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Underpowered studies persist in the psychological literature. This article examines reasons
for their persistence and the effects on efforts to create a cumulative science. The “curse of
multiplicities” plays a central role in the presentation. Most psychologists realize that testing
multiple hypotheses in a single study affects the Type I error rate, but corresponding
implications for power have largely been ignored. The presence of multiple hypothesis tests
leads to 3 different conceptualizations of power. Implications of these 3 conceptualizations
are discussed from the perspective of the individual researcher and from the perspective of
developing a coherent literature. Supplementing significance tests with effect size measures
and confidence intervals is shown to address some but not necessarily all problems associated
with multiple testing.

The primary purpose of this article is to examine the
importance of statistical power for the formulation of a
coherent body of scientific literature. The article addresses
this goal through consideration of four interrelated subtop-
ics: (a) why underpowered studies persist, (b) the undesir-
able consequences of underpowered studies, (c) the extent
to which effect size measures and confidence intervals suc-
cessfully address problems associated with multiple testing,
and (d) ways in which designing more powerful studies as
well as other possible approaches can contribute toward
developing a cumulative science of psychology.
The first section of the article proposes that underpowered

studies persist in part because most studies involve tests of
multiple hypotheses. The article shows that it is entirely
possible that the power to test any specific hypothesis is
very low by conventional standards while at the same time
the power to detect at least one effect may be quite large. It
is well-known that the power to detect an effect often
depends on the context in which an effect is to be tested. For
example, Cohen’s f 2 effect size measure in a regression
analysis can be computed for a single predictor, for a subset
of predictors, or for all predictors simultaneously. Similarly,
in structural equation modeling, Satorra and Saris (1985)

presented methods for computing the power associated with
a specific parameter, whereas MacCallum, Browne, and
Sugawara (1996) presented methods for computing the
power associated with the overall test of a model. Thus, the
idea that statistical power depends on the specific test of
interest is generally well-known. However, the perspective
taken in the present article is to consider the ramifications of
performing multiple tests in a single study, where each of
these tests has its own level of statistical power. The issues
to be considered here are relevant whether the individual
tests are focused tests such as those associated with a single
predictor variable or are global tests of an overall model.
The key point is to consider the mere fact that many studies
involve multiple tests of one type or another.
The remaining sections of the article consider additional

aspects of multiple statistical tests. The second section
shows that when power is low for any specific hypothesis
but high for the collection of tests, researchers will usually
be able to obtain statistically significant results, but which
specific effects are statistically significant will tend to vary
greatly from one sample to another, producing a pattern of
apparent contradictions in the published literature. The third
section examines the potential benefits as well as possible
limitations of effect size measures and confidence intervals.
The fourth section briefly describes various alternative strat-
egies for developing a cumulative science of psychology in
the face of challenges presented by low statistical power.

The Persistence of Underpowered Studies

The past 15 years have seen increasing attention given to
the role of statistical power in psychological research. Not
only have numerous journal articles and book chapters been
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written on the topic of statistical power (e.g., Allison, Al-
lison, Faith, Paultre, & Pi-Sunyer, 1997; Cohen, 1992;
Green, 1991; Kraemer, 1991; McClelland, 1997; O’Brien &
Muller, 1993) but in addition several entire books devoted
to the topic have been published (e.g., Cohen, 1988; Krae-
mer & Thiemann, 1987; Lipsey, 1990; Murphy & Myors,
1998) and statistical packages devoted solely to power
analysis and sample size determination have emerged (Bo-
renstein, Rothstein, & Cohen, 1997; Elashoff, 1999; Hintze,
1996; O’Brien, 1998; Thomas & Krebs, 1997). Classic
reviews of published literature in psychology (Rossi, 1990;
Sedlmeier & Gigerenzer, 1989) have documented the fact
that underpowered studies tended to dominate the literature
in the late 1980s. Despite ever-increasing attention, more
recent reviews of published literature in psychology have
largely continued to show that the majority of these studies
lack appropriate statistical power. For example, Bezeau and
Graves (2001), Clark-Carter (1997), Kosciulek and Szy-
manski (1993), and Mone, Mueller, and Mauland (1996)
have shown that the power to detect a medium effect re-
mains very close to the inadequate level of power originally
detected by Cohen (1962) 40 years ago in such diverse areas
as clinical neuropsychology, articles published in British
Journal of Psychology, rehabilitation counseling research,
and management.
An exception to this continuing trend was provided by

