Reproducibility and Stan

Aki Vehtari, Aalto University

and

Stan development team

with special thanks to

Andrew Gelman, Ben Goodrich, Bob Carpenter, Breck Baldwin, Daniel Lee, Daniel Simpson, Eric Novik, Jonah Gabry, Lauren Kennedy, Michael Betancourt, Rob Trangucci, Sean Talts

Funding acknowledgement: DARPA agreement D17AC00001, Academy of Finland grant 313122

mc-stan.org
Stan - probabilistic programming framework

- Language, inference engine, user interfaces, documentation, case studies, diagnostics, packages, ...
- More than ten thousand users in social, biological, and physical sciences, medicine, engineering, and business
- Several full time developers, 34 in dev team, more than 100 contributors
- R, Python, Julia, Scala, Stata, Matlab, command line interfaces
- More than 50 R packages using Stan
- Hamiltonian Monte Carlo / No-U-Turn-Sampling, ADVI, optimization
Reproducibility and Stan

1) Reproducibility of StanCon contributed talks
2) Reproducibility of Stan
3) Validation of Bayesian inference code
StanCon 2018
Helsinki, 29-31 Aug 2018

StanCon conference contributed oral submissions:
- Notebook submission
- On web page; notebook, link to a code repo, slides
- DOI via Zenodo

50% of invited speakers have also provided the code

Aki.Vehtari@aalto.fi – @avehtari – mc-stan.org
StanCon 2018
Helsinki, 29-31 Aug 2018

- StanCon conference contributed oral submissions:
 - Notebook submission
 - On web page; notebook, link to a code repo, slides
 - DOI via Zenodo
StanCon conference contributed oral submissions:
- Notebook submission
- On web page; notebook, link to a code repo, slides
- DOI via Zenodo

50% of invited speakers have also provided the code
Materials from StanCon

StanCon's version of conference proceedings is a collection of contributed talks based on interactive notebooks. Every submission is peer reviewed by at least two reviewers. The reviewers are members of the Stan Conference Organizing Committee and the Stan Development Team. This repository contains all of the accepted notebooks as well as any supplementary materials required for building the notebooks. The slides presented at the conference are also included.

License: unless otherwise noted, the text in this repository is distributed under the CC BY 4.0 License and code is distributed under the New BSD License. Copyright to the authors.

Contents:

- StanCon 2017 contributed talks
- StanCon 2018 contributed talks
- StanCon 2018 invited talks

StanCon 2017 | January 21, Columbia University, New York

2017 Peer reviewed contributed talks

Twelve Cities: Does lowering speed limits save pedestrian lives?

- Authors: Jonathan Auerbach, Rob Trangucci (Columbia University)

We investigate whether American cities can expect to achieve a meaningful reduction in pedestrian deaths by lowering the
Differential Equation Based Models in Stan

- Authors: Charles Margossian, Bill Gillespie (Metrum Research Group)

Differential equations can help us model sophisticated processes in biology, physics, and many other fields. Over the past year, the Stan team has developed many tools to tackle models based on differential equations.

DOI: 10.5281/zenodo.1284264

Links:
- Video
- Notebook and materials
- Slides
- http://metrumrg.com/
Differential Equations Based Models in Stan

Charles Margossian and Bill Gillespie

January 14, 2017

1. Introduction

Differential Equations can help us model sophisticated processes in biology, physics, and many other fields. Over the past year, the Stan team has developed many tools to tackle models based on differential equations.

1.1 Why Use Ordinary Differential Equations (ODEs)?

We deal with an ODE when we want to determine a function $y(t)$ at a specific time but only know the derivative of that function, $\frac{dy}{dt}$. In other words, we know the rate at which a quantity of interest changes but not the quantity itself. In many scenarios, the rate depends on the quantity itself.

