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Abstract

Multilevel models are used to revisit Moulton's (1990) work on clus-
tering. Moulton showed that when aggregate level data is combined with
micro level data, the estimated standard errors from OLS estimates on the
aggregate data are too small leading the analyst to reject the null hypoth-
esis of no e�ect. Simulations using similar data suggest that even when
corrected for clustering, the null hypothesis is over-rejected compared to
the estimates obtained from multilevel models. The relationship between
survey sampling and Moulton's correction is also explored. The parallel
between these two areas is extended into multiway clustering. Simulations
using a data set with students clustered within classrooms and classrooms
within schools suggest that the over-rejection rate from multilevel models
is smaller than those corrected for clustering. This is particularly true
when the number of clusters (classrooms) is small. The results suggest
that modeling the clustering of the data using a multilevel methods is a
better approach than �xing the standard errors of the OLS estimate.

1 Introduction

This note revisits the results of Moulton's (1990) study on how using grouped
aggregate level data such as state level unemployment rates with individual
or micro level data such as individual earnings within a state can result in a
downward bias in the estimated standard errors of OLS estimates. The analyst
can conclude the state level e�ects are statistically signi�cant when they are in
fact not because the standard errors are too small.

The insight provided by Moulton's work was that individuals within the
aggregated level such as state are clustered so that they are in fact more similar
to one another than individuals from another state. Thus, the assumption
that observations are independent and identically distributed is violated. This
�nding has led many statistical software packages to implement a correction for
clustering.1

1For instance in STATA the correction is implemented using the �cluster� option for the
standard error of a regression command.
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Bertrand, Du�o and Mullainathan (2004) study the e�ects of over-rejection
in di�erence-in-di�erence estimates and �nd substantial over-rejection even after
correcting for clustering2. They note that in order to correct for the standard
error due to clustering one has to account for the presence of a common ran-
dom e�ect at the group level. Thus, they identify the e�ect of clustering as
this common e�ect rather than an assumption that individuals within a cluster
are more alike. The presence of a common group level e�ect is the essence of
multilevel models.3 Multilevel models have the bene�t of allowing for partial
pooling of coe�cients toward the completely pooled OLS estimate which ac-
cording to Gelman (2006) can be a more e�ective estimation strategy. Bafumi
and Gelman (2006) observe that while multilevel models have become accepted
in some social sciences they have been slow to gain popularity in others such as
economics.

This note �nds that even after correcting for clustering, there is a tendency
to over-reject the null hypothesis of no e�ect. The hypothesis that there is no
e�ect is implemented by introducing a cluster level random number which is
estimated over many repetitions. The proportion of over-rejection is reduced
when the multilevel structure of the model is explicitly modeled. The e�ect
of the degree of clustering measured as the average number of units within a
cluster is also investigated. When the number of individuals within a cluster is
reduced, multilevel models still outperform the standard clustering correction.

The next section revisits Moulton's study and the data set used. The multi-
level model to be estimated and the results of the simulations are then presented.
An investigation into multiway clustering is considered by linking Moulton's
correction to the literature on survey sampling and then applying the analytic
approach from used in analysis of survey data. Over-rejection of the null hy-
pothesis in multiway clustering is explored using a similar strategy on a data
set of students clustered within classrooms and classrooms within schools. This
data set allows an exploration into the robustness of the results when the num-
ber of individuals within a cluster (classroom) is small. Random numbers at the
school level are over-rejected by all types of standard error correction except for
multilevel models. Clustering is examined at the classroom level only and when
classrooms are nested within schools. The simulations suggest that modeling
data using its multilevel structure is a better approach than �xing the standard
errors of an OLS estimate.

