σ and φ respectively, employing RM-HMC to draw 20,000
samples of the parameters and latent volatilities using a simulated dataset consisting of 2000 obser-
vations. The true values are β = 0.65, σ = 0.15 and φ = 0.98.

the best performance in terms of time normalised ESS. MALA exhibits a very poor ESS, however
the computation time is also extremely small compared to theother two methods. RM-HMC has
the highest raw ESS, but has much more computational overhead compared to MALA. When we
consider sampling the latent variable, RM-HMC offers greater advantages. In particular, it runs
faster than HMC, partly because of the computationally efficient tridiagonal structure of the metric
tensor and partly because RM-HMC follows the natural tensorgradient through the parameter space
and requires significantly fewer leapfrog iterations to explore the target density. See Figure 3 and
4 for an illustration of the contrast between HMC and RM-HMC sampling of the parameters of
this model. In this example, mMALA performs very badly due tothe need to take a Cholesky
decomposition of the inverse metric tensor of the latent variables, which is a dense matrix, compared
to RM-HMC which only requires use of the tridiagonal metric tensor. It should be noted that RM-
HMC again requires very little tuning compared to the other methods; unlike MALA it does not
require different tuning in different parts of the parameter space, and unlike HMC it requires no
manual setting of a mass matrix. It would be interesting to compare performance of mMALA and
RM-HMC to the Particle MCMC methodology (Andrieuet al, 2010) for this particular model.

We now consider an example where the target density is extremely high dimensional, which is
encountered when performing inference using spatial data modeled by a log-Gaussian Cox process.

9. RM-HMC and mMALA for Log-Gaussian Cox Point Processes

RM-HMC and mMALA are further studied using the example of inference in a log-Gaussian Cox
point process as detailed in (Christensenet al., 2005). This is a particularly useful example in
that the target density is of high dimension with strong correlations and provides a severe test of
MCMC capability. The data, model and experimental protocolas described in (Christensenet al.,
2005) is adopted here. A 64× 64 grid is overlayed on the area[0, 1]2 with the number of points
in each grid cell denoted by the random variablesY = {Yi,j} which are assumed conditionally
independent, given a latent intensity processΛ(·) = {Λ(i, j)}, and are Poisson distributed with
meansmΛ(i, j) = m exp(Xi,j), where m = 1/4096. The random variableX = {Xi,j} is a Gaus-
sian process with meanE{x} = µ1, wherex = Vec(X), y = Vec(Y), and covariance function
Σ(i,j),(i′,j′) = σ2 exp(−δ(i, i′, j, j′)/64β), whereδ(i, i′, j, j′) =

√

(i − i′)2 + (j − j′)2. The
complete joint density is

p(y,x, µ, σ, β) ∝
∏64

i,j
exp{yi,jxi,j −m exp(xi,j)} exp(−(x− µ1)TΣ−1(x− µ1)/2) (31)
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We consider first the case where the hyperparameters of the covariance function are fixed and
we are interested in inferring the latent field only. Denoting L ≡ log p(y,x|µ, σ, β) ande =
{m exp(xi,j)}, then the derivative with respect to the latent variables follows straightforwardly as
∇xL = y − e − Σ−1(x − µ1), and the Fisher Information (where the expectation is takenwith
respect to the complete likelihood) follows asG(x) = −Ey,x|θ{∇x∇xL} = Λ+Σ−1, where the
diagonal matrixΛ, whoseith diagonal element is defined asm exp(µ + (Σ)ii), follows from the
expectation of the exponential of normal random variables.

We note that for fixed hyperparameters, the metric tensor describing the manifold for the random
field x is constant. The generalised leapfrog method therefore collapses into a standard leapfrog
algorithm, with no need to employ any fixed point iterations.The computational cost of calculating
the required inverse of the metric tensor scales asO(N3), however once this quantity has been
calculated, a large number of leapfrog steps may be made withlittle additional overhead, which as
we shall see results in very efficient sampling of the latent variables.

