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INTRODUCTION: TheMekong River provides
renewable energy and food security for a popu-
lation of more than 60 million people in six
countries: China,Myanmar, LaoPDR, Thailand,
Vietnam, and Cambodia. Seasonal rains flood
the river’s floodplain and delta. This flood pulse
fuels what is likely the world’s largest fresh-
water fishery in Cambodia’s Tonle Sap Lake,
with >2 million tonnes of annual harvest val-
ued at ~$2 billion. Hydropower development
is crucial to the region’s economic prosperity
and is simultaneously a threat to fisheries and
agriculture that thrived in the natural-flow re-
gime. The Mekong is testament to the food,
energy, and water challenges facing tropical
rivers globally.

RATIONALE:Wehypothesized that high fish-
eries yields are driven by measurable attributes
of hydrologic variability, and that these relation-
ships can be used to design and implement fu-
ture flow regimes that improve fisheries yield
through control of impending hydropower op-
erations. Hydrologic attributes that drive strong
fisheries yields were identified using a data-
driven approach that combined 17 years of dis-
charge and standardized harvest data with
several time-series methods in the frequency
and time domains. We then analyzed century-
scale timeseries ofdischargedataon theMekong
and associated hydroclimate data sets to under-
standhowcurrentdams, independent of climate,
have changed key drivers of the fishery since the
early 1960s. Finally, we used estimated hydro-
logic drivers of the historical bag net, or “Dai,”
fishery on the Tonle SapRiver—the largest com-
mercial fishery in theMekong—to design better
fisheries futures by comparing designed flows to
current and pre-dam (natural-flow) regimes.

RESULTS: Our analysis identified several fea-
tures of hydrologic variability that portend
strong fisheries yield. These include two “high-
level” descriptors: flood pulse extent (FPExt)
and net annual anomaly (NAA). FPExt, which
combines flood magnitude and duration, has
long been hypothesized to drive fisheries yield

in ecosystems subject to flood pulses, such as
the Mekong. NAA is the annual sum of daily
residual flows standardized to the long-term
average hydrograph. Hence, NAA is a compact
measure of hydrologic variance and can be fur-
therdecomposed intonine shape “components.”

Several of these components drive high fisheries
yields, including a long low-flow period followed
by a short, strong flood pulse with multiple
peaks. All essential drivers of the flood pulse
fishery have been changing since the closure
of the first Mekong tributary dam and are in-
dependent of changes associated with climate
observed over the past century. The direction
of these changes is consistent with declining
fisheries yield in the Tonle Sap. Projection of
the fishery driven by a hypothetical “designer”
hydrograph capturing the key shape features
associated with strong yield improved harvest
relative to current conditions; yield was pro-

jected to exceed that of the natural-flow regime
by a factor of 3.7. This result was robust to the
inclusion of density-dependent recruitment in
our time-series model.

CONCLUSION: A data-driven approach re-
veals a new perspective on hydrologic drivers
of fishery productivity in the Mekong. The ex-
tent of the flood pulse is paramount, as pre-

vious literature suggests,
but so are other descrip-
torsofhydrologicvariation,
including anomalous low
flows. Variance is key—
specifically, the sequence
and timing ofwithin-year

anomalous high and low flows. A focus on var-
iance shifts the conversation from “How much
water do we need?” to “When do we need it the
most, and when can we spare it?” Beneficial
components of variance in the hydrograph can
be described by a simple Fourier series—an
asymmetric rectangular pulse train. A quan-

titative ecological objective function fills a criti-
cal gap in the balancing of fisheries harvest
with other important objective functions in-
cludinghydropower generation, riceproduction,
and transportation. This opens the possibility
of specifying and implementing flow regimes
to manage rivers to satisfice trade-offs between
fishery productivity and other ecosystem ser-
vices provided by tropical rivers subject to flood
pulses.▪
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Rivers provide unrivaled opportunity for clean energy via hydropower, but little is known
about the potential impact of dam-building on the food security these rivers provide. In
tropical rivers, rainfall drives a periodic flood pulse fueling fish production and delivering
nutrition to more than 150 million people worldwide. Hydropower will modulate this flood
pulse, thereby threatening food security. We identified variance components of the
Mekong River flood pulse that predict yield in one of the largest freshwater fisheries in
the world. We used these variance components to design an algorithm for a managed
hydrograph to explore future yields. This algorithm mimics attributes of discharge
variance that drive fishery yield: prolonged low flows followed by a short flood pulse.
Designed flows increased yield by a factor of 3.7 relative to historical hydrology.
Managing desired components of discharge variance will lead to greater efficiency in the
Lower Mekong Basin food system.

H
ydropower is currently the dominant source
of renewable energy worldwide (1–4) and
is poised to power some of the poorest, pre-
dominantly rural, populations in the world
(5, 6). Storage of streamflow in reservoirs

and dam operations often dampen peak flows,
deliver higher base flows, and change the range
and frequency of discharge variability in rivers
worldwide (7–11). This hydrologic alteration—
from dams and other stressors—promotes the
invasion of non-native aquatic species (12, 13),
alters food web structure (14), and reduces bio-
diversity by homogenizing regional freshwater
faunas (10). Traditional river conservation under
the natural-flow regime paradigm (15) posits that
the restoration of pre-dam flow variability max-

imizes ecological outcomes (15–18). Although
many empirical studies support this hypothesis,
removal of large dams and restoration of pre-
dam conditions is rarely possible, especially for
systems with large hydropower dams or storage
reservoirs that have long lifespans and are central
to socio-environmental water systems (19).
In tropical basins, construction of mainstem

and tributary dams is imminent and requires fore-
sight about how these new facilities are imple-
mented. In these cases, strategic operation of
existing and future infrastructure to deliver the
right dose of variation via smart control (20–22)
may be a more effective and immediately de-
ployable strategy to deliver human and ecological
outcomes. This recent paradigm shift is fueling
much research on algorithm development to pre-
scribe ecological objective functions [e.g., (23)]
and optimize these with other competing objec-
tive functions to harness water for power genera-
tion, irrigation, and other human uses [reviewed
in (24)]. The framework for optimization is rich,
but the algorithms for prescribing an ecological
objective function are generally less well de-
veloped. Here, we address this limitation using
a data-driven time-series approach relating hydro-
logic variation to fishery yields, and we provide
tangible alternatives in the context of hydropower
development and inland fishery production in
the Lower Mekong Basin (LMB).
The Mekong is the eighth largest river by dis-

charge and hosts one of the largest inland fish-
eries in the world (25). The proposed scope of
hydropower development in the Mekong and
other tropical rivers in Asia, Africa, and South
America poses pronounced trade-offs for bio-

diversity and the production of freshwater fish
for food (26, 27). In the LMB,monsoon rains drive
a flood pulse that inundates floodplain habitats
throughout the basin. In flood-pulse fisheries,
the duration andmagnitude of the flood pulse—
which controls the spatial extent of inundation
(28)—is a key driver of production (28), but there
is some support for the notion that flood timing,
especially the relative sequence of weak and
strong flood pulses, is important (29, 30). This
suggests that regulation of the timing and mag-
nitude of the high and low flows could be har-
nessed to improve the fisheries. However, the
exact features of a hydrograph that could pro-
mote fishery yields in the LMB, and how these
might be translated into actionable design prin-
ciples, remain unknown.
We tested the historic role of multiple var-

