Two Simple Putting Models in Golf

Mark Broadie, Columbia Business School

This version: October 2018

PGA Tour Putting Data

- PGA Tour data from 2016-2018 represents more than 1.2 million putts
- Standard errors range from 0.01% to 0.3% (not shown for clarity)
- Horizontal axis (initial putt distance, in feet) shown in log-scale for clarity

Gelman and Nolan Putting Model: Random Direction

One-putt: $|\alpha| \leq \alpha_{c}$, where d is the distance to the hole, r is the radius of the hole, and $\alpha_{c}=\tan ^{-1}(r / d)$.

Suppose $\alpha \sim N\left(0, \sigma_{\alpha}^{2}\right)$. Then

$$
\begin{aligned}
P(\text { One-putt }) & =P\left(|\alpha| \leq \alpha_{c}\right)=P\left(|Z| \leq \alpha_{c} / \sigma_{\alpha}\right) \\
& =\Phi\left(\alpha_{c} / \sigma_{\alpha}\right)-\Phi\left(-\alpha_{c} / \sigma_{\alpha}\right)=2 \Phi\left(\alpha_{c} / \sigma_{\alpha}\right)-1
\end{aligned}
$$

Gelman and Nolan (2002)

Gelman and Nolan Model: Fit to PGA Tour Data

Model: $\alpha \sim N\left(0, \sigma_{\alpha}^{2}\right)$. Choose σ_{α} to minimize the sum of squared differences between the model and the data. Optimal: $\sigma_{\alpha}=2.00^{\circ}$ (RMSE: 4.6\%)

- Model probability $\rightarrow 1$ as $d \rightarrow 0$ and $\rightarrow 0$ as $d \rightarrow \infty$
- Model is biased low for $d<8$ and biased high for $d>8$
- See pga_tour_putt_data_mode1s.x1sx for details

Broadie Model: Random Distance and Direction

One-putt if endpoint in the hole out region: $|\alpha| \leq \alpha_{c}$ and the putt distance, l, satisfies $d \leq l \leq d+3$.

Suppose $l=(d+1)\left(1+\sigma_{d} Z\right), Z \sim N(0,1)$, i.e., the target is one foot beyond the hole, σ_{d} is the fractional distance error and Z is independent of α.

$$
\begin{aligned}
P(\text { One-putt }) & =P\left(|\alpha| \leq \alpha_{c}\right) P(d \leq l \leq d+3) \\
& =P\left(|\alpha| \leq \alpha_{c}\right) P\left(\frac{-1}{\sigma_{d}(d+1)} \leq Z \leq \frac{2}{\sigma_{d}(d+1)}\right) \\
& =\left(2 \Phi\left(\frac{\alpha_{c}}{\sigma_{\alpha}}\right)-1\right)\left(\Phi\left(\frac{2}{\sigma_{d}^{(d+1)}}\right)-\Phi\left(\frac{-1}{\sigma_{d}(d+1)}\right)\right)
\end{aligned}
$$

Random Dis and Dir Model: Fit to PGA Tour Data

- Optimal parameters: $\sigma_{\alpha}=1.69^{\circ}$ and $\sigma_{d}=7.96 \%$ (RMSE: 0.3\%)
- Model fits well for all distances
- See pga_tour_putt_data_mode1s.x1sx for details