The second case we consider is where the hyperparameters arealso inferred along with the
latent variables. Considering them jointly, now withL ≡ log p(y,x, σ, β|µ), we see that the Fisher
Information matrix is block diagonal with blocksΛ + Σ−1 andD−1

θ where the(l,m)th element
of Dθ is 1

2 trace(Σ−1 ∂Σ
∂θl

Σ−1 ∂Σ
∂θm

), andθ = [σ, β]. Unfortunately, jointly sampling the latent
variables and the hyperparameters proves to be computationally too costly to implement, as the
metric tensor is now no longer fixed and so the generalised leapfrog integration scheme must be
implemented with fixed point iterations, during each of which the metric tensor and its inverse have
to be recalculated. We therefore exploit the block diagonalstructure of the metric tensor, and employ
a Gibbs scheme in which we alternately sample fromp(x|y, σ, β, µ) andp(σ, β|y,x, µ). A standard
leapfrog integrator may then be used to generate samples of the latent variables, and a generalised
leapfrog scheme for obtaining samples from the 2 dimensional hyperparameter space. The required
partial derivatives of the metric tensor with respect to thehyperparameters follow straightforwardly
and are given in Appendix B.

Noting that the metric tensor for the latent variables has dimensionN × N , whereN = 4096
theO(N3) operations required in the RM-HMC scheme are clearly going to be computationally
costly. However, it should also be noted that in previous studies of this Log-Gaussian Cox process,
(Christensenet al., 2005), a transformation of the latent Gaussian field is necessary based on the
Cholesky decomposition ofΣ−1 + diag(x), which will therefore also scale asO(N3).

9.1. Experimental Results for Log-Gaussian Cox Processes
Following the example given by Christensenet al. (2005), we fix the parametersβ = 1/33,
σ2 = 1.91 andµ = log(126) − σ2/2. We generate a latent Gaussian field,x, from the Gaussian
process and use these values to generate count datay from the latent intensity processΛ. Given
the generated data and the fixed hyperparameters, we inferx using mMALA, RM-HMC and the
MALA method as in Christensenet al. (2005). The algorithms were run on a single AMD Opteron
processor with 8GB of memory and were coded in Matlab for consistency.

In many settings MALA, like HMC, is particularly sensitive to the choice of scaling and very
often a reparameterisation of the target density is required for these methods to be effective. Indeed
this is seen to be the case with this particular example, where MALA is unable to samplex directly.
We therefore follow Christensenet al. (2005) and employ the transformationX = µ1 + LΓ, where
L is obtained by Cholesky factorisation such that{Σ − diag(x)}−1 = LLT. Even after this re-
parameterisation, it is still necessary to carefully tune the scaling factor for this method to work at
all. This challenging aspect of employing MALA has been investigated in detail by Christensenet
al. (2005) who characterise the problem very well, advising great care in its implementation, but are
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Fig. 7. Trace plots of the log joint-likelihood for the first 5000 samples of the latent variables of a log-
Gaussian Cox process. The left hand plot shows the convergence of the RM-HMC scheme which
is able to directly sample the latent variables x without the need for ad-hoc reparameterisations
and pilot runs for fine-tuning. The left-middle plot shows the convergence of the mMALA scheme
which, since it also uses information about the manifold in the form of the metric tensor, is able to
directly sample without any reparameterisations. The right-middle plot shows the log joint-likelihood
for samples drawn by MALA using a reparameterisation of the latent variables. The scaling was
carefully tuned to allow traversal of the parameter space to the posterior mode. The right hand plot
shows the trace of the MALA sampler tuned for optimally sampling from the posterior mode. We
note that the algorithm is now unable to traverse the parameter space when initialised away from this
mode. Such fine-tuning and reparameterisation is frequently necessary when employing MALA.

ultimately unable to offer any panacea. In contrast to the necessary transformation and fine-tuning
required by MALA, both mMALA and RM-HMC allow us to directly sample the latent variablesx
withoutreparameterising the target density.

Figure 7 shows the traces of the log joint-likelihood for both methods using the starting position
xi,j = µ for i, j = 1, . . . , 64. Note that for MALA these starting positions must be transformed
into corresponding values forΓ. The RM-HMC sampler quickly converges to the true mode after
very minimal tuning of the integration stepsize based on theintegration error, which corresponds
directly to the acceptance rate. mMALA also converges very quickly to the true posterior mode.
MALA converges in a similar number of iterations, but only for a suitable choice of scaling factor.
The right-middle plot in Figure 7 shows convergence when thescaling factor is carefully tuned for
the transient phase of the Markov chain, however the right hand plot demonstrates how it fails to
converge at all given a scaling factor which is tuned for stationarity. Detailed results of the sampling
efficiency of each method are given in table 13. In this example the RM-HMC method required just
1.5 seconds per effectively independent sample compared tomore than 2 hours needed by MALA. In
addition to taking far longer to sample, MALA also generatesmuch more highly correlated samples
and as a result has a far worse effective sample size. This canalso be seen in figure 8 which shows
the inferred posterior latent field, the posterior latent process and the variance associated with the
Monte Carlo estimate. For RM-HMC, the variance in the estimates increases where there is little
data, i.e. in the top right hand corner of the field. mMALA has slightly more variability, while the
low ESS of the MALA methods methods manifests itself in patchy regions of high variability across
the entire field. We note that MALA tuned for stationarity hasslightly lower variance than MALA
tuned for the transient phase, as one would expect.