iance components of the LMB hydrograph in
driving harvest of fishes (total annual harvest
in kilograms, standardized by effort) from the
bag net or “Dai” fishery on the Tonle Sap River.
The river connects the Mekong to the Tonle Sap
Lake, the largest lake and wetland in Southeast
Asia and a nursery habitat for as many as 300
species of fishes (25, 31), many of which provide a
key source of animal protein and vitamin A for
rural subsistence fishing and agricultural com-
munities (32–34). The Dai fishery is one of the
most valuable and productive commercial fish-
eries in the LMB (35 ) and has the longest and
most complete record of fishery catches in the
region, with biomass and species composition
data spanning 17 years (1996–2012) from 64 Dais
at 14 locations along the Tonle Sap River.
Our analysis expands on previous research in

at least three ways: (i) Our data-driven rather
than mechanistic modeling approach allows us
to connect key aspects of hydrology to fishery
dynamics while minimizing assumptions arising
from specified eco-physiological parameters (36).
Briefly, we leverage observed relationships be-
tween variance components of recent hydrology
and harvest to identify shape features in the
hydrograph that should maximize desired out-
comes for the future fishery. Hence, our analysis
provides a path for scientifically informed pro-
active management of a flood-pulse fishery in
systems in which a reasonable understanding of
the biological mechanisms at play is not within
reach. (ii) We focus on design of future hydrology
via ecologically informed dam operations. This
focus is timely in the Mekong given the im-
minence of extensive hydropower in the LMB
and the potential to undertake this development
in ways that minimize the impact on the fishery
(and thus on regional food security). The method
for design that we propose leverages a highly
flexible and well-understood spectral toolbox
that would have direct, transferable applicability
to systems engineers who operate dams. In short,
the design provides a potential tool for manag-
ing mainstem hydrology for fisheries as new
dams come on line. (iii) We articulate a set of
ecological design principles that achieve socio-
ecological goals by modifying the variance within
an annual hydrograph without increasing mean
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annual discharge. A focus on variance shifts
the conversation from “How much water do
we need for the fishery?” to “When do we need
it the most, and when can we spare it?” (37).

Defining the flow objective function for
the Tonle Sap fishery

We used a data-driven, time-series approach that
allowed us to quantify interannual variation
in discharge variance and connect this to change
in harvest of the fishery. Hydrologic variance
was quantified and decomposed into nine shape
components describing departure from the long-
term trend, using discrete fast Fourier transform
(DFFT) methods (38). These metrics of hydro-
logic variance were then tested in terms of their
ability to explain variance in fishery harvest ac-
cording to a multivariate autoregressive state
space (MARSS) modeling framework (39).

Discharge variance

We measured recent discharge variability and
century-scale hydrologic change (see below) using
DFFTmethods (38) (Fig. 1) on daily average stage
(water level) data for theMekongRivermainstem
(Stung Treng, Cambodia). The DFFT is a type of
spectral analysis that converts a time series into
a vector of amplitudes (power) and phases asso-
ciated with all frequencies in the data set (typi-
callyN/2,whereN is the length of data in the time
domain). In a hydrologic context, a small number
of these characteristic frequencies [<3 in most
cases (38)] constitute the characteristic signal of
the discharge time series: seasonal variation in the
hydrograph. We extracted this characteristic sig-
nal for the time series spanning 1993–2012 (con-
sistentwith the record of fishery yield, 1996–2012).
Using the characteristic signal for 1993–2012,

we then identified low- and high-flow deviations
from the characteristic signal. These deviations
are called anomalies, and they sum to zero across
the entire time series. However, there is consid-
erable interannual variation in the sum of within-
year anomalies. Hence, the sum of all positive and
negative anomalies in a year, or the net annual
anomaly (NAA), provides a simple composite
measure of annual discharge variance. Therefore,
NAA describes anomalous or atypical wetness
(positive NAA) or dryness (negative NAA) in any
given year (40, 41).
TheNAA, in turn, consists of nine components

that define the sequence of deviation (i.e., the
shape) of the annual hydrograph in terms of
magnitude, duration, and frequency of low and
high anomalies (Fig. 1). Noteworthy among these
are the interflood interval (IFI), whichmeasures
the number of contiguous days between maxi-
mumhigh-flow anomalies in adjacentwater years,
and the equivalent interdrought interval (IDI) that
measures contiguousdaysbetweennegative anom-
alies. Spectral anomaly magnitude and frequency
(SAM and SAF) respectively quantify the strength
and number of independent observations of
within-year anomalies. Thus, these metrics can
be negative (low, or LSAM) or positive (high, or
HSAM) relative to the long-term average condi-
tion. The timing of LSAM andHSAM can bemea-

sured against the expected long-term peak signal
(in days). Finally, transition time measures the
number of contiguous days between the daywith
the greatest absolute magnitude LSAM and the
day with the greatest HSAM (Fig. 1). See table S1
for quantified annual measures of NAA and its
nine component measures of variance for the
record spanning 1996–2012.
We further quantified a more standard mea-

sure of the magnitude of the flood pulse: flood
pulse extent or FPExt. FPExt is defined as the
average deviation between stage and baseflow
multiplied by the number of days in which flow
exceeds baseflow (i.e., average magnitude × du-
ration). Thismetric has been positively related to
the spatial extent of flooding and fish harvest in
flood-pulse fisheries (28). In our analysis of hy-
drologic drivers of the fishery, we divided these
11 metrics into two groups of covariates: “high-
level” (HL), including FPExt andNAA, and “NAA-
component,” including IFI, IDI, HSAM, LSAM,
HSAF, LSAF, timing of HSAM and LSAM, and
transition time.

Flow-fish relationships

Flow-fish relationships were developed using
catch (biomass in kilograms) and effort data (Dai
days, equal to number of fishing days across all
Dais in a given Dai row and year) collected by
the Inland Fisheries Research and Development
Institute of Cambodia and maintained by the
Mekong River Commission. The data set includes

monthly species-specific harvest, allowing the
calculation of catch per unit effort (CPUE) for 64
Dais in 14 locations on the Tonle Sap River. We
pooled catch data within location for each year,
culminating in a data set of 14 time series of total
CPUE, each 17 years long.
The relationship between annual HL and

NAA-component drivers and total CPUE was
determined using a multivariate autoregressive
state-space (MARSS) framework. Multivariate
autoregressive models are common in econome-
trics, where they are referred to as vector autore-
gression. In ecology they have been used most
often to identify drivers of community and food
web dynamics [reviewed in (36)]. Because they
do not require eco-physiological parameters,
MARSSmodels can be less challenging to param-
eterize than mechanistic models; instead of
measuring the parameters, those parameters are
inferred from observational time-series data ac-
cording to theory about temporal correlation pat-
terns (42).More specifically, abundance time series
are used to estimate parameters associated with
population growth, biotic interactions, or envi-
ronmental stochasticity (42).Moreover, the state-
space approach enables the separation of often
substantial observation error from true fluctua-
tions in yield, allowing for amore accurate identi-
fication of drivers (43, 44). We used the “MARSS”
R-package (39), which provides support for fitting
MARSS models with covariates to multivariate
time series data via maximum likelihood, using
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Fig. 1. Illustration of variance components of a hydrograph, including the net annual
anomaly (NAA) and its components. The spectral anomaly magnitude is the largest negative
(1, LSAM) or positive (2, HSAM) anomaly within an 18-month hydrologic window that includes
two peaks and troughs in the long-term seasonal signal (cyan solid sinusoidal line). Timing of
HSAM and LSAM (3 and 4, in days; timeH and timeL, respectively) is determined with reference
to the ordinal day of the peak in the long-term seasonal signal (star). Transition time (5) is the
number of days separating LSAM and HSAM in the same 18-month window. Finally, the durations
of consecutive strings of low-flow and high-flow anomalies (in days) are the IFI (6) and IDI
(7). The spectral anomaly frequencies (HSAF and LSAF, not illustrated here) are numbers of
independent high- and low-flow events in the same 18-month window, where independence is
determined by intersection with the long-term seasonal signal (38).
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an expectation maximization algo-
rithm. In our case, the covariates are
annual measures of hydrologic var-
iation extracted fromDFFT. Inmatrix
form, theMARSSmodel can be writ-
ten as