Maddock and Rossi (2001), who showed that research in
three health-related journals generally has adequate power
to detect not only large but also medium effects. This
finding could reflect the fact that new methodological per-
spectives simply take time to influence researchers’ behav-
ior. Thus, Maddock and Rossi’s findings may continue to be
reflected in future literature reviews. Another possibility is
that research in the health-related journals tends to be fed-
erally funded, and federal funding agencies may be likely to
require evidence of sufficient statistical power before decid-
ing to fund a proposal. There are undoubtedly multiple
reasons why some literatures may continue to show lack of
progress in the design of studies with adequate power
whereas other areas, such as health-related research, may
have begun to show such progress. The primary purpose of
the current article is to examine why underpowered studies
may continue to persist in some areas of psychology despite
real pressures to obtain statistical significance in order to
maximize one’s opportunity of publishability.
The paradox of increased attention combined with con-

tinuing evidence that underpowered studies persist leads to
a natural question of why researchers have often not fol-
lowed methodologists’ recommendations to design studies
with sufficient power. This paradox becomes even more
puzzling in light of typical editorial practices virtually re-
quiring statistical significance as a prerequisite for publica-
tion. Although this practice is questionable on many
grounds, nevertheless it might be expected that it would at

least lead to studies with sufficient power. Especially over
time, researchers would presumably learn that it was nec-
essary to design studies with sufficient power or else pub-
lication would be unlikely. Researchers who failed to rec-
ognize these contingencies would all too often find
themselves in a position in which their results were not
publishable. It is very likely that even beginning researchers
are aware of these contingencies. Why, then, do underpow-
ered studies persist?
Cohen (1992) expressed puzzlement over this state of

affairs 30 years after the appearance of his initial article: “It
is not at all clear why researchers continue to ignore power
analysis” (p. 155). There are undoubtedly many explana-
tions for the persistence of underpowered studies. The mo-
tivation of Cohen’s (1992) article was a belief by an asso-
ciate editor of Psychological Bulletin that researchers find
power analysis to be too complicated. Cohen (1992) himself
speculated that “at least part of the reason may be the low
level of consciousness about effect size” (p. 155). This
article presents another possible explanation for why re-
searchers continue to design studies lacking in power de-
spite apparent countervailing publication pressures. This
reason springs from an entirely different perspective,
namely, that most studies involve tests of multiple hypoth-
eses, creating a gap between the power for any single test
and the power for the collection of tests. Without my
claiming that this is the only reason psychologists continue
to design underpowered studies, consideration of this issue
suggests novel implications for the consequences of under-
powered studies as well as for developing a cumulative
psychological science.
Reviews of psychological literature have shown that stud-

ies tend to be underpowered in the sense that tests of any
specific hypothesis tend to lack adequate power. On the
surface, it might seem to follow that the probability of
obtaining a statistically significant result in the study would
be low, thus jeopardizing the opportunity for publication.
However, it is entirely possible that the power of any
specific test might be low and yet the probability of obtain-
ing a statistically significant result somewhere in the study
could be substantial. The explanation of this apparent con-
tradiction is that most studies involve tests of multiple
hypotheses. As a result, the probability of rejecting at least
one hypothesis in the collection of tests will clearly exceed
the probability that any specific hypothesis is rejected.
For example, Cohen’s (1962) original survey was based

on 70 studies. Yet embedded in these 70 studies were 4,820
statistical tests, or an average of nearly 70 tests per study.
Despite there being generally low power for any single test,
Cohen (1962) noted that “with few exceptions, the 70 stud-
ies did have significant results” (p. 151). Cohen (1962) then
went on to say
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This may suggest that perhaps the definitions of size of effect
were too severe, or perhaps, accepting the definitions, one might
seek to conclude that the investigators were operating under
circumstances wherein the effects were actually large, hence
their success. (p. 151)

However, most likely of all would seem to be the fact that
these studies typically contained so many statistical tests
that an appreciable number would be statistically significant
even if the power of any single test was inadequate. Even if
all effects being tested were small, Cohen’s (1962) esti-
mated power of .18 would imply more than 12 statistically
significant results per study on average.1
Wilkinson and the Task Force on Statistical Inference

(1999) went so far as to state the following: “Multiplicities
are the curse of the social sciences. In many areas of
psychology, we cannot do research on important problems
without encountering multiplicity” (p. 599). By multiplicity,
they simply meant the fact that many studies involve mul-
tiple hypotheses and thus multiple hypothesis tests. Any
time multiple tests are conducted, one can distinguish be-
tween error rates associated with a single test and error rates
associated with a collection of tests.
Most experimental design books have discussed multiple

comparisons in the context of the difference between the
per-comparison alpha rate and the familywise (or experi-
mentwise) alpha rate. Any time multiple tests are con-
ducted, these two alpha rates will differ from one another.
Typically, attention focuses on the implications of these
multiple tests for the possible inflation in error rate. How-
ever, much less attention has been devoted to implications
of multiplicity for power. It is important to realize that
multiplicity has implications for power regardless of how
one chooses to deal with its implications for the Type I error
rate. Even though a few authors (e.g., Cohen, 1994) have
pointed out that invoking such procedures as the Bonferroni
adjustment will lower power, there has been much less
awareness of the broader implications of multiplicity for
power.
One partial exception to this lack of awareness has been