Conditionally sampling the hyperparameters, in addition to the latent variables, using RM-HMC
proves more costly, with 5000 posterior samples taking around 90 hours of computation time. How-
ever, the posterior estimates for the hyperparameters correspond extremely well to their true values,
see Figure9.
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Fig. 8. Posterior latent fields and processes and associated variance, using each of the sampling
methods, compared to the true latent field and process. The data employed to infer the latent field is
also shown in the top left plot. RM-HMC produces the lowest variance estimates, which corresponds
with it having the highest ESS. For RM-HMC there is higher variance where there is less data,
however for the other methods there are patchy areas of high variance due to correlations in the
collected samples.
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Fig. 9. Kernel density estimates of the hyperparameter samples obtained from Gibbs style sampling
from the Log-Gaussian Cox model. The true values are σ = 0.19 (left hand plot) and β = 0.03 (right
hand plot).

Table 13. Sampling the latent variables of a Log-Gaussian Cox Process - Comparison of
sampling methods

Method Time ESS (Min, Med, Max) s/Min ESS Rel. Speed

MALA with Trans. (Transient) 31,577 (3, 8, 50) 10,605 ×1
MALA with Trans. (Stationary) 31,118 (4, 16, 80) 7836 ×1.35

mMALA 634 (26, 84, 174) 24.1 ×440
RMHMC 2936 (1951, 4545, 5000) 1.5 ×7070

Inferring the latent field of a log-Gaussian Cox process witha finely grained discretisation is
clearly a very challenging problem due to the high dimensionality and strong spatial correlations
present between the latent variables. The major challengesassociated with employing MALA are
firstly finding a suitable reparameterisation of the target density, and secondly making a suitable
choice for the scaling factor according to whether the Markov chain is in a transient or stationary
regime. In contrast, mMALA and RM-HMC do not exhibit such extreme technical difficulties.
We have demonstrated that RM-HMC is able to sample the latentvariables directly with minimal
tuning and effort and without the need for reparameterisation. By employing a Gibbs style sampling
scheme we were additionally able to sample the hyperparameters of the covariance function in a
relatively computationally efficient manner. An investigation into the sparse approaches presented
in (Vanhatalo and Vehtari, 2007; Rueet al, 2009) may provide further computational efficiencies.
We will now turn our attention to the very topical application of statistical inference to nonlinear
differential equations.

10. RM-HMC for Nonlinear Differential Equation Models

An important class of problems recently gaining attention is the statistical analysis of uncertainty
in dynamical systems defined by a system of nonlinear differential equations (Ramsayet al., 2007;
Calderhead and Girolami, 2009; Vyshemirsky and Girolami, 2008). A dynamical system may be
described by a collection ofN nonlinear ordinary differential equations and model parametersθ
which define a functional relationship between the process state,x(t), and its time derivative such
that ẋ(t) = f(x, θ, t). A sequence of process observations,y(t), are usually contaminated with
some measurement error, which is modeled asy(t) = x(t)+ǫ(t), whereǫ(t) defines an appropriate
multivariate noise process, e.g. a zero-mean Gaussian withvarianceσ2

n for each of theN states. If
observations are made atT distinct time points, theN×T matrices summarise the overall observed
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system asY = X+E. In order to obtain values forX, the system of ODEs must be solved, so that
in the case of an initial value problemX(θ,x0) denotes the solution of the system of equations at the
specified time points for the parametersθ and initial conditionsx0. The posterior density follows
by employing appropriate priors such thatp(θ|Y,x0,σ) ∝ π(θ)

∏

n N (Yn,·|X(θ,x0)n,·,Σ
−1
n ).