xt ¼ Bxt�1 þ Cct þwt ð1Þ

yt ¼ Zxt þ vt ð2Þ

where wt ~ MVN(0, Q) and vt ~
MVN(0, R). The fishery data are
harvests of all species in one year
from a single row of Dais (hereafter,
“Dai”) standardized by effort (CPUE),
where effort is Dai days in a year.
These data enter the model as y in
Eq. 2, where yt is the log-transformed
CPUE of all species at each Dai. We
thenmodeledCPUEas a linear func-
tion of the “unobservable” or true
catch (xt) and vt, a vector of obser-
vation errors. In the state process
(Eq. 1), B is an interaction matrix
that can be used to model the ef-
fect of abundances on each other
(e.g., density dependence), C is the
matrix whose elements describe the
effect of each hydrologic covariate
on abundance at eachDai, andwt is
a matrix of the process error, with
process errors at time t beingmulti-
variate normal with mean 0 and
covariance matrix Q. In our case,
the covariate data (ct) comprised a
suite of 11 possible metrics of dis-
charge variation for the current har-
vest year described above (Fig. 1),
thereby allowing us to measure the
impact of hydrology at time t (i.e.,
this year) on the change in harvest
between t – 1 and t (i.e., last year
and this year).
The number of covariates is large in number

relative to our data set; more important, many
of the covariates are likely correlated (e.g., HSAM
and LSAM should be negatively correlated within
a year). In addition to this, not all covariates are
likely important. To address potential estimation
bias associated with collinearity and model over-
specification, we devised a three-stepmodel selec-
tion routine: (i) We divided our drivers into HL
and NAA-component groups, and carried out se-
parate MARSS analysis on the same CPUE data
using either HL or NAA-component drivers as
covariates. HL drivers are highly correlated (fig.
S9) but not collinear [variance inflation factor
(VIF) < 5]. Hence, the HLmodel included both
NAA and FPExt. The observation that NAA and
FPExt are correlated underscores the positive
relationship between high-flow anomalies cap-
tured in NAA and the extent of the flood pulse.
The lack of collinearity reinforces the indepen-
dence of low-flow events and FPExt. (ii) For the
NAA-component model, we first screened drivers
with potentially high collinearity, eliminating all

drivers with VIF > 5. (iii) This VIF screen was
followed bymodel selection using an all-possible-
subsets (APS) routine on the model with all re-
maining, noncollinearNAA-component covariates.
In this APSwe considered onlymain effects (not
interactions) of the remaining independent NAA
drivers. Alternative models were tested using an
information-theoretic approach [Akaike’s infor-
mation criterion corrected for small sample size,
AICc (45)] that represented different hypotheses
concerning which drivers best explain observed
fishery yields. Included in model selection were
all possible combinations of hydrologic variables
(after culling for strong collinearity). Ranges in
effect sizes of all parameters are presented as 95%
confidence intervals (CIs) basedon 1000parametric
bootstrap samples (41).

Result 1: An ecological objective function
for the Mekong

We found that FPExt had strong positive effect
sizes and that NAA had strong negative effect
sizes, indicating that flood pulse extent and low

flows (negative NAA) are almost
equally strong and significant driv-
ers of the fishery (Fig. 2 and Table 1).
Of the many shape components of
NAA (41), four were positively related
to fish catch: the interflood interval
(IFI), the maximum magnitude of
spectral anomalies (HSAM), the fre-
quency of events with large positive
spectral anomalies (HSAF), and the
minimum (negative) magnitude of
spectral anomalies (LSAM). Of these
high-level drivers, IFI had the highest-
magnitude effect, followed closely by
HSAM. However, the effect of LSAM
was significant inmagnitude, indicat-
ing that low flows (i.e., IFI, LSAM) are
as important in determining catch
as the magnitude of the flood pulse
itself (HSAM, Fig. 2). Hence, the de-
sign principles for productive fish-
eries in this system include a long dry
period (large IFI, large-magnitude
negative NAA and LSAM) punctu-
ated by a strong flood pulse (large
FPExt and HSAM) characterized by
multiple storm peaks (high HSAF).
Variance, in addition to the magni-
tude of the flood pulse, is paramount.

Density dependence

Our initial analysis assumed density
independence (i.e., a Bmatrix with
ones in the diagonal and zeros in
the off-diagonal elements in Eq. 1),
based on the assumption that high
fishing pressure shouldmaintain total
density below the level triggering
negative feedbacks.Despite this likely
scenario, we also analyzed HL and
NAA-component models assuming
density dependence (i.e., B diagonal
estimated by MARSS rather than
fixed at 1). For HL models, the sign

and relative magnitude of coefficients for FPExt
and NAA were preserved; the flood pulse and
negative NAA had positive effects on the fishery
in the density-dependentHLmodel.However, the
effect size for NAA was nonsignificant under the
assumption of density dependence, likely owing
to lower power in a more heavily parameterized
model. Similarly, for NAA-component models,
effect sizes generally were in accord between
density-independent and density-dependent models
(Fig. 2). NAA-component models under both
assumptions featured significant effect sizes of
IFI andLSAM.One significant difference between
these twoNAA-componentmodels was a stronger
influence of low flows in the density-dependent
model (high-magnitude effect size for LSAM and
nonsignificant effect size for HSAM and HSAF).
We note that one of the NAA-component density-
dependent candidatemodels producedanull (zero)
process error variance estimate, thereby precluding
propermodel averaging andprescription of robust
density-dependent designs. This was likely caused
by limited data relative to estimated parameters,
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Fig. 2. Weighted coefficients (effect sizes) and 95% confidence
intervals from the MARSS models quantifying the hydrologic drivers on
catch per unit effort in the Dai fishery on Tonle Sap River. (A) Results
from the density-independent model; (B) results from a model that
includes density dependence. The fishery has been monitored annually at
14 Dais since 1996; we analyzed quality-controlled data from 1996 to 2012.
Hydrologic drivers are estimated from daily stage of the Mekong river at
the Stung Treng gage (record: 1993–2012). Drivers are defined in Fig. 1.
Where confidence intervals cross the dotted line (zero), effect sizes are
not statistically significant.
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which was not the case for any of the density-
independent candidate models. Nonetheless,
regardless of the assumption about density de-
pendence, the flood pulse and low-flow anom-
alies are important (positive) predictors of harvest
(CPUE) (41).

