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1 Introduction

1.1 Assessment and Accountability in Education

There has been substantial interest in recent years in the performance and accountability of teachers and
schools, partially due to the No Child Left Behind legislation, which requires states to develop a system of
sanctions and rewards to hold districts and schools accountable for academic achievement. This focus has
lead to an increase in “high-stakes” testing with publicized school rankings and test results. The papers
by Ballou et al. (2004), McCaffrey et al. (2004) and Tekwe et al. (2004) approach the estimation of
school and teacher effects through a variety of statistical models, known as “value-added” models in the
education literature. There are many complex issues involved, and we applaud the authors for addressing
this challenging topic.

In this discussion we approach value-added assessment from a “potential outcomes” (Rubin Causal Model,
RCM) point of view (Rubin 1974, 1978, 2003; Holland 1986; Little and Rubin 2001), with the goal of
clarifying the estimation goals and understanding the limitations of data for the types of comparisons
being sought. We discuss the challenges in conceptualizing and obtaining reliable estimates of the causal
effects of teachers or schools. We also present an idea for future research that focuses on assessing the
effect of implementing reward structures based on value-added models, rather than on assessing the effect
of teachers and schools themselves, which we feel is a more relevant policy question, and also one that is
more easily addressed.

1.2 Value-added Models–Causal or Descriptive?

The value-added models used to estimate the effectiveness of teachers and schools in Ballou et al. (2004),
McCaffrey et al. (2004), and Tekwe et al. (2004) range from a relatively straightforward fixed effects model
(Tekwe et al. 2004) to a relatively complex and general multivariate, longitudinal mixed-model (McCaffrey
et al. 2004) with either test scores or test score gains as outcomes. These models incorporate parameters
for school and teacher effects (including lagged teacher effects), parameters for student-level, classroom
level, and school-level covariate effects, and parameters to allow for residual intra-class correlation among
outcomes for students in the same class. These models attempt to address problems such as apportioning
school effects to more than one school (for students who attended more than one school in the year prior to
the test) and the persistence of teacher effects into the future. But none of these articles attempts to define



precisely the quantity that is the target of estimation, except in the rather oblique sense of seeing what
the models estimate as samples get larger and larger. Thus, there is a focus on the estimation techniques
rather than the definition of the estimand.

The goal of the value-added literature seems to be to estimate the “causal effects” of teachers or schools;
that is, to determine how much a particular teacher (or school) has “added value” to their students’ test
scores. It is implied that the effects being estimated are causal effects: the effect on students of being
in school A (or with teacher T) on their test scores, where schools and teachers are to be rewarded or
punished “because” of their estimated effects on students. But is it possible to get reliable causal estimates
in this setting? The potential outcomes perspective (RCM) provides a framework to clarify this issue
concerning whether we are seeking causal or descriptive answers. Before delving into this perspective, it
may be helpful to connect this “value-added” problem to one in “hospital profiling”, where a relatively
substantial literature already exists on a similar problem.

1.3 A Related Problem–Hospital Profiling

The problem of comparing the performance of schools, accounting for the backgrounds of the students they
serve, is similar to that addressed in the literature on hospital profiling. In hospital profiling, the aim is to
assess the performance of particular hospitals in treating diseases, after accounting for the varying patient
populations served by each hospital, so called “case-mix adjustment” (e.g., Goldstein and Spiegelhalter
1996; Christiansen and Morris 1997; Burgess et al. 2001). Additionally, hospital profiling is often done
only within subgroups of hospitals, such as by type (teaching, general, psychiatric). Making comparisons
within types may also be useful in the school setting, for example comparing public inner-city schools only
with other public inner-city schools. This issue will be discussed further in Section 2, which stresses the
importance of comparing comparable units.

The school setting appears to be even more complicated than the hospital profiling one, for a variety of
reasons. First, there is interest in longitudinal effects with a desire to separate out the effects of last year’s
and this year’s teachers. Thus, we seem to need to have “vertically-linked” test scores that can be compared
over time. Second, longitudinal data are not strictly hierarchically nested since students do not remain
together as a class over time; not only are students’ teachers changing each year, but their classmates
are also changing. Finally, there is substantial missing test score data in the school setting and obviously
relevant unobserved covariates, such as the motivational levels of the students. These are all issues that
appear to be more complex in the school setting than in the hospital profiling setting; nevertheless, workers
in the school assessment setting could possibly find relevant ideas in the hospital profiling literature.