By considering the Gaussian noise model described above, whereΣn = ITσ
2
n, we straightfor-

wardly obtain the following analytic expressions for the metric tensor and its derivatives in terms of
the first and second order sensitivities of the states of the differential equations. TheT -dimensional
vectors of first order sensitivities for then’th component of state relative to thei’th parameter are
denoted assni = ∂xn/∂θi. The metric tensor and its derivatives follow as

G(θ)ij =

N
∑

n=1

sniΣ
−1
n sT

nj

∂G(θ)ij
∂θk

=

N
∑

n=1

(

∂sni
∂θk

Σ−1
n sT

nj + sniΣ
−1
n

∂sT
nj

∂θk

)

One method of obtaining the required sensitivities at all time points, is to approximate them using
finite differences, however for our purposes this may be inaccurate. For this example we differenti-
ate the system of equations with respect to each of the parameters and directly solve the first order
sensitivity equations defined as follows

ṡni =
∂fn(x, θ, t)

∂θi
=

N
∑

l=1

∂fn
∂xl

sT
li +

∂fn
∂θi

Note that we must take the total derivative with respect toθ, since the statesx also depend on
the parameter values. We may augment the original system with these new differential equations,
such that we may solve to obtain both the states and the sensitivities of the states. Similarly we
may augment the system with additional equations to solve for the second order sensitivities, which
are required for calculating the partial derivatives of themetric tensor with respect to the model
parameters. These equations follow as

∂ṡni
∂θk

=

N
∑

l=1

[(

N
∑

m=1

∂2fn

∂xl∂xm
sT
mk +

∂2fn

∂xl∂θk

)

sT
li +

∂fn
∂xl

∂sT
li

∂θk

]

+

N
∑

l=1

∂2fn

∂θi∂xl
sT
lk +

∂2fn

∂θi∂θk

We now have everything required to implement RM-HMC and mMALA sampling schemes for
dynamical system models defined by systems of nonlinear differential equations.

10.1. Experimental Results for Nonlinear Differential Equations
We present results comparing the sampling efficiency for theparameters of the Fitzhugh Nagumo
differential equations (Ramsayet al., 2007),

V̇ = c

(

V − V 3

3
+R

)

, Ṙ = −
(

V − a+ bR

c

)

(32)

We obtain samples from the posterior distributionp(θ|Y,x0,σ), and so in this exampleX1,· =
V andX2,· = R. The sampling schemes we employ are Metropolis-Hastings, MALA, HMC,
mMALA, simplified mMALA and RM-HMC, as first described in the section on Bayesian logis-
tic regression. We again compare the simulations by calculating the effective sample size (ESS)
normalised by the computational time required to produce the samples.

Before proceeding we require the first and second partial derivatives of the Fitzhugh Nagumo
equations in order to calculate the metric tensor for employing manifold sampling approaches to
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Fig. 10. Output for species V (left) and species R (right) of the Fitzhugh Nagumo model with param-
eters a = 0.2, b = 0.2, c = 3. An example noisy dataset is shown by the red points.

explore the posterior distribution, these are detailed in Appendix (C). In practice, all these expres-
sions may be obtained automatically using symbolic differentiation and we supply Matlab code for
this purpose.

10.1.1. Comparison of Sampling Schemes
We used 200 data points generated from the Fitzhugh Nagumo ODE model betweent = 0 and
t = 20 with the model parametersa = 0.2, b = 0.2, c = 3 and initial conditionsV (0) = −1 and
R(0) = 1. Gaussian distributed noise with standard deviation equalto 0.5 was then added to the
data, see Figure 10.

Nonlinear ODEs generally induce corresponding nonlinearities in the target distribution, which
may result in many local maxima. Careful attention must therefore be paid so that the Markov
chains do not converge to the wrong mode, but rather sample from the correct distribution. All
the sampling methods employed in this section may be embedded within a population MCMC
framework to allow full exploration of and convergence to the target density (Calderheadet al.,
2009), however for the purpose of comparing sampling efficiency we employ a single Markov chain
initialised on the true mode. We collected 5000 posterior samples and calculated the ESS for each
parameter, using the minimum value to calculate the time pereffectively independent sample. 10
simulations were run for each method, using the same dataset, and all methods were implemented
in the interpreted language Matlab for consistency of comparison. All sampling methods were
implemented in the same manner as previously described in Section 7.