in the analysis of variance (ANOVA) literature. Specifi-
cally, in the ANOVA tradition of pairwise comparisons, a
distinction is sometimes made between (a) the power for a
specific comparison, (b) any-pairs power, and (c) all-pairs
power. The power for a specific comparison is simply the
probability that this specific comparison will be declared
statistically significant. Any-pairs power is the probability
that at least one pairwise comparison will be declared sta-
tistically significant. Finally, all-pairs power is the proba-
bility that all pairs that are truly different from one another
will be declared statistically significant. As an illustration of
the distinction among these three definitions, consider a
three-group design in which we suppose that all three pop-
ulation means differ from one another. An example of the
power for a specific comparison would be the probability

that the test comparing Groups 1 and 2 is statistically
significant. In contrast, any-pairs power would be the prob-
ability that at least one of the three pairwise comparisons
(i.e., between Groups 1 and 2, 1 and 3, or 2 and 3) is
statistically significant. Finally, all-pairs power would be
the probability that all three pairwise comparisons are sta-
tistically significant.
The distinction among these definitions of power has

received much less attention in ANOVA than the similar
distinction among Type I error rates. Outside the ANOVA
framework, the distinction has received even less attention.
However, the distinction applies any time multiple hypoth-
eses are tested in any study, as long as we realize that the
specific use of “pairs” may no longer be applicable. To the
extent that most psychological studies test multiple hypoth-
eses, this distinction is relevant for much of the psycholog-
ical literature. Furthermore, the distinction may have im-
portant implications for considering the role of power in
psychological research.
For example, consider the case of a 2 ! 2 between-

subjects factorial design. Data analysis in this design will
typically consist of three omnibus tests, namely, the row
main effect, the column main effect, and the row by column
interaction. The probability that at least one of these tests
will be statistically significant is different from the proba-
bility that any specific test will be statistically significant.
Yet different from both of these probabilities is the proba-
bility that all three effects will be statistically significant.
How different these three probabilities are from one another
will depend on the effect size of each effect, sample size,
and whether cell sizes are equal or unequal.
To illustrate the differences in the three conceptualiza-

tions of power, suppose that each main effect, as well as the
interaction, is nonzero in the population. Specifically, sup-
pose that each effect corresponds to Cohen’s (1988) defini-
tion of a medium effect size. In addition, suppose that cell
sizes are equal to one another and that each test is conducted
with an alpha level of .05. Table 1 shows values of the three
types of power for cell sizes ranging from 10 to 40 (notice
that the corresponding total sample sizes range from 40 to
160).2 To understand the meaning of the probabilities

1 It does not necessarily follow that the typical study would have
more than 12 statistically significant results, because the number of
statistical tests was undoubtedly not uniformly distributed over
studies. However, the basic point here is that Cohen’s (1962)
finding that most studies contained statistically significant results
should come as no surprise given the number of tests performed.
2 The probabilities shown in Table 1 were derived by first

calculating the power of any specific effect and then using the
binomial distribution to find the probabilities of at least one suc-
cess as well as of three successes in three trials. It should be noted
that the binomial distribution assumes that trials are independent of
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shown in the table, first consider the column for a cell size
of 10. Historically, a cell size of 10 has often been recom-
mended as a rule of thumb for determining sample size in
factorial designs. How well does that rule perform when all
three effects are medium? The top row of the table shows
that the probability that any specific effect is statistically
significant with 10 participants per cell is only .35, much
below any recommended level of statistical power. Why
then, was this rule not extinguished long ago as researchers
learned that it failed to provide adequate power? Of course,
one answer could be that most researchers study only large
effects, but this “Lake Wobegon” explanation that most
effects are larger than medium flies in the face of Cohen’s
(1988) review of the psychological literature. Instead, the
second row of Table 1 provides a more likely explanation.
Although the power for any specific effect is inadequate, the
power to detect at least one effect is a reasonably respect-
able .71.
Thus, a researcher who designs a 2 ! 2 study with 10

participants per cell has a 71% chance of obtaining at least
one statistically significant result if the three effects he or
she tests all reflect medium effect sizes. Of course, in
reality, some effects will often be smaller and others will be
larger, but the general point here is that the probability of
being able to find something statistically significant and thus
potentially publishable may be adequate while at the same
time the probability associated with any specific test may be
much lower. Thus, from the perspective of a researcher who
aspires to obtain at least one statistically significant result,
10 participants per cell may be sufficient, despite the fact
that a methodological evaluation would declare the study to