Long-term hydrologic change vis-à-vis
design principles

Our observation that the ideal hydrograph for
the fishery is one with a long dry period punc-
tuated by a large-magnitude flood pulse is troubl-
ing, given observed trends in discharge variation
in the LMB. Substantial work suggests that dams
mute variation, dampening the flood pulse and
augmenting low or base flows (46–48). We devel-
oped a spectral approach to quantify century-
scale change in discharge variance, and we used
this new tool to measure change in high-level and
NAA-component drivers of the Mekong fishery
with reference to the closure of the first dam on
the Mekong (Ubol Ratana dam in the head-
waters of the Mun River, Thailand, in 1964). This
dam was chosen not to imply that all potential
change in hydrology derives from a single struc-
ture (Ubol Ratana), but rather to pinpoint the
start of extensive and continued development
in the basin.

Century-scale hydrologic change

We constructed a detrended hydrologic baseline
using a windowed average DFFT analysis across
all 37 consecutive 20-year time series from 1910
to 1964 (e.g., 1910–1919, 1911–1920,…, 1945–1964)
predating the closure of Ubol Ratana. In each
window, we estimated the trend, characteristic
phase, amplitude, and frequency of the signal.
This produced a sample of 37 point observations,
which was bootstrapped to generate unbiased
measures of central tendency for these historical
parameters. Bootstrapped values for frequency,
amplitude, and phase of significant signals allow
us to reconstruct a detrended historical baseline
(hereafter “baseline”; green line in Fig. 1).
With a detrended baseline in hand, we then

compared (detrended) post-dam time series to
the baseline to estimate NAA and its components.
This was done using a windowed approach as
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Fig. 3. Century-scale changes in hydrology and climate. (A and B) Change in high-level (HL)
hydrologic drivers of the Tonle Sap fishery. Panels show estimatedmetrics (circles) as raw estimates (A)
or as deviations from the average long-term pre-1964 trend (B). In both cases, hydrologic drivers are
estimated from a 20-year window of data and plotted by the midpoint of this window, and estimates are
overlaid with nonparametric broken-stick regression lines.Wide, light-gray boxes indicate the hydrology
data window that includes closure of the first large dam in the basin (Ubol Ratana, Mun River basin,
Thailand). Vertical solid lines indicate statistically significant breakpoints in the data as quantified by
nonparametric multiple change point analysis.Where multiple breakpoints exist, thickness of lines
indicates the order of breakpoint identification, with thicker dashed lines indicating first breakpoints.
(C and D) Change in basin-wide hydroclimate. Hydroclimate change is estimated as basin-wide Palmer
Drought Severity Index (PDSI) reconstructed from tree rings (climate). Climate is a point estimate for
that year (no window); raw estimates are overlaid with nonparametric broken-stick regression lines as in
(A). Narrow, darker gray boxes indicate the climate data window that includes the same closure.Wide,
light-gray boxes and vertical solid lines (and thicknesses) are as in (A) and (B). (E to G) Change in
NAA-component hydrologic drivers of the Tonle Sap fishery. NAA components capture the shape
features of discharge variance (i.e., NAA). Change in metrics was estimated as in (B) by estimation of
departure from long-term pre-1964 trend. All symbols, lines, and boxes are as in (A) and (B).

Table 1. Parameter estimates for density-independent MARSS models on historical hydrology and catch data. All variables except the net annual

anomaly under density dependence show significant effects (i.e., 95% confidence intervals obtained via bootstrap nonoverlapping with zero); CL, confidence limit.
Parameters from the HL model assuming density dependence are included in parentheses. Transition time, IDI, and timeH were excluded because of collinearity or

nonsignificant effect sizes.

Variable AICc weight Weighted coefficient Weighted SE Upper CL Lower CL

Flood pulse extent (FPExt) 1 (1) 1.080 (0.574) 0.313 (0.2) 1.693 (0. 96) 0.467 (0.18)
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. .

Net annual anomaly (NAA) 1 (1) –0.813 (–0.27) 0.318 (0.2) –1.437 (0.12) –0.189 (–0.68)
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. .

Interflood interval (IFI) 0.522 0.345 0.128 0.596 0.094
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. .

HSAM 0.522 0.322 0.119 0.556 0.088
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. .

HSAF 0.478 0.187 0.070 0.196 0.177
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. .

LSAM 0.151 0.066 0.085 0.080 0.051
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. .

LSAF 0.135 –0.034 0.070 –0.025 –0.044
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. .

Timing of low (timeL) 0.286 –0.055 0.069 –0.045 –0.064
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. .
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above, but across all 83 consecutive 20-year time
series from 1910 to 2012 (e.g., 1910–1919,… 1965–
1984, 1966–1985, …, 1993–2012). Hence, both
pre-dam and post-dam data were compared to
a smoothed and bootstrapped baseline to obtain
83 point estimates of NAA and the components
of NAA. Comparison of detrended post-dam ob-
servations to detrended baseline hydrology al-
lowed us tomeasure changes in variance (second
moment) not confounded by changes in the trend
(first moment). We also estimated average FPExt
numerically across this same record for all 83
20-year time windows in our record. We have

thoroughly documented these methods (see
below).

Breakpoint analysis

With 83-year time series for FPExt, NAA, and NAA
components, we identified breakpoints in the
time series using a divisive hierarchical estimation
algorithm for multiple change point analysis
(49, 50). To further strengthen the inference that
dams, andnot changes in climate,were responsible
for any observed changes in hydrologic variance,
we performed the same breakpoint analysis on
annualized, basin-scale Palmer Drought Severity

Index (PDSI) estimates reconstructed from tree
ring data (Fig. 3) (51, 52).

Result 2: Change in hydrologic variance
after dam closure

Our measure of FPExt has declined since the
closure of the first dam on the Mekong, and
there have been similar declines in IFI, HSAM,
and HSAF and countervailing increases in NAA
(Fig. 3) (41). Thus, dam development changes
hydrologic variation in a manner exactly oppo-
site to the pattern that promotes higher fishery
yields. Hydroclimate has changedmultiple times
over the observed discharge record (1910 to the
present), but identified breakpoints of change
in the hydrograph do not coincide with changes
in the PDSI. However, they do coincide with the
period of dam closure (1954–1974) in tributaries
of the LMB.Many of the initial damswere storage
facilities (41, 53) that greatly affect the shape (11)
and hence the NAA components of the hydro-
graph (Fig. 3).

Restoration potential of designed and
natural flows

As with some of the first dams closed on tri-
butaries of the LMB, many of those slated for
construction in the Sekong, Sesan, and Srepok
tributaries of the Mekong in Lao PDR, Vietnam,
and Cambodia will create floodwater reservoirs
that have potential to be used for dry-season agri-
culture (48) and could thus be used to generate
designed flows. We hypothesized that implemen-
tation of controlled releases from these storage
facilities mimicking the key design principles
articulated above would deliver desired fishery
targets equally or more effectively than restora-
tion of the natural-flow regime.