The hospital profiling literature also points out other possible problems when such methods for assessing
“successful” teachers or schools are implemented. For example, there is the possibility that once any system
of assessment is implemented, schools will “game the system” to obtain results that unduly benefit them.
In the hospital profiling setting, Green and Wintfeld (1995) describe an increase in reported incidence of
risk factors that would increase expected mortality, such as congestive heart failure, after implementation
of a system to generate case-mix adjusted physician-specific mortality rates. Presumably, doctors hoped to
improve their performance ratings by inflating the entry-level risk statuses of their patients. In the school
setting, schools may place more students in special-education or English-as-a-second-language courses so
that their student body appears to be more disadvantaged or so that some groups of students are excluded
from the overall analysis of test scores.
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2 Defining and Estimating Causal Effects in Value-Added Assessment

2.1 Causal Inference and the RCM

Causal effects are inherently comparisons of potential outcomes, measured at the same point in time (e.g.,
test scores at the end of fifth grade, Y) on a common set of units (e.g. a specific classroom of students);
Rubin (1974, 1978), Holland (1986), Little and Rubin (2001). To estimate the effect of being in school
A versus school B for a particular student, say Q, Q’s test score at the end of fifth grade if Q had been
in school A, YQ(A), is compared with Q’s test score at the end of fifth grade if Q had been in school B,
YQ(B). The “fundamental problem of causal inference” (Holland 1986) is that only one of these potential
outcomes, YQ(A) or YQ(B), can be observed for student Q: Q is in either school A or school B. Thus, causal
inference can be thought of as a missing data problem, with at least half of the potential outcomes missing.
Inference proceeds by estimating the unobserved potential outcomes, either implicitly or explicitly.

The first task in causal inference is to identify the “units”, “treatments”, and “potential outcomes”. A
challenge in the value-added assessment setting is that it is difficult to define even these fundamental
concepts. The units are the objects to which treatments are applied. Should we think of the schools as
the units? Or are the units the individual students? Or the classrooms? The potential outcomes are likely
to be test scores at the end of the year at the unit level (for example, an individual student’s test score if
individual students are the units, or an average [or median] test score for an entire school, if the school is
the unit). Districts or states may also be interested in other measures of improvement.

The treatments are the interventions of interest, for example school A versus school B. However, even that
can be difficult to define; are we interested in only the “administrative” effect of being in school A for each
student, which would be an effect due to institutional changes such as a different set of teachers, different
curriculum, better facilities, etc., or is it a more general effect on an individual student of being placed
in a fully different environment, with both a different institutional set-up as well as different classmates?
Assigning student Q into school A rather than school B is very different from assigning student Q and all
of student Q’s current classmates into school A rather than school B.

Suppose the treatment action is defined to be school A; are the potential outcomes under that treatment to
be compared to the potential outcomes in school B, as just assumed, or to the average potential outcome
at a collection of “average” schools, as seems to be done in the papers by Ballou et al. (2004), Tekwe
et al. (2004) and McCaffrey et al. (2004)? Or should the potential outcomes in school A be compared
to the potential outcomes when being in no school? Students and parents choosing between schools will
presumably want to know what their test scores would be in a different “possible” school. School boards
comparing teachers may want to compare teachers’ individual performance to some overall average teacher’s
performance, or to a set of other teachers the students could have had.

These various questions seem like they would have different answers, and few of them seem to be like the
questions addressed by the current articles under discussion. Precisely, what are the causal effects being
estimated by the methods in the papers? Or are they instead simply estimating descriptive quantities?
The meaning of this last question is well illustrated by “Lord’s Paradox.”

3



2.2 A Classic Example of Poorly Formulated Causal Assessment–Lord’s Paradox

Lord’s Paradox is a classic example to illustrate the importance of defining appropriate comparisons and
stating clearly any assumptions underlying estimates implied to be “causal”. This example originally arose
in a similar educational setting, in discussion of gain scores vs. covariance (regression) adjustment (Lord
1967). Lord described the following “paradox:” A university is interested in estimating the effect of the
university diet on student’s weight, and is particularly interested in any differential effect on males and
females. Simple descriptions are given of the data at the beginning and end of the year. For both males and
females, the distribution of weights is the same at the beginning and end of the year (the average female
weight is the same, the female variance is the same, the average male weight is the same, the male variance
is the same, the correlation between September and June weight is 0.8 for both males and females, etc.).
Lord then posits two statisticians. Statistician 1 uses gain scores (comparing the change in weight from
September to June between males and females) and claims that since on average neither males nor females
gained or lost weight during the year, then there is no differential effect of the diet on males or females.
Statistician 2 computes a covariance adjusted difference of the two group means and sees that, for males
and females of the same initial weight, the males weigh more at the end of the year. He thus concludes that
there is a differential effect of the diet for males and females, with males gaining more weight on average.
For a graphical representation of the analyses of statisticians 1 and 2, see Bock (1975). Lord’s primary
question concerned which of these statisticians was correct.