The results of our simulations are shown in Table 14. Standard HMC takes the longest time
for this problem due to the large number of leapfrog steps it needs to traverse the parameter space.
RM-HMC on the other hand requires relatively few leapfrog steps, as it takes into account the local
geometry to make better moves. We note however the additional computational cost of the leapfrog
steps, during each of which it is necessary to solve the system of ODEs to evaluate the gradients
and metric tensor. The first momentum update of RM-HMC is relatively quick since only a vector-
matrix multiplication is necessary, however updating the parameter values requires the metric tensor
to be evaluated for each fixed point iteration in the Generalised leapfrog algorithm as the parameter
values converge, thus adding a considerable amount of computation to the overall algorithm. The
mMALA methods offer the best performance for this particular example, as they have the benefit of
using manifold information to guide the direction of the chain, but without the required fixed point
iterations thus only requiring the ODEs to be numerically solved once per iteration. This suggests
that mMALA is perhaps particularly suited for settings in which there is a non-flat metric tensor
which is expensive to compute, as in this case.
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Table 14. Fitzhugh Nagumo: Summary of results for 10 runs of the model
parameter sampling scheme with 5000 posterior samples

Sampling Time (s) Mean ESS Total Time/ Relative
Method (a, b, c) (Min mean ESS) Speed

Metropolis 18.5 132, 130, 108 0.17 ×3.9
MALA 14.4 125, 21, 46 0.67 ×1
HMC 815 4668, 3483, 3811 0.23 ×2.9

mMALA 34.9 1057, 925, 956 0.037 ×18.1
mMALA Simp. 14.9 1007, 479, 762 0.031 ×21.6

RM-HMC 266 4302, 4202, 3199 0.083 ×8

The Fitzhugh Nagumo model has only three parameters and we see that MALA and HMC
perform adequately in this low dimensional setting, indeedthe largest marginal parameter variance
is only four times larger than the smallest marginal variance. We would expect MALA and HMC
to perform worse in cases where there is a greater differencein the marginal variances, since the
step size of each is restricted by the smallest marginal variance. Similarly, while component-wise
Metropolis performs adequately in this setting, we would expect its performance to deteriorate in
higher dimensions where there are greater correlations in the parameters.

11. Conclusions and Discussion

In this paper Riemannian Manifold Metropolis Adjusted and Hamiltonian Monte Carlo sampling
methods have been proposed and evaluated in an attempt to improve upon existing MCMC method-
ology when sampling from target densities that may be of highdimension and exhibit strong cor-
relations. It is argued that the methods are fully automatedin terms of tuning the overall proposal
mechanism to accommodate target densities which may exhibit strong correlations, widely vary-
ing scales in each dimension, and significant changes in the geometry of the manifold between the
transitional and stationary phases of the Markov chain.

By exploiting the natural Riemannian structure of the parameter space of statistical models the
proposed methods can be viewed as generalisations of both HMC and MALA methods and as such
overcome the oftentimes complex manual tuning required of both methods. In high dimensional
problems such as inferring the 4096 dimensional latent Gaussian field, MALA and HMC fail com-
pletely due to the high levels of spatial correlation in the latent field and can only proceed after
a transformation is used to break those correlations. In contrast mMALA and RM-HMC proceed
without the need for such a transformation or indeed any phase specific tuning.

Clearly there are two main overheads when employing mMALA orRM-HMC, the first being
the ability to develop analytical expressions, or stable numerical alternatives, for the metric ten-
sor (once it has been chosen) and the associated derivatives. The second is the worst caseO(N3)
scaling of solving the linear systems when updating the parameter vectors i.e. inverting the metric
tensor, especially for high dimensional problems. The issue of theO(N3) scaling is something
which deserves further consideration. In some statisticalmodels there is a natural sparsity in the
metric tensor, the SVM is a case in point where due to this structure RM-HMC was computationally
more efficient than mMALA and HMC. In other models this is not the case, for example the logistic
regression model and the Log-Gaussian Cox model. It should be noted that adaptive MCMC meth-
ods, see e.g. Andrieu and Thoms (2008), also incur the same level of cubic scaling. At the very high
dimensional end of the scale a decorrelating transformation is required for MALA and HMC and
this will also incur anO(N3) scaling however further work to characterise the incurred computa-
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tional costs at the intermediate dimensionality regime will be of value. As far as the computational
issues are concerned automatic or adjoint differentiationmethods may prove to be of use, and Han-
son (2002) has proposed adjoint methods for HMC. There are clearly a number of numerical and
computational avenues of investigation that may be followed in this regard.