be underpowered because the power for any single hypoth-
esis is only .35.
A later section of the article returns to this distinction and

its implications, but for the moment, it is important to
realize that there is yet a third type of power still to be
considered. Still looking at the n " 10 column of Table 1,
the third row shows that the probability that all three effects
are statistically significant is only .04. Thus, in this scenario,
only very rarely will the row main effect, the column main
effect, and the interaction all be statistically significant.
Notice that ideally all three of these effects should be
declared nonzero, because all three are truly nonzero in the
population. However, when all three effects exhibit medium
effect sizes and there are 10 participants per cell, the prob-
ability that all three effects are detected is actually less than
the alpha level of .05 established for each test. Stated
another way, the probability of making at least one Type II
error in this scenario is a shocking .96.
Comparing the three probabilities of .35, .71, and .04

makes it all too clear that whether 10 per cell is an adequate
sample size depends greatly on how we conceptualize
power. Even if we accept .80 as a standard for desired
power, how large our cell size needs to be in a 2 ! 2 design
depends strongly on whether this .80 value applies to the
power of a specific test, the power that we obtain at least one
statistically significant result somewhere in the study, or the
power that all nonzero effects are detected.
What sample size is needed for a 2 ! 2 factorial design?

Not only does the answer depend on anticipated or mini-
mally important effect sizes, but Table 1 shows that the
answer also depends on which conceptualization of power is
deemed most relevant. For example, suppose that all three
effects are expected to be medium or that this is the mag-
nitude of effect deemed to be important. Further suppose
that the desired level of power is chosen to be .80. How
large should the sample be? Table 1 shows that if power is
conceptualized in terms of a specific test, a cell size of
approximately 30 is appropriate. However, if power is con-
ceptualized in terms of the probability of obtaining at least
one statistically significant result, a cell size only about half
this large is likely to be sufficient. On the other hand, the
probability of detecting all nonzero effects even with n" 30
is below .50 in this scenario. In order to reach a power of .80
to detect all nonzero effects here, a cell size of approxi-
mately 48 is required, a 60% increase over the number
needed for any specific test to have a power of .80 and
approximately 3 times as many research participants as
required to have a power of .80 to detect at least one effect.
To what extent do the discrepancies shown in Table 1

depict a worst case scenario? In one respect, the probabili-
ties do in fact represent a worst case scenario because all
three effects were assumed equal to one another. Other
patterns of effect size would result in different patterns of
probabilities. For example, if only one of the three effects is

Table 1
Values of Three Types of Statistical Power in a 2 ! 2 Design
as a Function of Cell Size

Type of power
Cell size

n " 10 n " 20 n " 30 n " 40

Any single prespecified
effect .35 .59 .79 .88

At least one effect .71 .93 .99 #.99
All effects .04 .21 .47 .69
Note. Both main effects as well as the interaction are presumed to have
medium effect sizes. Power values are calculated using a binomial
approximation.

one another, which is only approximately true in factorial designs.
Even though the effects themselves are independent, their tests are
not completely independent because they all use mean square
within as a common error term. Thus, the probabilities shown in
Table 1 are only approximate. Nevertheless, the important point
here is the pattern of probabilities, which would be much the same
even if dependencies were taken into account.
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truly nonzero, all three conceptualizations of power become
equivalent to one another, and as a consequence the second
and third rows of Table 1 would become identical to the first
row. Thus, in this case the debate over different conceptu-
alizations of power becomes moot.
However, in another respect, the discrepancies shown in

the table may not reflect a worst case scenario. For example,
in many studies more than three effects will be tested.
Another complication is that in many studies the multiple
effects will be related to one another, unlike the effects
shown in Table 1, which are orthogonal because of the equal
cell sizes. The implications of the relation among effects
depend on whether the effects are positively correlated or
negatively correlated.
To examine the influence of correlations among effects, it

is helpful to establish a baseline where effects are indepen-
dent. For simplicity, suppose that only two effects are to be
tested. Further suppose that the power to detect each effect
individually is .50. The first column of values in Table 2
shows three probabilities: (a) the power for a specific effect,
(b) the power that at least one of the two effects is detected,
and (c) the power that both effects are detected.3 The pattern
of values shown here is similar to that seen earlier in Table
1 in that the discrepancies among the three types of power
are sizable.
Next consider a case in which the effects are positively