2 Revisiting Moulton (1990)

Failure to account for the grouped nature of the aggregate level data can lead to
erroneous conclusions. Moulton (1990) demonstrated this by replicating Topel's

2Row 2 of their Table II, pg. 257.
3Multilevel models are sometimes referred to as random coe�cients models or varying

intercepts models. They are also referred to as hierarchical linear models (HLM) in psychology
and education or mixed e�ects model in health and biostatistics because they allow for both
random and �xed e�ects.
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Variable Source

x1Estimated Rate of state employment growth Computed from BEA
x2Current state relative employment disturbance Computed from BEA
x3Predicted state disturbances Computed from BEA
x4Live Birth Rate per 1,000 population (2001) Table 87
x5Legal abortions per 1,000 women (2000) Table 104
x6Death rate from heart disease per 100,000 population (2001) Table 119
x7Death rate from suicide per 100,000 population (2001) Table 119
x8Death rate from cancer per 100,000 population (2001) Table 119*
x9Marriage rate per 1,000 population (2000) Table 126*
x10Percentage of persons age 5−17 enrolled in Table 244

public elementary and secondary schools (2000)
x11Total Land Area in Sq Km Table 359
x12Total Water Area in Sq Km Table 359
x13Elevation of Highest Point in Meters Table 363
x15Total Black Elected O�cials (2001) Table 417
x16Daily newspaper circulation per capita (2002) Table 1132

Table 1: Variables used in model

(1986) study on the impact of local labor market conditions on individual level
wage rates. Individual level data from the March Current Population survey is
merged onto state level data on state employment growth rate, relative and pre-
dicted state disturbances. Topel (1986) �nds that these state level variables are
signi�cant in their impact on individual level wages. Moulton (1990) concluded
that the standard errors of these variables were signi�cantly biased downward
because they did not account for the grouped level nature of the aggregate data.

He further demonstrated this problem by including state level variables on
abortion rates, death rates, newspaper circulation and other state level variables
that he considered to be irrelevant to individual level wages. In addition, he
also constructed random numbers for each state. These state level variables
were then merged onto the individual level data. Surprisingly, some of these
'irrelevant' variables (including the random number) were signi�cant. These
variables are listed as x4 through x16 in Table 1.

This note replicates Moulton's results using more recent data and extends
the analysis to ask whether the downward bias in the standard error can be
further improved by taking into account the multilevel nature of the data. The
individual level data is the March 2003 Current Population survey. The data
contains 81,588 individuals who are civilian employees currently employed in
the labor force. Following Moulton, only individuals older than 20 years and
whose computed weekly earnings exceed $40 are included.4

State level wage and salary employment numbers were obtained from the Bu-

4This data is available for download at www.bls.census.gov/cps/cpsmain.htm. Accessed
May 2, 2005.
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reau of Economic Analysis Annual State Personal Income estimates.5 This data
allows the creation of disturbance terms detailed in Topel (1986). A quadratic
trend was �tted to the log value of employment to compute employment growth
for each state.6 The current state relative employment disturbance was com-
puted as the deviation of the estimated residual for each state from the residual
estimated at the national level.7 The predicted state disturbance was computed
as the next period forecast using an ARMA model with exponential smoothing.
This forecast was computed as a deviation from the national forecast.8

Additional state variables that Moulton considered 'irrelevant' were also in-
cluded in the data. These were obtained from the 2003 Statistical Abstract
of the United States. The full list of state level variables are listed in Table
1. I have followed Moulton's naming convention for the variables using x4to
x16. If the variable used in Moulton's original paper was not available from
the 2003 Statistical Abstract, I substituted it with another variable and have
indicated this with an asterisk in the Source column. Cancer deaths (x8) was
substituted for perinatal deaths and divorce rates was substituted with marriage
rates (x9). Only the original variable x14which was per capita state legislative
appropriations for arts agencies was not substituted and is left out.

Moulton (1990) provided the results of an OLS regression of wage rates on
the individual level covariates9 and the all of the variables listed in Table 1. In-
cluded in his speci�cation is also a random variable. This study takes Moulton's
approach one step further. Focusing solely on the regression of wages on all of
the above individual and state level variables including a state level random
variable it asks: If a random variable is drawn 1,000 times, what is the number
of times that the t-test will show that the random variable is signi�cant when
it is in fact not. Three types of t-tests are examined: OLS, Moulton's cluster-
ing, and multilevel models. In other words, what is proportion of over-rejection
when the null hypothesis of no relationship between the random number and
the dependent variable is true?