2.3 Lord’s Paradox Resolved

Holland and Rubin (1983) explain the apparent paradox by noting that either statistician can be correct,
depending on the assumptions made. In the hypothetical scenario, all students receive the new diet; no
students receive the undefined “control” diet, whatever it is (no diet? the “old” university diet? the diet
the students ate before attending university?). Thus, the only potential outcome that is even observed is
that under the treatment (university diet). The potential outcomes under the control diet are completely
missing.

If it is assumed that under the control diet each student’s weight in June would be the same as their weight
in September, then statistician 1 is correct. Statistician 2 is correct under the assumption that weight gain
under the control diet is a linear function of the student’s weight in September with a common slope but
varying intercept for males and females. This simple example is very instructive regarding the importance
of thinking carefully about what is being estimated and what is the quantity of interest. It is easy to focus
on estimation methods without thinking about the underlying problem–what the technical methods are
trying to estimate. Many statisticians and educational researchers were perplexed by Lord’s paradox–valid
causal inference does not come easily or naturally, except in randomized experiments, and even there only
with no complications such as those discussed in Sections 2.6 and 2.7.

2.4 Post-test Scores versus Gain Scores

Despite the debate about whether post-test scores or gain scores should be used as outcomes, the RCM
perspective makes it clear that the same causal effect is the estimand whether using either post-test scores
or gain scores because test score before treatment assignment is a covariate, unaffected by treatment
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assignment. Consider YQ(B) to be the student Q’s test score at the end of the year when in school B
and YQ(A) to be the student’s test score at the end of the year when in school A, and XQ to be student
Q’s baseline test score. The causal effect of being in school A versus being in school B for student Q is
YQ(A) − YQ(B). Using gain scores instead we have (YQ(A) − XQ) − (YQ(B) − XQ) = YQ(A) − YQ(B).
Although gain scores will often be used to be more precise, post-test scores can be used to estimate the
same causal effect as gain scores. However, it is important to remember that, as in Lord’s paradox, the
gain score itself is not a causal effect, except under the strong assumption that the potential outcome
under control equals the baseline observation (YQ(B) = XQ, where school B is considered the “control”
treatment). It is unlikely that this will be true in this setting. Even without formal instruction, students
still learn (and forget) over time and it is likely that their test scores would change as a result.

2.5 Estimating Causal Effects of Schools in an “Ideal” Setting with Randomization

Randomized experiments are the “gold standard” for estimating causal effects. To think clearly about
what is being estimated, it is thus useful to think about what we would do in an ideal world where random
assignment of students to schools is feasible.

At first glance, to estimate the causal effect of being in school A versus school B (where individual students
are the units), students could be randomly assigned to the two schools, thus ensuring that the schools would
have similar mixes of students in their classes. Under randomization, the difference in observed outcomes
between the students in school A and the students in school B is an unbiased estimate of the true effect of
being in school A versus being in school B. Randomization could also be extended to facilitate comparisons
across more than two schools.

Examining the scenario of a randomized experiment helps to conceptualize the problem and think about
how to estimate causal effects, however, even in this idealized setting there are a number of complications.

2.6 Complications: Interference Between Units and Versions of Treatments

An assumption commonly invoked (either implicitly or explicitly) in causal inference is the Stable Unit
Treatment Value Assumption (SUTVA) (Rubin 1980, 1986). Without this assumption, inference becomes
substantially more complex. There are two components to SUTVA. The first is that there is only one
version of a specific treatment: all individuals assigned to “treatment” receive the same active treatment,
and all individuals assigned to “control” receive the same control treatment. The second component of
SUTVA is that there is no interference between units: the value of each unit’s potential outcome does not
depend on the treatment assignments of other units. In other words, student Q’s test score in school A
is not affected by whether her best friend, student R, is in school A or school B. Anyone familiar with
education will realize that this is probably a fairly unrealistic assumption; students in schools talk to and
interact with one another, both inside and outside the classroom. In other words, the treatments the
other students receive, and not just the school itself, are likely to affect each student’s test scores. This
interaction is also an issue in the methods used by Ballou et al. (2004), McCaffrey et al. (2004) and Tekwe
et al. (2004), in which the students are often implicitly considered to be non-interfering.

