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Main Results

Simulated tempering is aimed to sample
from a multimodal distribution where the
target density contains metastable regions
separated by high energy barriers. We
present a new tempering algorithm by al-
lowing temperature moves continuously.
Path sampling gives a low-variance es-
timation of normalizing constant, making
the algorithm scalable to high dimensions.
The adaptive procedure biases the parti-
tion function to shrink the gap between
the proposal and the target.

Simulated tempering

Markov chainMonteCarlo iswidely used for
Bayesian computation. The central task to
sample from a posterior distribution p(θ |y),
where θ ∈ Θ is unknown parameters.
Regardless of the theoretic guarantee of con-
vergence, multi-modal distribution is hard to
sample in finite time because of the energy
barriers between modes.
(Discrete) simulated tempering expands the
state space by an inverse temperature λ, and
λ is restricted on a prespecified discrete grid

λ ∈ (0 = λ1 < λ2 < · · · < λK = 1) .
The new joint density can be defined as a
geometric bridge

p(θ, λk) =
1

z(λ)
p(θ)λkφ(θ)1−λk .

Discrete tempering is not desired

One challenge of simulated tempering is to
estimate normalizing constant z(λk), which
is unknown but determines the joint distri-
bution. We can start from an initial guess
and adaptively update z(λk) by importance
sampling:

ẑ(λk) ← ẑ(λk)p̂(λk)/c(λk)

where c(λk) is the pre-specified marginal
distribution.
However, z(λk) can change dramatically for
λk in order of magnitude. The initial guess
can be far away from the true value, leav-
ing some λk rarely sampled. Particularly,
the variance of importance sampling grows
exponentially.
Applying Rao-Blackwellized strategy to
the identity

p(λ) = Eθ
[
p(λ |θ)

]
yields a lower-variance estimation

p̂RB(λ = λk) ∝
1
n

n∑
i=1

p(λk |θi).

But the smooth transition of β needs

KL
(
πλ, πλ+δλ

)
u constant

The optimal tuning of spacing is infeasible
without knowing z(λ). Thus, wewill expect
failure of IS if z(λ) changes rapidly.
Another justification: under normal ap-
proximation, the theoretical requirement for
K grows exponentially as dim(Θ) grows. It
is the same reason for inefficiency of im-
portance sampling in high dimensions.

Path sampling

We define a link function f : [0, 2] → [0, 1]
such that f (a) is flat near a = 0 and 1,
hence the base and target distribution can
be obtained directly from the joint samples.
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Figure 1: The link function λ = f (a)

Consider the geometry bridge between tar-
get φ(θ) and the base distribution ψ(θ):

p(θ |a) =
1

z(a)
φ(θ) f (a)ψ(θ)1− f (a).

where ψ(θ) is a known base distribution.
By construction, normalization constant

z(a) =
∫

ψ(θ) f (a)φ(θ)1− f (a)µ(dθ).

satisfies z(0) = 1.
Path sampling is based on the identity

d
da

log z(a) = Ea

[ d
da

log q(θ |a)
]

(1)

which dose not depends on the the prior
distribution c(a).
Summary of proposed algorithm:
•Sample from the extended joint

p(θ, a) = 1
c(a)φ(θ)

f (a)ψ(θ)1− f (a);
•Estimate log z(a) based on numerical
integration of (1);
•Update c(a) ← z(a) adaptively;
•Repeat until the marignal of a is uniform.
We next compare the results with other tem-
pering methods and show the proposed ap-
proach has a quicker convergence rate.

Figure 2: Results of the continuous tempering with path sampling
in a Cauchy example. The typical set is fully explored after iteration
5, and the marginal of a is nearly uniform after iteration 10.

Figure 3: Comparison of four tempering methods in a beta-
binomial experiment. Starting with a uniform guess, only CPT
converges to the the true value after 8 iterations, and fully explores
the typical set efficiently with HMC jumps in the joint space.