3 Multilevel models and the relationship between
survey sampling and clustered standard errors

3.1 Multilevel models

Multilevel models have the following structure:
Consider the following simpli�ed model:

Wagesij = β0j + rij

5This data is series SA04 and is available for download at www.bea.govbea/regional/spi/
default.cfm. Accessed June 3, 2005.

6This corresponds to Moulton's x1
7This corresponds to Moulton's x2
8This corresponds to Moulton's x3
9Individual level variables included are age, gender, education level, race, marital status,

whether the person lived in a central city and the census division of the individual.
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where i denotes individuals and j denotes states and rij ∼ N(0, σ2). Individuals
are clustered within states. The intercept β0j is modeled as:

β0j = γ00 + γ01Sj + u0j

where Sj are state level characteristics or covariates such as unemployment
rates and u0j ∼ N(0, τ00). Thus, u0j is the common group level random e�ect
noted by Bertrand, Du�o and Mullainathan (2004). Therefore, the full equation
estimated is

Wagesij = γ00 + γ01Sj + u0j + rij (1)

There are two variance components, u0j which represents variation between
state means (τ00) and rij which represents variation among individuals within
states (σ2) and also one covariate Sj .

When person level covariates are included, the equations estimated are:

Wagesij = β0j + β1jXij + rij

where
β1j = γ10 + u1j , u1j ∼ N(0, τ10)

and (
u0j

u1j

)
∼ N

[(
0
0

)
,

(
τ00 τ01
τ10 τ11

)]
Combining equations give:

Wagesij = γ00 + γ01Sj + u0j + (γ10 + u1j)Xij + rij

and rearranging terms,

Wagesij = γ00 + γ01Sj + γ10Xij + u1jXij + u0j + rij (2)

The two combined equations, (1) and (2) are sometimes referred to as a
varying intercepts (or random intercepts) and varying intercepts and slopes (or
random coe�cients) model respectively. In both equations, the intercept term
is γ00 + u0j while γ10 + u1j is the slope in equation (2). It is not necessary to
assume random slopes with person level covariates. In this case, the equation
to be estimated is simply

Wagesij = β0j + β1Xij + rij

where the dependence of β1on group j is removed.
The coe�cients and variance components are estimated using maximum like-

lihood methods. While the coe�cients in OLS and clustered standard errors
are identical (only the standard errors are di�erent), typically the coe�cients in
multilevel models will not be the same as the OLS coe�cients. This is because
multilevel models attempt to estimate the variance components. As such, mul-
tilevel models are more computationally intensive and may a�ect the estimates
of the coe�cients if the estimation of the variance components are inaccurate.10

10See Primo, et. al (2006).
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Of interest as well is how this model relates to a one way �xed e�ects model
- where the groups (states, in this case) are modeled using dummy variables for
each (N-1) groups. The performance of the standard error using this approach
is not investigated here. This is because with state level variables such as em-
ployment growth rates and other 'irrelevant' state level variables included in the
regression, introducing dummy variables would induce a collinearity. The mul-
tilevel approach therefore has an advantage over the dummy variables approach
in the sense that the ��xed e�ects� can be partially captured while at the same
time the e�ects of group level covariates can also be estimated. As discussed by
Gelman and Hill (2007, pp. 245-246), multilevel models are an alternative to
the complete pooling model (such as OLS where one regression equation is run
for the entire sample) and the no pooling model (where a separate regression
equation is run for each group).

Related to the �xed e�ects model is the random e�ects model which is preva-
lent in the econometrics of panel data. The formulation in equation 1 is similar
to the formulation of random e�ects model in panel data. In panel data the
group j is replaced with time t. Multilevel models are more general in the sense
they apply not only to panel data models. As to when ��xed� or �random� e�ects
models should be used (multilevel models are sometimes referred to as �mixed�
models), Gelman and Hill (2007, pg. 246) note: �Our advice (elaborated upon
in the rest of this book) is to always use multilevel modeling (�random e�ects�).
Because of the con�icting de�nitions and advice we avoid the terms ��xed� and
�random� entirely, and focus on the description of the model itself (for example,
varying intercepts and constant slopes), ...� Gelman and Hill's advice is to ex-
ploit the natural description of the data and to model the data itself instead of
��xing� the standard errors of an OLS estimate.