It is sometimes possible to alleviate deviations from SUTVA through design; for example, by considering
schools to be the unit of analysis with randomization done at the school level rather than at the individual
student level. However, considering schools to be the unit of analysis creates its own complications, and may
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or may not be addressing the question of interest. What are the treatments to be randomized to the schools?
Are collections of teachers to be randomly assigned in groups to schools? If a randomized experiment cannot
even be conceptualized, it is difficult to conceptualize the causal question being addressed.

2.7 Another Complication: Missing Data

Another issue is missing data. Most of the methods in the papers use complete cases only, which is only
appropriate if the missing data are missing completely at random (MCAR, Little and Rubin 2002) and is
not appropriate in settings such as this with longitudinal data and missing outcomes (see, e.g. Barnard et al.
1998, 2003), even when the missing data are ignorable (Rubin 1976c; Little and Rubin 2002). Furthermore,
because the missingness likely depends on the missing values themselves (for example, students who sense
that they will likely not do well on the test may be more likely to miss school the day of the test), it is
possibly non-ignorable, and thus methods for non-ignorable data may be relevant.

Evidence of non-MCAR can be seen in data presented in some of the value-added papers. For example,
Ballou et al. (2004) state that “In all subjects and years, mean scores are higher among claimed students”–
relative to unclaimed students, who are not attributed to any particular teacher, and thus are not used
in the estimation of teacher effects (in essence, they are considered to be missing values in the model
estimation). The unclaimed students may move classes throughout the year, and are likely to be students
whose performance is worse than average. Table 1 of Tekwe et al. (2004) also suggests non-MCAR
missingness: the difference between overall average scores for 1999 and overall average scores for 1998 is
always larger than the average change score (which is calculated using only those students with both sets
of scores), possibly due to dropping low-scoring students who were not promoted to the next higher grade
out of the change score analysis (Tekwe et al. 2004, p. 8). Non-MCAR and non-ignorable missing data can
be an especially large problem when using longitudinal data, as students who move may be more likely to
be students who perform at lower levels, and their scores will be more likely missing for at least one year.

2.8 Observational data

Thus we see that many complications exist when thinking about an ideal randomized experiment, and
even more complications arise when thinking about using observational data, which, of course, is the more
realistic scenario. With observational data, one key goal is to find treated and control units that look as
similar as possible on background covariates. If the groups look very different on background covariates,
the results are likely to be based on untestable modeling assumptions and extrapolation.

Implicit extrapolation in models of outcome data (e.g., test scores) is common, and is particularly hard to
diagnose with complex models such as those in Ballou et al. (2004), McCaffrey et al. (2004) and Tekwe et
al. (2004), because common model diagnostics do not assess the overlap in covariate distributions. Because
the values of “percent minority” and “percent in poverty” differ widely in different schools, as illustrated in
Table 2 in Tekwe et al. (2004), it is likely that the estimates adjusting for such covariates using models rely
heavily on extrapolation, even if students were randomly assigned to those schools after being subclassified
into blocks (with dramatically different probabilities of treatment assignment between blocks but similar
probabilities within blocks). This situation implies extreme sensitivity to these models’ assumptions. If
school A has no students who “look like” students in the other schools, it is impossible to estimate the
effect of school A relative to the comparison schools without making heroic assumptions.
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2.9 Replicating a Randomized Experiment

With observational data, the goal is to replicate a randomized experiment as closely as possible. Matching
methods, such as ones that use a multivariate distance measure (Rubin 1976a, b) and propensity scores
(Rosenbaum and Rubin 1983a, 1984, 1985; Rubin and Thomas 1992a,b, 1996), enable observational data
to replicate two key features of randomized experiments. First, the comparison is done on groups of units
who are similar with respect to the observed covariates. Second, the study is “designed” in that the treated
and control units are matched without using the observed outcome variable, thus preventing bias due to
manipulating the samples to get a desired result. Before any analysis of the outcome data, the matched
samples can be assessed for covariate overlap (“balance”) to make sure that, within each matched group,
treatment assignment looks as if it could have arisen from a randomized experiment where treatment
assignment probability is a function of the observed covariates.