related to one another. A typical example of such positive
effects often occurs in multivariate ANOVA where multiple
dependent measures are frequently positively correlated
with one another. In particular, suppose the degree of cor-
relation between variables is such that the conditional prob-
ability that either variable is statistically significant is .80
given that the other variable is significant. As in the baseline
condition of uncorrelated effects, suppose that the power of
each individual effect is .50. The second column of values
in Table 2 shows that the discrepancies among the types of
power are much less than in the uncorrelated condition. As
the effects become more highly correlated with one another,
the distinctions among types of power become less. In
particular, in the limit where the correlation equals 1.0,

multiple tests become equivalent to literally the same test
done multiple times.
Finally, consider a case in which the effects are nega-

tively related to one another. At first glance, this might seem
to be a rare situation. However, in reality, it is likely to be
very common. For example, in multiple regression analysis,
when predictors are positively correlated with one another,
their corresponding regression weights are generally nega-
tively correlated (Rozeboom, 1966, pp. 507–509). Indeed,
this is the statistical basis of the multicollinearity problem.
Thus, in the simplest case of two positively correlated
predictor variables, the weights associated with each pre-
dictor will correlate negatively.4 In particular, suppose that
the degree of correlation between the predictors is such that
the conditional probability that either variable is statistically
significant is .20 given that the other variable is significant.
As in the baseline condition of uncorrelated effects, suppose
that the power of each individual effect is .50. The third
column of values in Table 2 shows that the discrepancies
among the types of power are much greater than in the
uncorrelated condition. As the effects become more nega-
tively correlated with one another, the distinctions among
types of power become larger.
Although the impact of multiple tests has generally re-

ceived the most attention within the ANOVA tradition of
psychological research, Table 2 suggests that the actual
impact may be greater in correlational studies using multi-
ple regression (and associated methods such as structural

3 The probabilities shown in Table 2 can be found by forming a
2 ! 2 contingency table based on marginal and conditional prob-
abilities. The entries in Table 2 then follow directly from the cells
of the 2 ! 2 contingency table.
4 It may seem counterintuitive that positively correlated predic-

tors in multiple regression have negatively correlated regression
weights. To understand this phenomenon, consider a simple ex-
ample in which two parallel measures of the same construct are
used to predict some outcome measure. What would one expect to
happen across replications of such a study? When predictors
correlate positively with one another (and the sign of the correla-
tion with the outcome variable is the same for both predictors), the
sum of their regression weights tends to vary relatively little from
one replication to another. For example, if the population value of
the sum is .80, sample values of the sum of the weights will also
be close to .80. However, how this sum of .80 is split between the
predictors may vary greatly. Thus, for example, in one replication
we might find that the first predictor receives a weight of .60, in
which case the second predictor will tend to receive a weight of
around .20. In another replication the first predictor might receive
a weight of around .30, which means that the second predictor will
tend to receive a weight of around .50. The crucial point here is
that when the sample estimate for one predictor is high, the sample
estimate for the other predictor will tend to be low. However, it is
precisely this pattern that implies that the two regression weights
will correlate negatively with one another.

Table 2
Influence of Correlated Effects on the Three Types of Power

Type of power

Type of effects

Orthogonal
Positively
correlated

Negatively
correlated

Any single prespecified
effect .50 .50 .50

At least one effect .75 .60 .90
All effects .25 .40 .10
Note. The power to detect each effect individually is presumed to be .50.
Additional power values are calculated as a function of conditional
probabilities.

151UNDERPOWERED STUDIES



equation modeling), where the simultaneous inclusion of
positively correlated predictors in a model leads to nega-
tively correlated effects. Thus, in this respect, the discrep-
ancies shown in Table 1 for a 2 ! 2 ANOVA design may
underestimate discrepancies likely to be found for the three
types of power in multiple regression analysis.
To examine possible discrepancies among the three types

of power in multiple regression analysis, consider the case
of a regression design with five predictor variables. Implicit
in Table 2 is the fact that the magnitude of the discrepancies
among the types of power will depend at least in part on
how highly correlated the predictors are with one another.
As an example, suppose that each and every pair of predic-
tors is correlated at a medium level according to Cohen’s
(1988) definition. In other words, all zero-order correlations
between predictors equal .30. Of course, the magnitude of
correlations between each predictor and the outcome vari-
able are also crucial in determining each type of power. For
example, suppose that each predictor has a medium corre-
lation of .30 with the outcome variable.
Table 3 shows values of the three types of power under

this scenario for a variety of sample sizes, assuming that
each individual test is conducted with an alpha level of .05.5
This table shows that a researcher who follows the tradi-
tional 10:1 ratio of sample size to number of predictors
avails himself or herself of just over a 50% chance of
obtaining at least one statistically significant regression
coefficient under this scenario. The table shows that increas-
ing the sample to 100 increases the comparable probability
to .84. At a sample size of around 100, diminishing returns
set in, so doubling the sample size provides only a modest
increase in the probability of obtaining a statistically sig-
nificant result. Thus, from the perspective of hoping to
obtain at least one statistically significant result to report, a
sample size of 50 is not completely unreasonable and a
sample size of 100 is likely to be judged as entirely
sufficient.
From one perspective, a sample size of 50 to 100 for a