Spectral implementation of an ecological
objective function

To test this hypothesis, we developed a flexible
algorithm using a signal-processing tool kit that
generates target river flows that capture key
hydrologic elements associated with strong fish-
ery yield (Fig. 2). This algorithm is a compound
sinusoidal generating an asymmetric rectangular
pulse train:

xt ¼ a0 þ
X∞

n¼1

an cos2p ftn �
X∞

n¼1

bn sin2p ftn

ð3Þ
where a0 = Ad, an = (2A/np) sin npd, and d = k/T.
Here, A, d, f, k, n, t, and T are the amplitude,
duty cycle, frequency, length of the flood pulse,
wave series number, time (in days), and period
(365 days), respectively. Here we consider an
asymmetric rectangular wave (bn = 0) to produce
a deterministic hydrograph with known charac-
teristics that was then corrupted with red noise:

ct ¼ rxðt � DtÞ þ ½ð1� r2Þ1=2et � ð4Þ

where et ~ N(0, s), r = 0.95, and s = 0.042.
Asymmetry (i.e., longer IFI) arises in this pulse

train from a short duty cycle (associated with a
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Fig. 4. Illustration of designed flows including a “Good” design, a “Bad” design, and the
reconstructed historical or “natural-flow” regime. Good designs are asymmetric rectangular
pulse trains with long troughs (i.e., long IFI) and punctuated high flows (HSAM; see Eq. 3);
the shape of the Good design emerges from setting the duty cycle (d = k/T) of the pulse
train low (d = 0.41, k = 150-day flood pulse) and the amplitude high (A = 0.7). Under these
conditions, there is a large negative NAA owing to sustained negative anomalies across the
trough of the pulse train, as well as high IFI and HSAM, all three of which generate a positive
harvest. Bad designs have lower asymmetry, leading to positive anomalies in the trough (low IFI)
and a weak flood peak. The dot-dashed line is the reconstructed historical signal.
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brief flood pulse), and the reddened noise spec-
trum provides a more natural random walk that
is characteristic of storm sequences. We created
two designed flows—a “Good” design (long IFI
and large relative amplitude of flood pulse) and
a “Bad” design (shorter IFI and small relative
amplitude of flood pulse)—simulating the expected
effects of medium-term hydropower develop-
ment (Fig. 4).We also created pre-damhydrographs
representing restoration of the natural-flow re-
gime by resampling a >50-year record of observed
annual metrics for NAA and FPExt from the
observed record before the closure of the first
dam on the LMB in 1964, and strings of NAA and
FPExt representing current conditions (Fig. 4).
We then projected the fishery forward, preserv-
ing the same MARSS model structure and using
the estimated coefficients for discharge anomaly
effects (in C) and process error variance (inQ).
Trajectories of fishery catch were constrained by
the HLmetrics for each scenario. We used catch
at each Dai in 2012 as initial values, ran 100,000
simulations per scenario, and then pooled abun-
dances across Dais by realization to obtain 2.5,
25, 50, 75, and 97.5 percentile catch levels at each
time step (8 years, i.e., 2013–2020).
For each scenario, we computed “global deltas”

as the difference between median pooled catch
at the simulation end (year 8) and initial pooled
catch, divided by the initial pooled catch (i.e., ob-
served pooled values in 2012). We similarly com-
puted “annual deltas” between successive years,
and calculated a mean annual delta for each sce-
nario as a relevantmetric for fisherymanagement
(i.e., the expected percent change in next year’s
fishery in response to changes in the flow regime).
Finally, to test the robustness of our findings under
different assumptions, we compared the projec-
tions obtained in the previously describedmodel
to those obtained in a model that incorporates
density dependence [that is, an aggregate mea-
sure of carrying capacity of the fisheries (41)].

Result 3: Engineered hydrograph
performs as well as or better than
natural-flow regime

Natural flow restoration (the “Pre-dam” scenario)
produced a 47% annual increase in yield (median
biomass) relative to the modern fishery (Fig. 5A

and Table 2) under the assumption of density
independence. This increase is likely attributable
to a stronger flood pulse during the pre-dam era
captured by the reconstructed covariates used
to project this scenario. This increase was not,
however, significant (CI: –0.72 to 733.54%). De-
spite substantial increases under restoration of
natural flows, designed flows mimicking long
IFI and a short but strong flood pulse (the “Good”
design) produced even greater yields thannatural-
flow regimes (76% annual increase; Fig. 5A and
Table 2).
The lower bounds of 95% CIs were positive

(i.e., the intervals did not include zero) for both
the projected harvest (Fig. 5) and the global deltas
based on 10,000 resampled realizations (CI: 0.66
to 2022.17%; Table 2). This indicates higher cer-
tainty in increased yield under this scenario than
under restoration of natural flows. Global deltas
by the end of the 8-year forecast under the Good
design exceeded those under the Pre-dam sce-
nario by a factor of 3.7 (Table 2). These improve-
ments in yield emerged evenwith designed flows
featuring an average flood pulse—comparable in
magnitude to that of the observed (current) hy-
drological record—by accentuating variation be-
tween high and low flows via long IFI and short
and strong HSAM (Fig. 4). By contrast, short IFI
and amuted flood peak (“Bad” design; Fig. 4) led
to sharp (53%) annual declines in yield in the Dai
fishery (Fig. 5 and Table 2).
The direction of change under each scenario

did not change if density dependence was in-
cluded in the model (Fig. 5). The differences be-
tween theGood design and the Pre-dam scenario
were dampened: By the end of the projection, the
Good design under density-dependent models de-
livered total deltas that were higher than those for
the Pre-dam scenario by a factor of 1.6, versus a
factor of 3.7 difference under density-independent
models (Table 2). However, the Good design was
again the only scenario delivering a certain
(P> 95%) catch increase by the end of the forecast
(Fig. 5 andTable 2).Hence, engineering the timing
of lows and highs relative to the natural-flow
regime can produce results similar to or better
than mimicking the natural-flow regime itself.
Finally, a sketch of existing and planned dam

locations and reservoir storage with respect to

key spawning areas for Tonle Sap Lake fish tied
to regional food security suggests that designed
flows are possible (Fig. 6). There is already ade-
quate storage in existing storage facilities in China,
and in the tributaries of theMekong in Lao PDR
and Thailand, to store and release designed flows.
By contrast, further development of mainstem
hydropower facilities lower in the basin presents
a trade-off between access to key spawning areas
and the flexibility to deliver designed flows from
storage facilities. Specifically, the closure of main-
stem dams in Cambodia would make designed
flows moot, as all upstream spawning grounds
would be inaccessible to Tonle Sap Lake fishes.

Conclusion and outlook for managing
the Mekong

Our results have implications for themanagement
of hydropower development in tropical river
basins, many of which provide food security in
some of the poorest countries in the world via
capture fisheries. In this context, previous work
suggests two hypotheses to explain how dams di-
minish production of inland fisheries: (i) by re-
ducing connectivity and dispersal (54), and (ii) by
reducingprimaryproductivity through the entrap-
ment of sediment supply and associated nutrient
delivery from headwaters to downstream nursery
habitats (46, 55). The importance of a long drought
period (high IFI) suggests that changes in the
timing of drought and of the flood pulse influence
secondary production and fish harvest indepen-
dent of impacts on connectivity and sediment
supply. Therefore, we propose a third hypothesis:
Flow variation (high and low) may drive produc-
tion by controlling redox conditions in floodplain
soils, and hence the production of terrestrial nu-
trients and organic matter and the transfer of this
material to the aquatic ecosystem. This hypothe-
sis, however, remains untested. Alternatively, the
importance of a large flood pulse (large FPExt)
may in part be related to increased catchability of
fish at highwater levels. Our state-space approach
distinguishes between real fluctuations in the
fishery and fluctuations in catch numbers arising
fromvariability in observation or sampling. This
provides evidence against this fourth hypothesis
and suggests that our conclusion may be robust
to flow-related increases in catchability. Future
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Table 2. Results of the MARSS simulations under the four scenarios. Annual deltas are the average percent increase in median catch between

successive years. Global deltas represent the difference between the final (year 8) median pooled catch and the initial catch (year 1 of the simulation),
divided by the initial catch (year 1 of the simulation), with the result expressed as a multiple of initial catch. See Fig. 5 for confidence intervals of the

simulations. The Good scenario performed best in both density-independent (DI) and density-dependent (DD) forecasts (their deltas are larger than those of

the respective Pre-dam flow regimes by factors of 3.7 and 1.6); they are the only scenarios delivering a certain (P > 95%) catch increase by the end of
the forecast, regardless of the model structure used. Ranges in parentheses are 95% confidence intervals of global deltas, based on 10,000 random resamples

of the pooled realizations of Fig. 5.