To get a basic intuition, let us consider an example. Imagine a gas container with a hole in it. We can think of the gas as being made of molecules that move randomly in the container. Each molecule has a small chance of leaking through the hole. Thus the more molecules there are inside the container, the higher the number of escaping molecules per unit time.
We're not done yet! We also have data for the drug response. So let's see if the model's predictions agree with this data too:

```r
## predictions for future observations for drug effect
pred <- as.data.frame(fit, pars = "respObsPred")
```
<table>
<thead>
<tr>
<th>File</th>
<th>Description</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>figures</td>
<td>Remove space from directory name</td>
<td>2 years ago</td>
</tr>
<tr>
<td>models</td>
<td>Remove space from directory name</td>
<td>2 years ago</td>
</tr>
<tr>
<td>tools</td>
<td>Remove space from directory name</td>
<td>2 years ago</td>
</tr>
<tr>
<td>ODEStan.Rmd</td>
<td>Remove space from directory name</td>
<td>2 years ago</td>
</tr>
<tr>
<td>ODEStan.html</td>
<td>Remove space from directory name</td>
<td>2 years ago</td>
</tr>
<tr>
<td>pkgSetup.R</td>
<td>Remove space from directory name</td>
<td>2 years ago</td>
</tr>
</tbody>
</table>

Latest commit e018041 on 23 Jan 2017
```c++
transformed data {
  vector[nObs] logCObs;
  int nCmt;

  logCObs = log(cObs);
  nCmt = 3;  // Fixed. The code specifically handles models with 3 compartments.
}

parameters {
  real<lower = 0> CL;
  real<lower = 0> Q;
  real<lower = 0> V1;
  real<lower = 0> V2;
  real<lower = 0> ka;
  real<lower = 0> sigma;
}

transformed parameters {
  vector<lower = 0>[nt] cHat;
  vector<lower = 0>[nObs] cHatObs;
  matrix<lower = 0>[nt, nCmt] x;

  x = twoCptModel(time, amt, cmt, evid,
                   CL, Q, V1, V2, ka);
  cHat = col(x, 2) ./ V1;
  cHatObs = cHat[iObs];  // predictions for observed data records
}

model {
  CL ~ lognormal(log(10), 0.25);
  Q ~ lognormal(log(15), 0.5);
  V1 ~ lognormal(log(35), 0.25);
  V2 ~ lognormal(log(105), 0.5);
  sigma ~ cauchy(0, 1);

  logCObs ~ normal(log(cHatObs), sigma);
}

generated quantities{
  real cObsPred[nObs];
}
Reproducibility of notebooks

5 Original Computing Environment

```r
Warning in readLines(makevars_file): incomplete final line found on 'C:
\Users\Behop\ .R/Makevars'

CXXFLAGS=-O3 -Wno-unused-variable -Wno-unused-function

Session info --

setting value
version R version 3.4.1 (2017-06-30)
system x86_64, mingw32
ui RTerm
language (EN)
collate Spanish_Argentina.1252
tz America/Buenos_Aires
date 2018-01-31