In this paper all the examples that have been considered havehad analytic expressions for the
Fisher Information. However there are whole families of statistical models for which the Fisher
Information is not available in closed analytic form, mixture models being an obvious example. In
these cases it may be possible to either estimate the expected Fisher Information (Spall, 2005) or
employ the observed Fisher Information, although numerical issues such as the loss of guaranteed
positive-definiteness would require consideration. It is unclear what type of manifold structure this
would induce so the theoretical and practical implicationsof the difference between the expected
and observed information matrices would be worthy of further investigation. This leads onto the
discussion about the particular choice of metric to be employed if one takes the view that the Fisher
Information is but one possible metric that could be adopted. Alternatives have already been consid-
ered in the literature, e.g. the Preferred Point metric (Critchleyet al, 1993) although not within the
context of MCMC and this presents a new area of analysis and study to characterise the principles
of optimality in appropriate metric design for MCMC.

A note of caution regarding the exploitation of the geometryinduced by the Fisher Information
metric in inference problems is spelled out in (Skilling, 2006). Two distributions may be a short
distance apart on the probability simplex, however if the parameter sub-manifold (which we are
interested in) is locallyroughthey may well be distantly separated and hence following small-scale
detailed paths on the sub-manifold will be highly inefficient. This is not an observation made in
this paper however there are many examples where this may well be a real problem, for example
inference over dynamic systems that exhibit complex limit cycles is challenging due to the small
scale structure induced in the likelihood (Calderheadet al., 2009). Further theoretical and applied
investigation will help to understand this issue more fully.

The work of (Christensenet al., 2005; Roberts and Rosenthal, 1998; Roberts and Stramer, 2003)
have provided theoretical analysis of limiting rates of convergence, egodicity, optimal step sizes and
acceptance rates for MALA, and more recently HMC (Beskoset al, 2010). This type of theoretical
study will be required for the mMALA and RM-HMC class of MCMC methods to characterise
their theoretical properties in a rigorous manner. The highly promising performance reported in
the experimental evaluation of mMALA and RM-HMC on challenging inference problems gives
further motivation for this theoretical analysis.

From the experimental evaluation the raw ESS values for RM-HMC far exceeds that of mMALA
despite both methods being based on geometric principles. There are a number of reasons for this,
firstly the mMALA proposal is based on a single forward step ofthe Euler integrator whilst the
proposal mechanism for RM-HMC can take multiple integration steps thus traveling further on the
manifold (parameter space) for each proposal. Secondly thediscrete version of the Langevin diffu-
sion is being driven by a diffusion term defined by the metric tensor at the current point rather than
the new one. Depending on the step size this will introduce further inefficiency based on deviation
from the manifold of the effective path. Thirdly as has already been mentioned Hamiltonian flows
of the form employed in RM-HMC are locally geodesic flows (Calin and Chang, 2004; McCord
et al, 2002) suggesting a possible optimality, in terms of distance, in the paths simulated across
the manifold by RM-HMC. This is an interesting point which requires further theoretical analysis
to characterise the nature of these local geodesics and how they may be exploited further in this
regard.

In summary the mMALA and RM-HMC methods provide novel MCMC algorithms whose per-
formance has been assessed on a diverse range of statisticalmodels and in all cases has been shown
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to be superior to similar MCMC methods. The adoption of this geometric viewpoint when design-
ing MCMC algorithms provides a framework in which to furtherdevelop the theory, methodology,
and application of this promising avenue of statistical inference.
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A. Required Expressions for Stochastic Volatility Model

The full joint target distribution can be written as

p(y,x, β, σ, φ) =

T
∏

t=1

p(yt|xt, β)p(x1)

T
∏

t=2

p(xt|xt−1, σ, φ)π(β)π(σ)π(φ) (33)

where, similar to Liu (2001), we use the priorsp(β) ∝ exp(β), σ2 ∼ Inv-χ2(10, 0.05) and(φ +
1)/2 ∼ Beta(20, 1.5). The partial derivatives of joint log likelihood,L = p(y,x|β, σ, φ), are as
follows

∂L

∂β
= −T

β
+

T
∑

t=1

y2t
β3 exp(xt)

(34)

∂L

∂σ
= −T

σ
+

x2
1(1 − φ2)

σ3
+

T
∑

t=2

(xt − φxt−1)
2

σ3
(35)