Model structure Metric Good Bad Pre-dam Current

DI projections Annual delta (%) 76.13% –53.38% 47.27% 5.84%
.. .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... ..

Global delta 51.27 (0.66 to 2022.17) –0.995 (–1.00 to –0.83) 14.02 (–0.72 to 733.54) 0.485 (–0.98 to 99.92)
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ...

DD projections Annual delta (%) 21.66% –9.50% 15.79% 4.87%
.. .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... ..

Global delta 2.87 (0.12 to 17.45) –0.519 (–0.79 to 0.12) 1.75 (–0.24 to 13.44) 0.389 (–0.63 to 5.84)
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ...
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research should attempt to distinguish the rel-
ative importance of these four possible mech-
anisms linking hydrologic variation to fishery
catches.
The asymmetrical pulse train specified above

(Eqs. 3 and 4) represents a flexible design algo-
rithm that captures fundamentally important
features of hydrologic variance for fish produc-
tion and yield in theMekong. Long IFI also drives
primary production in desert rivers, where nitrogen
accumulation within the watershed and subse-
quent input are positively related to a discharge
sequence including long dry periods (months) fol-
lowed by exceptional high flows (56–58). Hence,
the asymmetric pulse train could be a general
design principle with wide application in fresh-
water conservation with respect to environmen-
tal flow restoration. Regardless of its generality,
identifying robust ecological objective functions
early in the planning process is a necessary pre-
cursor to optimization with other competing ob-
jective functions (i.e., hydropower); the pulse train
provides a viable ecological objective function for
sustainable operations of existing and planned
dams in theMekong. Although designed flows are
a potentially powerful tool to increase fish produc-
tion and therefore fishery yield, a designparadigm
does not guarantee sustainability of the resource.
Exceptionally little is knownabout the current level
of sustainability of the LMB fishery. Nonetheless,
implementing designed flows coupledwith inten-
sive time-seriesmonitoring of catch can provide a
means to better understand andmanage the fish-
ery through adaptive management (59).
Because the record used in this analysis post-

dates all major recent dam construction in the
lower Mekong, our inferences are relevant de-
spite any past impacts of dams on upstream dis-
persal and downstream sediment transport. Future
impacts of dams on migration and sediment

delivery are, however, not directly considered in
this analysis. The majority of fishes migrating
in and out of the Tonle Sap are small explosive
breeders in the familyCyprinidae (Henicorhynchus
spp.,Labiobarbus spp., andParalaubuca spp.; total
length <25 cm) and likely do not migrate long
distances relative to the longer-lived catfishes
(e.g., Pangasiidae) and larger barbs and carp
(e.g., Probarbus, Catlocarpio; family Cyprinidae).
These small cyprinid fishes are nonetheless a staple
in the dailymeals of local residents across the LMB,
and have even given their name to the Cambo-
dian currency [riel (60)]. This tight connection
between fish and human society underscores the
need for formal trade-off analysis between hydro-
power and food systems, including fish and rice.
This task is achievable given the articulation of
an ecological objective function for theMekong,
as described above, and the breadth of approaches
in multi-objective optimization already available
(24, 61–63).

Methods

Our data-driven approach connects past hydro-
logic dynamics of theMekong to fishery resources
(specifically, fishery catches standardized by ef-
fort), and uses estimated coefficients based on
the historical covariation to designed flows and
forecast fishery catches under different scenarios
(Fig. 7). Each step is further articulated below.

Step 1: Quantifying past hydrological
change and variability

Discrete fast Fourier transform (DFFT) and
discharge variability metrics

Using available stage data at the Stung Treng
gage, we identified daily discharge anomalies
using DFFT (38). Fourier analysis allows for the
extraction of the characteristic seasonal profile

of a time series, constituted by the recurrent fre-
quencies, amplitudes, and phases. With the re-
constructed hydrograph (or “seasonal profile”),
it is then possible to identify low- and high-flow
anomalies, or departures from the expected sea-
sonal profile. We defined a suite of metrics for
characterizing discharge variability, as follows:
Flood pulse extent (FPExt) (28) is defined as

the product of the average deviation between
stage and baseflow and the number of days in
which flow exceeds baseflow (i.e., average mag-
nitude × duration). Here, we defined baseflow as
the average stage for the time series. To estimate
NAA, we rely on spectral methods defined in (38).
A spectral anomaly is the difference between the
daily observation and the “characteristic” or
20-year seasonal signal obtained from the fre-
quency domain viaDFFTand reconstructed in the
time domain (Fig. 7). NAA is the net sum of all
positive and negative anomalies in a year. Al-
though the net sum for the entire time series
used to estimate the characteristic signal is null,
there is generally ample interannual variation in
this statistic. In this way, NAA describes anom-
alous or “atypical” wetness (positive NAA) or
dryness (negative NAA).
NAA (40) is a composite measure of deviations

from an expected hydrograph. Its components
are events that occur outside of the expected
season (timing component) or are larger than
expected for a given season (magnitude compo-
nent), happenmore often (frequency component),
or last longer (duration component) than those
constituting the characteristic signal. Collectively,
the timing, magnitude, frequency, and duration
describe the shape of the annual hydrograph and
its departure from the norm. Hence, we developed
spectral-basedmetrics for magnitude, frequency,
and duration [following (38)] as well as newer
metrics of timing that are relevant to flood pulse

Sabo et al., Science 358, eaao1053 (2017) 8 December 2017 7 of 11

Fig. 5. Projections of fish harvest under designed and natural
flows. (A) Density-independent models; (B) density-dependent
models. Short-term (8-year) stochastic projections of total biomass
harvested from the Tonle Sap Dai fishery forced by hydrologic

conditions that mimic Good and Bad design principles, as well
as the Current and Pre-dam (natural-flow) regimes (46). Good
designs include high FPExt and negative NAA (high-level
drivers).
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systems (Fig. 1). Noteworthy newmetrics are IFI,
which measures the number of contiguous days
between high-flow anomalies, and IDI, which
measures contiguous days between negative
anomalies. Finally, transition time measures the
number of contiguous days between LSAM and
HSAM (the anomalies with the highest negative
and positive spectral anomaly magnitudes).
Using these spectral metrics, we set out to

quantify changes in the flood pulse and mea-
sures of daily hydrologic variation (from DFFT)
across the LMBbefore and during periods of active
dam construction (pre-dam, 1910–1964; post-dam,
1965–2008). The year 1965 marks the closure
date of Ubol Ratana dam on the Phong River in
Thailand, the first dam on the Mekong system.
Over the ensuing 6 years (1965–1971), four addi-
tional dams were built in tributaries, resulting in
five reservoirs with a total of ~11.56 km3 in active
storage, the bulk of which is held in Nam Ngum
1, Lao PDR (7 km3). Given the large increase in
tributary storage between 1966 and 1971, we hy-
pothesized that filling and ensuing operations of
these five reservoirs changed the timing of daily
high and low flows (within years) and that changes
in timing are observable as changes in NAA and
its components.