3.2 The relationship between survey sampling and clus-

tered standard errors

A simple formula for the standard error of a clustered estimate is derived from
the true variance-covariance matrix C and is given by Moulton as

C = σ2(X ′X)−1[1 + ρ(m− 1)]

whereρis the intra-class correlation coe�cient that measures the dependence of
units within a cluster and m is the number of units within a cluster (assuming
that all clusters have the same number of units).

Under the assumption that errors of a regression are i.i.d, the true covariance
matrix is CI = σ2(X ′X)−1. Restating Moulton's formula and with some abuse
of notation, the ratio of the covariance matrix under clustering C and under the
usual i.i.d. assumption CI is simply:

C

CI
= [1 + ρ(m− 1)]

In survey sampling, the right hand side term is simply called the design
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e�ect of a cluster sample (mean) where all clusters are of equal size, m. (Kalton
(1983), pp. 30-31) The design e�ect measures the ratio of the variance of a
statistic from cluster sampling to the variance of the statistic (e.g. the mean)
from simple random sampling (SRS). In sampling, the average size of the cluster,
m depends also on the number of clusters. For �xed sample size, even with a
small value of ρ, the design e�ect can be large if the number of clusters is small.
When the number of clusters is small, each cluster will necessarily be larger for
a �xed sample size.

Section 5 exploits the equivalence between survey sampling and clustered
standard errors to extend the investigation to multiway clustering, i.e. when
units are in turn clustered within other units such as students within classrooms,
and classrooms within schools.11 Multiway clustering also provides a framework
for exploring the role played by the number of clusters as well as the number of
individuals within a cluster. The rate of rejection when the number of clusters
is reduced will also be explored.

4 Results from revisiting Moulton

The multilevel version of Moulton's model is estimated using assuming only ran-
dom intercepts. This is because the focus is on the possibility of over-rejection of
the state level variable, in particular the state level random variable. A random
variable is generated at the state level and the number of times the coe�cient on
the random variable is rejected is counted. The results using 1000 simulations
for each method of estimation are summarized in Figure 1.

As was previously shown by Moulton, the rejection rate given by the OLS
t-statistic is much higher than that of clustered standard errors. However, the
rejection rate of clustered standard errors is still much higher than that of
multilevel models (about 25 percent versus 6 percent). The clustered standard
errors over-reject the null hypothesis of no relationship between a state level
random variable and the dependent variable by four times.

Figure 2 investigates the how the degree of clustering as measured by the
number of individuals within a state a�ects the probability of rejection. With
a large number of observations as is the case here, 100 draws of a random
variable is su�cient to detect over-rejection for this part of the exercise. The
average number of individuals are noted in parenthesis for each subset drawn
from the entire data set. Subset 0 is the full sample and there are an average of
1,600 persons in each state. Beginning with subsets 1 through 8, 10 percent of
the sample is incrementally dropped using a simple random sample, so that by
subset 8, only 20 percent of the data set remains. The average number of persons
in each state in subset 8 is 320. As the degree of clustering falls, the proportion

11This equivalence implies that estimates using clustered standard errors from STATA are of
the same order of magnitude as those using STATA's svy estimation methods. The appendix
gives the code to replicate the standard errors estimated using clustering and using the survey
estimation methods. Note that this does not imply that that a fully speci�ed model using
survey weights and the information in the survey design should be ignored. The code is purely
for demonstration purposes only.
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Figure 1: Percent of rejection when the null hypothesis of no relationship is
true, by method of estimation (1000 replications per method)

of over-rejection by the OLS estimate approaches that of the clustered standard
error which remains somewhat constant. The rejection rate for the multilevel
model remains more or less constant regardless of the degree of clustering but
is always lower than either the OLS or clustered standard error. Thus even
with with a small number of replications (100 in this case), the tendency to
over-reject can be detected.

5 Multiway Clustering

In multiway clustering, there are (at least) two levels of clustering to explore -
the number of individuals within a cluster, and the number of clusters within a
larger group. The data used is from West et. al. (2006). The original data was
a study of math achievement scores of 1190 �rst and third graders in randomly
selected classrooms from a national sample of elementary schools. Students
are clustered within classrooms and classrooms are clustered within schools. In
contrast to Moulton's study, the number of individuals is smaller - ranging from
1 to 10 students per classroom.