Packages ---

package * version date source
BH 1.65.0-1 2017-08-24 CRAN (R 3.4.1)
colorspace 1.3-2 2016-12-14 CRAN (R 3.4.1)
dichromat 2.0-0 2013-01-24 CRAN (R 3.4.1)
digest 0.6.12 2017-01-27 CRAN (R 3.4.1)
ggplot2 * 2.2.1 2016-12-30 CRAN (R 3.4.1)
```
Reproducibility of R session

checkpoint: Install Packages from Snapshots on the Checkpoint Server for Reproducibility

The goal of checkpoint is to solve the problem of package reproducibility in R. Specifically, checkpoint allows you to install packages as they existed on CRAN on a specific snapshot date as if you had a CRAN time machine. To achieve reproducibility, the checkpoint() function installs the packages required or called by your project and scripts to a local library exactly as they existed at the specified point in time. Only those packages are available to your project, thereby avoiding any package updates that came later and may have altered your results. In this way, anyone using checkpoint's checkpoint() can ensure the reproducibility of your scripts or projects at any time. To create the snapshot archives, once a day (at midnight UTC) Microsoft refreshes the Austria CRAN mirror on the "Microsoft R Archived Network" server (<https://mran.microsoft.com/>). Immediately after completion of the rsync mirror process, the process takes a snapshot, thus creating the archive. Snapshot archives exist starting from 2014-09-17.

Version: 0.4.3
Depends: R (≥ 3.0.0)
Imports: utils
Suggests: knit, rmarkdown, testthat (≥ 0.9), MASS, darts, mockery, cli
Published: 2017-12-19
Author: Microsoft Corporation
Maintainer: Rich Calaway <richeala at microsoft.com>
Reproducibility of R session

- Checkpoint handles CRAN, but not git repos
- Checkpoint doesn’t handle external libraries and compiler environment
Reproducibility of Stan

- There is more code for tests than algorithms
- Continuous integration tests
- Regression tests
Reproducibility of Stan

Stan is designed to allow full reproducibility. However, this is only possible up to the external constraints imposed by floating point arithmetic.

Stan results will only be exactly reproducible if all of the following components are identical:

- Stan version
- Stan interface (RStan, PyStan, CmdStan) and version, plus version of interface language (R, Python, shell)
- versions of included libraries (Boost and Eigen)
- operating system version
- computer hardware including CPU, motherboard and memory
- C++ compiler, including version, compiler flags, and linked libraries
- same configuration of call to Stan, including random seed, chain ID, initialization and data
Time and machine independent reproducibility of stochastic computation

- In case of MCMC, even small differences in floating point arithmetic can lead to very different Markov chains
- To freeze everything containers could be used...
Reproducibility of inference algorithms

- If you make changes to your existing code or if you implement an algorithm from some paper, how do you know the code is correct?
Reproducibility of inference algorithms

- If you make changes to your existing code or if you implement an algorithm from some paper - how do you know the code is correct?
- In case of stochastic algorithms and differences in floating point arithmetic make bitwise comparison impossible
Is your code producing draws from the posterior distribution?

- In case of simple models with analytic marginal posterior distributions testing easier
Is your code producing draws from the posterior distribution?

- In case of simple models with analytic marginal posterior distributions testing easier
- Picking some true parameter values, generating a single data set from the model, and comparing whether the true parameter values are inside some interval is not enough!
Validating Bayesian Inference Algorithms with Simulation-Based Calibration
Talts, Betancourt, Simpson, Vehtari, Gelman

- Sample a ground truth from the prior, \( \tilde{\theta} \sim \pi(\theta) \)
Validating Bayesian Inference Algorithms with Simulation-Based Calibration
Talts, Betancourt, Simpson, Vehtari, Gelman

- Sample a ground truth from the prior, $\tilde{\theta} \sim \pi(\theta)$
- Sample data from the corresponding data generating process, $\tilde{y} \sim \pi(y|\tilde{\theta})$
Validating Bayesian Inference Algorithms with Simulation-Based Calibration
Talts, Betancourt, Simpson, Vehtari, Gelman

- Sample a ground truth from the prior, $\tilde{\theta} \sim \pi(\theta)$
- Sample data from the corresponding data generating process, $\tilde{y} \sim \pi(y|\tilde{\theta})$
- Sample from the posterior $\pi(\theta | \tilde{y})$ using your algorithm
Validating Bayesian Inference Algorithms with Simulation-Based Calibration
Talts, Betancourt, Simpson, Vehtari, Gelman

- Sample a ground truth from the prior, $\tilde{\theta} \sim \pi(\theta)$
- Sample data from the corresponding data generating process, $\tilde{y} \sim \pi(y | \tilde{\theta})$
- Sample from the posterior $\pi(\theta | \tilde{y})$ using your algorithm

$$
\pi(\theta) = \int \pi(\theta | \tilde{y}) \pi(\tilde{y} | \tilde{\theta}) \pi(\tilde{\theta}) d\tilde{y} d\tilde{\theta}
$$
Validating Bayesian Inference Algorithms with Simulation-Based Calibration
Talts, Betancourt, Simpson, Vehtari, Gelman

- Sample a ground truth from the prior, $\tilde{\theta} \sim \pi(\theta)$
- Sample data from the corresponding data generating process, $\tilde{y} \sim \pi(y|\tilde{\theta})$
- Sample from the posterior $\pi(\theta | \tilde{y})$ using your algorithm

$$
\pi(\theta) = \int \pi(\theta | \tilde{y}) \pi(\tilde{y} | \tilde{\theta}) \pi(\tilde{\theta}) d\tilde{y} d\tilde{\theta}
$$

- In case of finite number of draws analyse uniformity of the rank statistic
Overdispersed relative to the prior

Overdispersed relative to the prior.
Biased relative to the prior

![Graph showing distributions and rank statistic](image)
SBC

- Can be used to check algorithms and their implementations
- Works for MCMC and distributional approximations like INLA and VI
- Reference
Bonus: Garden of forking paths

- Instead of picking the best result, integrate over the paths
  - you can drop only paths with practically zero contribution to the integral

See, e.g.,
Bonus: Garden of forking paths

- Instead of picking the best result, integrate over the paths
  - you can drop only paths with practically zero contribution to the integral

- Instead of selecting a model by computing model selection criterion independently for each model, condition the selection given the integral over all the models

see, e.g.,