2.10 Model-based Analysis versus Propensity-based design in an Observational Study

Reliable estimates can only be made where covariate distributions overlap (Rubin 1977), as illustrated
by Lalonde (1986) and follow-up work by Dehejia and Wahba (1999). More specifically, using large data
bases as a control group to try to replicate estimates from a randomized experiment on the effect of a
job-training program, Lalonde found that the estimates were highly sensitive to the choice of model (for
example, linear versus quadratic, choice of covariates, ignorable model versus non-ignorable model), with
answers ranging wildly, yet each with very narrow and non-overlapping associated “confidence” intervals.
Dehejia and Wahba instead used propensity score methods to choose a set of well-matched comparison
individuals and were able to replicate closely the experimental results. Of course, propensity score methods
will not always work this well. Having an adequate set of observed covariates is critical.

The ability of propensity score analyses to reveal the extent to which two groups serve similar types of
students and have similar educational environments is an important diagnostic tool to identify whether the
data can support causal comparisons between these two groups. Comparing treated and control groups
with very different distributions of background covariates will lead to extreme extrapolation in models
relating outcome variables to covariates, thus making any estimates highly sensitive to untestable modeling
assumptions.

Propensity score matching also avoids any specification of regression models for the relationship between
the outcome and the covariates. Although propensity score models must be fit to estimate the probability
of receiving treatment, estimates of treatment effects are generally less sensitive to misspecification of the
propensity score model than regression models are to misspecification of the regression model (Drake 1993;
Rubin 1997).

The fact that propensity score methods match on background covariates, without any use of the outcome
at the matching stage, has several desirable properties, as indicated earlier. Comparable units can be found
before the outcomes are even observed. This is especially helpful in high stakes situations such as school
assessment, to prevent researchers from intentionally or unintentionally manipulating matched samples to
generate desired results and also protects them from such claims by others (for more on this perspective
see Rubin, 2001).

Furthermore, because the outcome variable is not used in the matching process, the same matched samples
can be used to study multiple outcomes, as with randomized samples; when model-based analyses are
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used, separate regression models are needed for each outcome variable. Once the matched samples are
chosen, inference can proceed using modeling methods, however the results will be relatively less sensitive
to the model assumptions because there will be less extrapolation (Rubin 1973, 1979; Rubin and Thomas
2000). If it is impossible to obtain overlapping covariate distributions using matching or subclassification,
the conclusion should be that reliable causal inferences cannot be drawn from the existing data, without
relying on explicitly stated, and typically heroic, assumptions.

2.11 The Critical Advantage of Randomized Experiments

One key remaining difference between observational studies and randomized experiments is that random-
ization assures balance on all covariates, observed and unobserved, between the treated and control groups.
In contrast, with observational studies, we can only balance the observed covariates. It is thus very im-
portant to try to measure all of the relevant covariates such that treatment assignment will not depend on
the potential outcomes, given the covariates (termed “strongly ignorable” (or “unconfounded”) treatment
assignment) (Rosenbaum and Rubin 1983a).

3 Another approach

We have seen that even in an ideal setting with randomization, estimating relevant causal effects of teachers
and schools is extremely difficult to conceptualize. If causal inference here is so difficult, how are we to guide
policy and think about the benefits of value-added assessment? Whatever policies are being compared,
probably none will ever involve moving large numbers of individual students from one school to another
school. Rather, in terms of policy questions, we should be more interested in comparing interventions that
are realistic, such as implementing various reward structures based on value-added assessment models, and
seeing which structures are most effective at improving performance.

We advocate a position of taking the current value-added models at face-value and considering their pa-
rameter estimates as descriptive measures that we hope are of some relevance to the question of educational
assessment. The real question then is, do these descriptive measures, and proposed reward systems based
on them, improve education?

3.1 Estimating the Causal Effect of Value-added Assessment

To think about how to answer this question, we propose the design of a study to assess the effects of the
reward systems implied by the different assessment models on educational improvement, thereby shifting
the focus away from estimating the effect of teachers or schools to estimating the effect of implementing a
reward system based on one of these models.

We again must first consider the fundamental concepts: units, treatments, and potential outcomes. The
units could be states, school districts, or perhaps even individual schools. The active treatment is the
implementation of a reward structure based on the results from a value-added assessment model. The
control treatment would be no implementation of such a reward structure–life “as it was”. The potential
outcomes may be quantities such as average test scores at the end of the school year, or equivalently gain
scores, or perhaps average test scores in sub-groups defined by covariates such as gender or baseline test
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score, or measures of parent satisfaction, or graduation rate. Each unit has a potential outcome under
each treatment (reward structure in place, no reward structure in place), and again, the main task is to
estimate the unobserved potential outcomes because each unit can be assigned to only one treatment.