∂L

∂φ
= − φ

(1− φ2)
+

φx2
1

σ2
+

T
∑

t=2

xt−1(xt − φxt−1)

σ2
(36)

If we want to sample the parameters using mMALA or RM-HMC, then we also need expressions for
the metric tensor and its partial derivatives with respect to β, σ andφ. We can obtain the following
expressions for the individual components of the metric tensor for the likelihood

E

{

∂L

∂β

∂L

∂β

}
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2T

β2
, E

{

∂L

∂σ
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}
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2T

σ2
, E

{

∂L

∂β

∂L

∂σ

}

= E
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∂L

∂β
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∂φ

}

= 0 (37)
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T − 1

1− φ2
(38)
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Thus the metric tensor for the likelihood and partial derivatives follow as

G(φ, σ, β) =
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We therefore require expressions for the second order derivatives of the log priors, to get the met-
ric tensor over the full target distribution, and also the third order derivatives of the log priors to
calculate the partial derivatives of the metric tensor, these follow straightforwardly.

B. Required Expressions for Log Gaussian Cox Process Model

The Fisher Information matrix for inferring the hyperparameters of the Gaussian Process follows in
standard form as

G(θ)ij =
1

2
trace

(

Σ−1 ∂Σ

∂θi
Σ−1 ∂Σ

∂θj

)

(39)

Application of standard derivative of trace operators provides an analytic expression for the deriva-
tive of the metric tensor with respect to the parameters
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In our experiments we employ an infinitely differentiable stationary covariance function to cal-
culate the(i,j)th entry of the covariance matrix,

Ki,j = ϕ1 exp

(

− 1

2ϕ2
2

(tj − ti)
2

)

+ σδij (40)

The Fisher Information matrix above may therefore be obtained using the first and second partial
derivatives of the covariance function. The first partial derivatives follow as,
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The second partial derivatives may also be easily calculated, and indeed out of the nine second
partial derivatives, only three of them are non-zero which eases their computation.
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C. Partial Derivatives for ODE Example

∂V̇

∂a
=
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)

All of the second derivatives oḟV with respect to the model parameters are equal to zero, and the
five non-zero second partial derivatives ofṘ are as follows,
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In addition, the second partial derivatives with respect toall states and parameters are required
for writing the differential equation describing the second order sensitivities. There are again five
non-zero second partial derivatives with respect to the states and parameters as follows
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D. Manifold MALA and RM-HMC Pseudocode

Algorithm 1 Manifold MALA
Initialise currentθ
for IterationNum= 1 to NumSamplesdo

Sampleθnew based on Currentθ according to first order discretisation
Calculate current log-likelihoodL(θ) and proposed log-likelihoodL(θnew)
Calculatelog(p(θnew|θ)), log(p(θ|θnew)), log(Prior(θ)), log(Prior(θnew))
Ratio= L(θnew)+log(Prior(θnew))+log(p(θ|θnew))−L(θ)−log(Prior(θ))−log(p(θnew|θ))
% Accept or reject according to Metropolis ratio
if Ratio> 0 OR Ratio> log(rand)then

Currentθ = θN

end if
end for
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Algorithm 2 RMHMC with Generalised Leapfrog
Initialise currentθ
for IterationNum= 1 to NumSamplesdo

Sample new momentump1

Calculate currentH(θ,p1)
Randomise N (leapfrog steps)
θ1 = Currentθ
for n = 1 to N (leapfrog steps)do

% Update the momentum with fixed point iterations
p̂0 = pn

for i = 1 to NumOfFixedPointStepsdo
p̂i = pn − ǫ

2∇θH(θn, p̂i−1)
end for
pn+ 1

2 = p̂i

% Update the parameters with fixed point iterations
θ̂0 = θn

for i = 1 to NumOfFixedPointStepsdo
θ̂i = θn + ǫ

2∇pH(θn,pn+ 1

2 ) + ǫ
2∇pH(θ̂i−1,pn+ 1

2 )
end for
θn+1 = θ̂i

% Update the momentum exactly
pn+1 = pn+1 − ǫ

2∇θH(θn+1,pn+ 1

2 )
end for
Calculate proposedH(θN ,pN )
Ratio= − log(ProposedH) + log(CurrentH)
% Accept or reject according to Metropolis ratio
if Ratio> 0 OR Ratio> log(rand)then

Currentθ = θN

end if
end for