Windowing with bootstrapped baseline

The direct before/after comparison provides a
means for measuring absolute but not relative
change in key characteristics of the hydrograph.
Here, we present a method for prescribing a
baseline trend and signal from the historical
record (before 1965) that is then used as a refer-
ence for comparing current hydrology (after 1965).
Our baseline is appealing because it is derived
from a distribution of baselines resampled from
different windows of the historical climate record.
This windowing approach requires a long time
series, and the Stung Treng record provided ade-
quate sample size to develop a robust baseline.
We used the stage data set from the Mekong

River at the Stung Treng gage from 1910 to 2008.
As above, we split this time series into a histori-
cal record (1910–1964) and a current record
(1965–2008). To develop a historical baseline, we
windowed theDFFT over all 37 consecutive 20-year
time series from 1910 to 1965 (e.g., 1910–1919,
1911–1920, …, 1946–1965). In each window, we
estimated the trend, characteristic phase, ampli-
tude, and frequency of the signal. This produced
a sample of 37 point observations, which we then
bootstrapped to generate unbiased measures
of central tendency for these historical baseline
parameters. The historical baseline was then esti-
mated using the bootstrapped median for the
trend, amplitudes, frequencies, and phases. This
baseline is a detrended sinusoidal, which is then
used as a reference for computing anomalies in
the current record.
With a detrended baseline in hand, we then

estimated departures from that historical expec-
tation as residuals (anomalies) of detrended ob-
servations referenced to the baseline for the entire
time series. This differs from direct before/after
comparison in that daily discharge is referenced

to the detrended signal from the historical record
rather than the current record. As in the historical
analysis, we did this via a window-bootstrapping
procedure in which we compared observations
of daily discharge from all consecutive 20-year
windows to the historical baseline. In each win-
dow, we estimated all stochastic properties out-
lined in Fig. 1. We also computed FPExt and
related traditional flood pulse metrics in each
window, which does not require a baseline for
comparison.
The end result of the windowed bootstrap is a

pair of distributions for eachmetric of hydrologic
variability, one for the historical record and

another for the current record, both referenced
to the average historical baseline. Visual inspec-
tion of overlap of distributions allows for heuristic
assessment of statistical change. In addition to
this comparisonof distributions,we plotted trends
of historical and current records chronologically
to provide a tool for visualizing breakpoints in
direction. For several key parameters (FPExt, NAA,
IFI, HSAM, and LSAM), we conducted a formal
breakpoint analysis. Specifically, to test for sig-
nificant breakpoints, we used a divisive hierar-
chical estimation algorithm for multiple change
point analysis (49, 50). This nonparametric ap-
proach is robust to violations of key assumptions
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Fig. 6. The potential for designed flows and trade-offs between mainstem hydropower lower
in the basin and the possibility of implementing design-based adaptive management. Top
graph: Example of designed flow versus long-term historical signal of the Mekong River at the
Stung Treng gauge in Cambodia. Note that variation, rather than magnitude, of the flood pulse is
modified. Middle graph: Total discharge volume needed to deliver designed flows (gray bar) and
volume available from storage facilities in the mainstem China hydropower cascade (dark blue),
mid-river tributaries (royal blue), and planned reservoirs in the Sesan, Srepok, and Sekong river basins
(light blue). Bottom graph: Proportion of river length (km) disconnected from Tonle Sap Lake by closure
of mainstem dams from the mid-reach to the lowest proposed mainstem dam (Sambor). Numbers
correspond to Gongguoqiao (1), Xiaowan (2), Manwan (3), Dachaoshan (4), Nuozhadu (5), Jinghong
(6), Ganlanba (7), Mengsong (8), Pak Beng (9), Luang Prabang (10), Xaybouri (11), Pak Lay (12),
Sanakham (13), Pak Chom (14), Ban Koum (15), Lat Sua (16), Don Sahong (17), Stung Treng (18), and
Sambor (19). Colors and numbers in middle and bottom graphs correspond to those in the map.
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of regression and provides a tool for
identifying multiple transitions in
the time series.

Step 2: Estimating the
influence of hydrologic
variation on fishery catches

The multivariate autoregressive
state-space (MARSS)
modeling approach

The core of the hydro-fisheriesmodel
(Fig. 7) is a MARSS model that con-
nects measures of hydrologic var-
iation to CPUE. We first extracted
hydrologic covariates from the stage
data set at the Stung Treng gage.
This was done for the period 1993–
2012, to be consistent and overlap-
ping with the Tonle Sap Dai catch
data set (1996–2012). Analysis of this
20-year time series yielded annual
estimates of FPExt, NAA, IFI, IDI,
transition time,HSAM,LSAM,HSAF,
LSAF, and timing of annual HSAM
and LSAM, for a total of 11 possible
hydrologic covariates. Then wemod-
eled total catch at all 14 Dais using
state-space versions of multivariate
autoregressive (MAR) models, or
MARSS models. MARmodels have
been traditionally used in econome-
trics, and more recently in some
ecological applications, to quantify
temporal population and commu-
nity trends and their drivers [re-
viewed in (36)]. MARmodels rely on
theory about the patterns of tempo-
ral correlation that emerge fromenvi-
ronmental drivers and species interactions (42)
and are advantageous because they donot require
ecophysiological parameters. Moreover, MARSS
models allow estimation of non-process or obser-
vation error in the data, which is important be-
cause ignoring observation error can change our
inference about the underlying process (44). Our
fish count data certainly contained observation
error that could potentially bias the measured
influence of abiotic drivers (hydrology) on fishery
catch. Therefore, MARSS allowed us to separate
the variation in the fish count data attributable
to observation error from the variation attribut-
able to true population fluctuations. We used the
“MARSS”R-package (39), which provides support
for fitting MARSS models with covariates (i.e.,
annualmeasures of hydrologic variation) tomulti-
variate time-series data via maximum likelihood,
using an expectation-maximization algorithm. In
the matrix form, a MARSS model takes the form
following Eq. 1 and 2 above (Eq. 1 is the state
process; Eq. 2 is the observation process).
Data enter the model as y (in Eq. 2) and as c