multiple regression analysis with five predictors may be
adequate; however, from other perspectives it may be inad-

equate. Table 3 shows that the probability that any specific
predictor is statistically significant in this scenario is only
.26 even with 100 participants. To the extent that there is
agreement that power should be at least .80, the table shows
that at least 400 participants are needed if power refers to
the statistical significance of a specific predictor. Thus, from
this perspective, sample size in this scenario needs to be
much larger than the 50 to 100 value suggested by the first
perspective.
Table 3 also shows that even with a sample of 400, the

probability that all five predictors are statistically significant
under this scenario is only .22. Thus, even with a sample
this large, the probability of making at least one Type II
error is .78. A researcher who wanted to be careful to avoid
any Type II errors would need an enormous sample size in
this situation.
Thus, how large a sample needs to be in a factorial

ANOVA design or in a multiple regression study depends
greatly on how one conceptualizes statistical power. Al-
though the 10:1 rule of thumb may offer reasonable power
to find some effect in both cases, it is likely to be woefully
inadequate from the perspective of providing sufficient
power to detect a specific effect, much less all nonzero
effects. This general principle applies any time multiple
hypotheses are tested, adding force to the statement that
“multiplicities are the curse of the social sciences” (Wilkin-
son and the Task Force on Statistical Inference, 1999, p.
599).

Consequences of Underpowered Studies

Much has been written over the past 2 decades about the
extent to which psychology has succeeded in developing a
coherent literature of research findings (e.g., Hedges, 1987;
Meehl, 1978). One undisputed point is that apparent differ-
ences in findings are at least partly due to mere artifacts.
Prominent among these artifacts is the simple existence of
sampling error (Schmidt, 1996). The concept of a sampling
distribution is arguably the most fundamental idea in infer-
ential statistics, but its ultimate importance for understand-
ing multiple tests in a single research study, as well as
results from a collection of studies, may not be obvious.
For example, consider the three regression tables shown

in Table 4. Each panel displays standardized regression
coefficients (i.e., beta weights) and associated additional

5 The power values shown in Table 3, as well as those in other
examples involving multiple regression, are based on the assump-
tion that the test for each predictor variable pertains to its unique
contribution to a model while controlling for all other predictors.
Different results would occur for other types of multiple regres-
sion, such as hierarchical regression analysis, where statistical
significance might be based on the first step in which a variable
entered the model.

Table 3
Values of Three Types of Statistical Power in a Multiple
Regression Study as a Function of Sample Size

Type of power
Sample size

n " 50 n " 100 n " 200 n " 400

Any single prespecified
effect .15 .26 .48 .78

At least one effect .57 .84 .99 #.99
All effects $.01 $.01 .01 .22
Note. Power values shown were obtained from 10,000 replications of a
simulation with five predictor variables. All zero-order bivariate correla-
tions were presumed to be .30 (a medium effect size) in the population.
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statistics obtained using multiple regression analysis to ex-
amine the relationship between depression (the dependent
variable) and five predictors, each of which represents self-
perceived competence in a specific domain. (The variables
are scaled in such a way that positive regression coefficients
imply that higher levels of perceived competence corre-
spond to lower levels of depression.) How might one inter-
pret this collection of studies? From a vote-counting per-
spective (Hedges & Olkin, 1980), the primary impression of
these results may be confusion. Social competence was
statistically significant twice, whereas academic compe-
tence and appearance were each significant once. Neither
athletic nor behavioral competence reached the .05 level of
significance. Faced with such results, one might at least be
tempted to conclude that athletic and behavioral domains
can safely be ignored, while arguing about the inconsistent
results for the other three domains.
In reality, the replications shown in Table 4 are the first

three results obtained from a larger simulation. In all three
cases, data were generated from a model in which all
variables (i.e., predictors as well as the outcome variable)
had a medium correlation of .30 with one another. Thus, any
differences in the three replications reflect nothing more
than sampling error. Furthermore, any differences between
the predictor variables, either within a study or across stud-
ies, also reflect only sampling error. Thus, any decision to
drop athletic and behavioral domains from further consid-
eration in future studies would clearly be misguided. In fact,

in this situation any inference that one domain is more
important than another would be erroneous, because the
data were sampled from a population in which all domains
are known to be equally important.
What factors are responsible for the apparent inconsisten-