The dependent variable in this case is mathgain. All the other variables
except formathprep are included in the regression equation.12 The correction for
the standard error in an OLS regression assumes that multiway clustering can be
approximated by applying another survey sampling concept: strati�cation with
cluster sampling. In strati�ed and clustered sampling, the population is divided

12Except for OLS, the IDs are used by the statistical program (e.g. SAS, STATA) to describe
the structure of the data.

8



Figure 2: Percent of rejection when the null hypothesis of no relationship is
true: E�ects of number of individuals within a cluster (100 replications for each
method per subset)

Variable Description

sex Indicator variable (0 = boys, 1 = girls)
minority Indicator variable (0 = non-minority students, 1 = minority students)
mathkind Student math score in the spring of their kindergarten year
mathgain Student gain in math achievement score from the spring of kindergarten

to the spring of �rst grade (the dependent variable)
ses Student socioeconomic status
yearstea First grade teacher years of teaching experience
mathknow First grade teacher mathematics content knowledge: based on a scale

composed of 30 items (higher values indicate higher content knowledge)
housepov Percentage of households in the neighborhood of the school below the

poverty level
mathprep First grade teacher mathematics preparation: number of mathematics

content and methods courses
classid Classroom ID number
schoolid School ID number
childid Student ID number

Table 2: List of variables in classroom level data set
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into di�erent groups from which elements within each group are then sampled
(possibly at di�erent rates). The di�erence between strata and clusters is that
every strata appears in the sample while only some clusters are selected. For the
purposes of this investigation however, it is adequate to utilize this concept since
it captures the fact that the OLS standard errors will be corrected by assuming
that classrooms are nested within schools. In addition, the performance of the
estimator when clustering is only at the classroom level is also examined.13

Similar to the analysis of a strati�ed cluster sample, a multilevel model
also allows the analyst to capture the e�ects of the school and classroom level
variables at the same time. Random numbers are generated at the school and
classroom level and both are included in the regression equation. The structure
of the data is used to ask the following question: What happens to the rate
of rejection when the number of classrooms become smaller? Classrooms are
randomly selected from the original data set so that in the �rst subset the entire
data set of classrooms and students are used. In the second subset, only half the
classrooms are selected (and all the students in the classrooms are used), and
so on until the 10th subset when only 1/10th of the classrooms are randomly
selected.14 For subsets 2 through 10, classrooms are randomly drawn 50 times
and the equations are estimated 100 times for each draw. In the full data set,
1000 replications of the equation is estimated. The rate of rejection at the
classroom and school level are then tabulated.

Figures 3 and 4 show the results of the simulation. The random number
at the school level is rejected more often under OLS and clustered standard
errors than in the multilevel models. (CLUSTER refers to classrooms nested
within schools while CLUSTER-2 refers to clustering only at the classroom
level.) When the classroom level random number is considered, clustered stan-
dard errors perform as well as multilevel models until the number of clusters
falls to 104. However, multilevel models are less likely to reject the null hypoth-
esis of no signi�cance than clustered standard errors although the di�erence in
rejection rates between the two can be small and in some cases all methods
reject more than 5 percent of the time. The standard error correction using
strati�ed clusters which assume that classrooms are nested within schools does
not always lead to less rejection than clustering only at the classroom level.

Taken together, the rejection rates at the school and classroom level imply
that it is better to model the data as a multilevel model than to �x the standard
errors by adjusting for clustering. A school and/or classroom level e�ect is less
likely to be rejected when the null hypothesis of no e�ect is true.

What if the number of children in the classrooms are increased so that they
more resemble the �typical enrollment� of a classroom. The average number of
children per classroom is increased so that it ranges from 10 to 30 instead of

13In SAS, the former is implemented by assuming that schools are the strata and classrooms
are the cluster while the later is implemented by assuming that there is no strata and the
classroom is the cluster.