(in Eq. 1), where yt is fish abundance (here, total
catch of all species combined) at each Dai, and
ct is a suite of metrics of discharge variation used
as possible covariates (see below). Catch data are
modeled as a linear function of the “unobservable”

or true catch (xt) and vt, a vector of non-process
or observation errors, where observation errors
at time t are multivariate normal with mean 0
and covariance matrix R (Eq. 2). In the state
process (Eq. 1),B is an interactionmatrix and can
model the effect of abundances on each other
(here we set it to “identity,” i.e., ones in the diago-
nal and zeros in the off-diagonal), C is the matrix
whose elements describe the effect of each co-
variate on abundance at each Dai (hereafter dis-
charge anomaly effects), and wt is a vector of
process errors, with process errors at time t being
multivariate normal withmean 0 and covariance
matrix Q.
The model used here assumes a single process

error variance (i.e., a single diagonal value in Q
for all Dai), as the biology of the modeled fishes
should not differ across Dais. In contrast, we
assumed Dai-specific observation error (i.e., 14
different diagonal values in R), as site-specific
conditions can potentially affect capturability
—and hence observation error—in differentways
in each Dai. The off-diagonal structure also dif-
fered between Q and R: Whereas we estimated
covariance inQ (as “true” fish abundances should
be to some extent coordinated over time across
Dais, e.g., due to stochastic events not accounted
for in the hydrologic covariates that could affect

all Dais simultaneously), we assumed
no covariance in R by fixing zeroes
in the off-diagonals (as it is unlikely
that measurement error varies in a
coordinated manner across Dais).
For all models, we used the natural

log–transformed and Z-scored fish
biomass time series as variates, and
the Z-scored hydrologic time series
as covariates. All parameters, includ-
ing the ones of interest (discharge
anomaly effects in C) were assessed
via 95%CIs (1000 bootstrap samples).
After fitting the models, autocor-
relation in the residuals was inspect-
ed via the autocorrelation function.
TheMARSSmodeling involved three
substeps:
1) Covariate selection: We first

tested for multicollinearity among
the 11 covariates. As expected, NAA
was correlated with almost all NAA-
component drivers (i.e., IFI, HSAM,
etc.). Hence, we implemented two
separate MARSS-DFFT models, one
with FPExt and NAA as HL driv-
ers and the other with 11 NAA-
component drivers (see description
in Fig. 7). For each of these models,
we subsequently tested for collinear-
ity. FPExt and NAA were strongly
positively correlated (R2 = 0.85), but
collinearity was not strong enough
to force exclusionof one variable from
themodel (VIF<5). By contrast,NAA-
component drivers were collinear
(VIF > 10), so we culled this set of
drivers to a group of eight that pro-
duced acceptable levels of collin-

earity (VIF < 5).
2) MARSS model fitting and selection: We

then fitted the HL MARSS model (i.e., a model
using both FPExt andNAA as covariates) and the
NAA-component MARSS models. For the NAA-
component MARSS models, we compared all
possible unique combinations among the eight
NAA-component (noncollinear) drivers. We com-
pared model fits (using AICc) as well as co-
efficients for all nonzero coefficients in eachmodel.
We then used these outputs to calculate variable
weights (importance of each driver) andweighted
coefficient estimates (effect sizes, because catch
and driver data are Z-scored). Effect sizes were
compared betweenMARSSmodel families (i.e., HL
versus NAA-component).
3) Inclusion of density dependence: To test the

robustness of our findings under different assump-
tions, we compared the effect sizes obtained in the
previously described HL model to those obtained
in an HLmodel that incorporates density depen-
dence (that is, an aggregate measure of carrying
capacity of the fisheries). A deterministic model
frequently used to describe density-dependent
population growth is a discrete-time Gompertz
model (64):

nt ¼ nt�1 exp
�
uþ ðb� 1Þ lnðnt�1Þ

� ð5Þ
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Fig. 7.Workflow diagram of the “hydro-fisheries” model implemented.
The modeling workflow included three steps: (i) analysis of historical
hydrology, (ii) analysis of historical flow-fish relationships, and (iii) projection
of fish harvest using designed and historical flows.
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where nt is population abundance, u is the
intrinsic population growth rate, and b governs
the strength of density dependence. When b = 1,
there is no density dependence. When b gets
closer to 0, the strength of density dependence
increases; that is, the stronger is the pullback
to the mean (or mean-reverting effect). On a log
scale, we can substitute ln(nt) for xt:

xt ¼ uþ bxt�1 ð6Þ

which is the origin of MARSS Eq. 1 (39). Because
MARSS is multivariate, B is a matrix, and it can
model the effect of a Dai’s catch on the catch at
the next time step (diagonal values). Here we
compared discharge anomaly effects under HL
models withB diagonal values being estimated
(density dependence) versus fixed at 1 (density
independence).

Step 3: Projecting future fishery
catches under current and designed
flow scenarios

Generating designed flows using
Fourier series

We compared projected fishery yields achieved
by two hypothetical designed flows (“Good” and
“Bad”) to simulated historical flows in a stochastic
framework (Fig. 4). To simulate stochastic de-
signed flows, we created a Fourier series with
design principles from MARSS-DFFT and cor-
rupted this deterministic profile with red noise
to simulate atmospheric forcing. Design princi-
ples identified byMARSS included a strong flood
pulse (high FPExt) and negative NAA with shape
characteristics that include a long IFI punctu-
ated by a large-magnitude flood with multiple
impulses (high HSAM and HSAF). To capture
this shape, we created an irregular rectangular
pulse train described by Eq. 3.
Large-magnitude negative NAA and long IFI

(i.e., the Good design) can be achieved in this
Fourier series by setting the duty cycle (d = k/T )
low (d = 0.41, k = 150-day flood pulse) and ampli-
tude high (A=0.7). Here, the period (T= 365 days)
is much longer than the length of the pulse (k)
such that the pulse train has a lengthy period of
zero amplitude punctuated by strong pulses.
We also set the mean annual flow (MAF) to 95%
of the value from the observed record used in
MARSS-DFFT. By assuming lower than histori-
calMAF, we ensure that our Good designs do not
require more water than is typically available in
the LMB, and are attainable even under heavier
water resource withdrawals than might be re-
quired to support irrigated agriculture or munic-
ipal use in the future. In addition to this Good
design, we created a Bad design with shorter IFI
and a dampened flood peak, characteristics of
manymanaged river systems. Here, the duty cycle
was set higher (d = 0.46, k = 170-day flood pulse)
and amplitude low (A = 0.5) and MAF was at
100% of historical levels.
We note here that the transfer function re-

presented by Eq. 3 produces amuchmore diverse
set of designs, including square, triangle, and

rectified waves (also bn = 0) and sawtooth waves
(bn = A/np) as well as combinations of each of
these shapes.

Designed flows in a stochastic framework

We created 1000 realizations of a single Good
and a single Bad design using red noise via Eq. 4
above. Red noise creates more realistic storm se-
quences than random (white) noise can achieve.
To simulate a stochastic set of historical (pre-dam)
hydrographs, we resampled HL and NAA drivers
from DFFT analysis of daily stage data at Stung
Treng over the time period 20 years before the
onset of construction of the first dam (1941–1960).
Specifically, we reconstructed 1000 unique 20-year
sequences of annual drivers by drawing years
(1941–1960) from a uniform random distribution
and annealing sets of drivers to create sequences
for each driver that preserved the annual correla-
tion between HL and NAA drivers.

MARSS simulation framework

Preserving the same model structure specified
for the historical record, we projected the fishery
forward using the estimated coefficients for dis-
charge anomaly effects (in C) and process error
variance and covariance (in Q). Because in this
case we were forecasting “true” as opposed to
“observed” abundances, there was no need for an
observation process (Eq. 2) and thus noRmatrix
was used. Trajectories of fishery catch were con-
strained by the HL metrics described above. We
ran 100 realizations in each of the 1000 realiza-
tions per each scenario (for a total of 100,000
realizations per scenario), using total catch at
eachDai in 2012 as initial values.We then pooled
abundances across Dai by realization, and calcu-
lated 2.5, 25, 50, 75, and 97.5 percentile catch levels
at each time step (2013–2020) across realizations.
Thus, probabilistic distributions of future catch
represent pooled catches acrossDai but arise from
Dai-specific forecasts.
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