cies shown in Table 4 and the likely problem that any single
study may mislead as much as it reveals? Two factors
conspire to create this problem. First, each regression anal-
ysis in Table 4 was based on a sample size of 100. In all
three cases, data were generated from a model in which the
predictor variables and the criterion all had the same me-
dium correlation with one another. Table 3 showed that in
this situation the probability of obtaining at least one sta-
tistically significant effect is .84. Thus, it is not surprising
that each replication shown in Table 4 contains at least one
statistically significant effect. However, Table 3 also
showed that the probability that any specific effect is sta-
tistically significant is only .26. Thus, we would expect
about four statistically significant results among tests of 15
regression coefficients, and in this particular set of replica-
tions that is exactly what happened. The point here is that
although power is sufficient for obtaining statistical signif-
icance somewhere, it is not sufficient for any specific effect.
Thus, one culprit making it difficult to interpret the results
of any single study properly is the inadequate power for
testing any specific effect. As implied in Table 3, apparent
inconsistencies and apparent null results would be greatly
lessened if the sample size were 400 instead of 100.
A second contributing factor is the misinterpretation of a

nonsignificant test. Although the methodological literature
is replete with warnings about the dangers of attempting to
confirm the null hypothesis, for most mere mortals this
temptation is difficult to resist. Attention tends to focus
immediately on the column of probability values and their
attendant asterisks or lack thereof. As Schmidt (1992, 1996)
and others have pointed out, this problem can be minimized
by supplementing significance tests with confidence inter-
vals. A later section of the article focuses on the possible
benefits of confidence intervals as an adjunct to or replace-
ment for significance tests.
Table 5 continues the theme developed in Table 4. Spe-

cifically, Table 5 summarizes the results of performing
10,000 replications of the same regression study based on
various sample sizes. As in Table 4, data were drawn from
a population in which all zero-order correlations were me-
dium. Thus, the population regression coefficient for each
domain is nonzero, and all five population values are equal
to one another. Table 5 shows that when sample size is
small, the most likely result is that only one predictor will be
statistically significant as happened in the second and third
replications in Table 4. Under this scenario, which of the
five predictors is the one declared to be significant varies
randomly from sample to sample. For example, when the
sample size is 50, only the coefficient for academic compe-

Table 4
Regression Data From Three Studies

Depression predictor ! SE t p(#!t!)

Replication 1

Academic competence .2031 .1070 1.8981 .0608
Appearance .2129 .1041 2.0454 .0436*
Athletic competence .1616 .1173 1.3780 .1715
Behavioral competence %.0659 .1158 %0.5690 .5707
Social competence .2398 .1109 2.1615 .0332*

Replication 2

Academic competence .0753 .1095 0.6873 .4936
Appearance .1216 .1234 0.9856 .3269
Athletic competence .2153 .1151 1.8713 .0644
Behavioral competence .0592 .1183 0.5006 .6178
Social competence .2216 .1019 2.1753 .0321*

Replication 3

Academic competence .1969 .0975 2.0196 .0463*
Appearance .1627 .0991 1.6422 .1039
Athletic competence .1781 .0991 1.7977 .0754
Behavioral competence .0309 .1078 0.2864 .7752
Social competence %.0244 .1066 %0.2293 .8191
* p $ .05.
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tence will be statistically significant 9% of the time, only the
coefficient for appearance 9% of the time, and so forth. As
we have seen, the result is that the specific pattern of results
in any single study is idiosyncratic and varies greatly from
study to study. In contrast, when n " 400, the most typical
result is that either four or five predictors will be statistically
significant, producing a much more consistent pattern of
findings across studies.
One potentially confusing aspect of Table 5 may deserve

further comment, especially because similar patterns will
appear in other tables to be presented shortly. The power
values in three rows of the table (viz., the rows correspond-
ing to exactly one, two, or three significant predictors)
initially increase as sample size increases but then begin to
decrease at some point. To understand this apparent anom-
aly, focus on the row entitled “Exactly two significant
predictors.” As the sample size increases from 50 to 100 or
from 100 to 200, the probability of exactly two significant
predictors increases. However, as the sample size increases
from 200 to 400, this probability decreases dramatically.
The reason for this pattern is that when sample size is low,
the most likely result is either no significant predictor at all
or at most one significant predictor. Thus, increasing sample
size from 50 to 100 or from 100 to 200 has the effect of
making it more likely to obtain exactly two significant
predictors instead of only one or even none. However,
increasing sample size from 200 to 400 has the effect of
making it less likely to obtain exactly two significant pre-
dictors because now it is much more likely to obtain either
exactly three significant predictors or four or more signifi-
cant predictors. Another useful perspective is to consider the
probability of obtaining two or more significant predictors.
Summing the relevant rows in Table 5 reveals that this
probability increases from .13 for n " 50 to .39 for n " 100