14This method of selection is fairly arbitrary in the sense that it does not allow the number
of schools to stay �xed. Schools with only one or multiple classrooms may end up entirely out
of the sample by chance.
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Figure 3: School level rejection rates in multiway clustering when number of
clusters (classrooms) are reduced. (Number of classrooms are in parentheses.
100 replications for each method per subset with each sub-sample drawn 50
times except for 312 classrooms with 1000 replications. CLUSTER refers to
classrooms nested within schools while CLUSTER-2 refers to clustering only at
the classroom level.
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Figure 4: Classroom level rejection rates in multiway clustering when number
of clusters (classrooms) are reduced. (Number of classrooms are in parentheses.
100 replications for each method per subset with each sub-sample drawn 50
times except for 312 classrooms with 1000 replications). Reference horizontal
line is 5 percent. CLUSTER refers to classrooms nested within schools while
CLUSTER-2 refers to clustering only at the classroom level.
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Figure 5: Number of students in the classrooms are increased. School level
rejection rates in multiway clustering when number of clusters (classrooms)
are reduced. (Number of classrooms are in parentheses. 100 replications for
each method per subset with each sub-sample drawn 50 times except for 312
classrooms with 1000 replications. CLUSTER refers to classrooms nested within
schools while CLUSTER-2 refers to clustering only at the classroom level.

from 1 to 10.15 The same exercise is then performed: For subsets 2 through 10,
classrooms are drawn 50 times and 100 replications is estimated for each draw.16

The full data set (subset 1) is estimated 1000 times. Figure 5 and 6shows the
results of the estimation. For the school level random variable, the results are
similar to those with the smaller classroom size. For the classroom level random
number, the tendency to over-reject by clustered standard errors is not as large
although it is still larger than multilevel models when the number of clusters
fall to 78. Again, the results suggest that it is better to model the data with
multilevel models than to cluster the standard error.

15To be precise, if the number of children is less than 3 then the number of is multiplied by
10, and if the number of children is between 3 and 8 then the number is multiplied by 4, while
those classrooms with 9 or 10 kids are multiplied by 3. The children are identical to those
already in the classroom in every respect except that SES and MATHKIND are randomly
perturbed to increase the variation between children.

16Again, for the full data set, 1000 replications are estimated. Results do not vary when
the experiment is repeated with 1000 replications drawn 50 times or 100 replications drawn
100 times.
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Figure 6: Number of students in the classrooms are increased. School level
rejection rates in multiway clustering when number of clusters (classrooms)
are reduced. (Number of classrooms are in parentheses. 100 replications for
each method per subset with each sub-sample drawn 50 times except for 312
classrooms with 1000 replications. CLUSTER refers to classrooms nested within
schools while CLUSTER-2 refers to clustering only at the classroom level.
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6 Conclusion

This note introduces the use of multilevel models as an alternative to clustered
standard errors that followed Moulton's (1990) recommendation. It extends
Moulton's (1990) analysis by using multilevel models as an additional method
of estimation. While clustered standard errors outperform OLS standard errors
in terms of over-rejection of the null hypothesis of no e�ects, standard errors
from multilevel models outperform both types of estimation methods. Drawing
from existing work on survey sampling, the investigation is extended into mul-
tiway analysis where students are clustered within classrooms and classrooms
are clustered within schools. Clustering is considered at the classroom level
only as well as when classrooms are nested within schools. Random numbers
at the school level are over rejected by all types of standard error correction
except for multilevel models. At the classroom level, the over rejection of the
null hypothesis of no e�ect is about the same for multilevel models as for the
two methods of correction for clustering when the number of clusters (class-
rooms) is large. When the number of clusters fall, the over rejection rate for
clustered standard errors rises. These simulations suggest that modeling data
using multilevel models is a better approach than attempting to �x the standard
errors.

7 Appendix: STATA commands to demonstrate
equivalence of survey estimation and clustered
standard errors

webuse h ighschoo l
svyset , c l e a r /// c l e a r e x i s t i n g sampling in fo rmat ion
svyse t s choo l /// a r t i f i c i a l l y assume that s choo l i s the

/// c l u s t e r and s e t the survey sample acco rd ing ly
svy : r e g r e s s weight he ight
r e g r e s s weight height , vce ( c l u s t e r s choo l )
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