Ideally, units (states, school districts, or schools) would be randomized to either receive this new reward
structure or not receive it. For example, half of the states would be assigned to the new treatment, whereas
the other half would not receive the new treatment. Matched pairs or blocking could also be used in the
design. After a specified period of time (perhaps one or two years), the outcomes in the treated and control
groups would be compared. Due to the randomization, any observed differences in these observed outcomes
could not be due to differences in baseline covariates, and the average difference in outcomes would be a
valid estimate of the average causal effect.

3.2 A possible design using observational data

Unfortunately, randomization is probably infeasible, and thus observational data will need to be used to
estimate the causal effect of implementing a reward structure associated with a value-added assessment.
Using the ideas of replicating a randomized experiment, we can think about how to approach the design
of such an observational study. For example, we might consider the treated units to be states that have
implemented some form of value-added assessment (VAA) into their state accountability systems, such
as Tennessee and North Carolina. We thus are thinking of a hypothetical randomized experiment, where
some states were randomized to treatment, and all of the others were randomized to control.

To replicate this hypothetical randomized experiment with observational data, we would like to find a
well matched control state for each of the treated states. This matching could be done using propensity
score matching, estimating the propensity scores, for example, using a logistic regression model where the
response is whether a state has a reward system based on VAA, and the predictors are state-level covariates
such as poverty level, high school dropout rate, population, etc. Alternatively, matching could be done
using a multivariate matching method, or exact matching on a few key variables, or some combination of
these matching methods. A benefit of matching in this situation is that the number of states that have
implemented VAA is relatively small, thereby ensuring a large pool of potential control states. Matching
is generally more successful in settings such as this, where there is a large set of potential controls.

However, in some cases it may be difficult to find a comparison state for each treated state; there may be
no other states that “look like” Tennessee on the background covariates. In this case, it may be useful
to create “pseudo-states,” as in Irie (2001) or Abadie and Gardeazabal (2003). Assuming school district
level data was available, the propensity score would be estimated on a school district level, and individual
school districts within Tennessee could be matched to individual school districts from multiple other states
(perhaps restricted to the South). The control “pseudo-state” that is matched to Tennessee would consist
of this set of matched districts from multiple control states, for example a mix of districts from Alabama
and Arkansas. Once the pairs of matched treated and control states (or pseudo-states) are chosen (in
essence, the observational study “designed”), analysis would proceed by analyzing the state-level outcomes
in the matched pairs.

The same framework would apply if interest instead focused on a hypothetical randomized experiment at
the district level, for example in Pennsylvania or Ohio, where pilot programs have implemented VAA in
only a subset of the school districts within the state. In that case, ideally, VAA districts in Ohio would be
matched to non-VAA districts within Ohio (and similarly for Pennsylvania). If it is difficult to find well
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matched districts, pseudo-districts could be formed by matching individual schools within the districts.

With observational data, fully unobserved covariates that may affect both the decision to implement VAA
(treatment assignment) and the outcome are a concern. It may be that states in which there is high value
placed on education and measurement and thus implement VAA also have higher values of the outcome.
Because assignment to implement VAA is not randomized, two states may look identical on observed
covariates, but have different political environments or educational values that will affect both whether
they implement VAA and their outcomes. In addition to simulations such as in McCaffrey et al. (2004)
that assess the effect of omitted variables, sensitivity analyses such as those described in Rosenbaum and
Rubin (1983b) could be used to explore the sensitivity of results to an unobserved variable that affects
both treatment assignment and outcome, i.e., non-ignorable treatment assignment.

4 Conclusion

Value-added assessment is a complex issue, and we appreciate the efforts of Ballou et al. (2004), McCaffrey
et al. (2004) and Tekwe et al. (2004). However, we do not think that their analyses are estimating causal
quantities, except under extreme and unrealistic assumptions. We argue that models such as these should
not be seen as estimating causal effects of teachers or schools, but rather as providing descriptive measures.
It is the reward structures based on such value-added models that should be the objects of assessment,
since they can actually be (and are being) implemented. Of course, this focus requires a dramatic shift
from current thinking, but a shift towards studying interventions that can be implemented and toward
evaluations of them that can be conducted. We look forward to discussion of this approach.
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