to .85 for n " 200 and to 1.00 (rounded off to two decimal
places) for n " 400. This perspective underscores the point
that larger sample sizes lead to a higher probability of
obtaining at least two significant predictors, just as would be
expected.
Table 6 shows the patterns of statistically significant

predictors for the subset of studies in which at least one
predictor was statistically significant. To the extent that
statistical significance of at least one predictor is a prereq-
uisite for publication, the pattern of results in the published
literature would follow the probabilities shown in Table 6.
Although the absolute magnitudes of values in Table 6 are
higher than the corresponding values in Table 5, the general
pattern of results is much the same. In particular, smaller
sample sizes yield less consistent results.
The relationship between sample size and pattern of re-

sults shown in Tables 5 and 6 is not restricted to multiple
regression. Table 7 displays similar findings for a 2 ! 2
factorial design analyzed with ANOVA. Table 8 shows
corresponding values for the subset of studies in which at
least one effect was statistically significant. As was true in
the generation of Table 1, it is once again assumed that each
main effect as well as the interaction corresponds to a
medium effect size. Tables 7 and 8 show the pattern of
results that will occur as a function of cell size. As was true
in the regression results depicted in Tables 5 and 6, small
samples produce unstable results in the 2 ! 2 ANOVA.
Under the stated conditions, cell sizes of 10 lead to a
situation in which not only will one or more true effects
almost certainly go undetected but in addition the pattern of
statistically significant results may well be idiosyncratic to
the sampling error present in this particular study. On the
other hand, cell sizes of 40 begin to produce a very different
pattern. Not only is there now a much more reasonable

Table 5
Patterns of Statistically Significant Regression Coefficients With Exchangeable Medium Zero-
Order Correlations and Five Predictors for a Range of Sample Sizes

No. of significant predictors
Sample size

n " 50 n " 100 n " 200 n " 400

No significant predictor .43 .16 .01 $.01
Exactly one significant predictor .43 .45 .13 $.01
Exactly two significant predictors .12 .32 .40 .04
Exactly three significant predictors .01 .07 .36 .26
Four or more significant predictors $.01 $.01 .09 .70

Pattern

Any specific predictor (alone or in combination) .15 .26 .48 .78
Any specific predictor by itself .09 .09 .03 $.01
Any specific pair of predictors .01 .03 .04 $.01
Note. Power values shown were obtained from 10,000 replications of a simulation. All zero-order bivariate
correlations were presumed to be .30 (a medium effect size) in the population. Each entry in the table depicts
the probability that a pattern of statistically significant results will occur with the specified sample size. The sum
of the first five probabilities within each column equals 1.0, except for rounding error.
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prospect of detecting all true effects, but the pattern of
results is likely to be much more stable from study to study.
Another typical situation involving sample size and pat-

tern of results occurs when researchers compare groups on
more than one dependent variable. As a simple illustration,
suppose that two groups are being compared on four depen-
dent variables. Table 9 shows the patterns of results that will
occur if in reality the group difference is medium on each
dependent variable and if the dependent variables correlate
at the medium level (a correlation of .30) with one another.6
A sample size of 25 individuals per group produces at least
one statistically significant result 78% of the time. From this
perspective, 25 participants per group might be viewed as
sufficient. However, the power for any single dependent
variable in this situation is only .41. Furthermore, Table 10
shows that among studies with at least one statistically

significant result (i.e., roughly among published studies),
two thirds of the time statistically significant results will be
obtained for only one or two of the dependent variables
when n " 25. Thus, with this sample size, the published
literature is likely to display notable inconsistencies as to
which variables the groups truly differ on. In fact, Table 10
shows that any specific variable has almost exactly a 50–50
chance of being deemed “significant” in any single study
with at least one statistically significant result. For a larger
sample size of 50 per group, the statistical power for any
single variable becomes .69 (see Table 9), but even here the
probability that true group differences are revealed on all
four dependent variables is only one third. To have a power
of .80 for detecting all four group differences in this situa-
tion requires a sample size of approximately 100 individuals
per group. The point here is not necessarily that 100 is the
“correct” sample size but instead that as in the 2 ! 2
ANOVA and in multiple regression, small sample sizes lead
to a published research literature that is virtually guaranteed
to contain numerous inconsistencies about what is statisti-
cally significant and what is not.
The preceding examples illustrate that the tendency to

conduct underpowered studies will tend to produce an in-
consistent body of literature. Rossi (1997) underscored the
potential importance of the hypothetical examples presented
here by providing a compelling case study of how lack of
power did in fact lead to an inconsistent set of studies
examining an actual phenomenon of considerable interest.
Specifically, Rossi (1997) described a historical controversy

6 The values reported in Tables 9 and 10, as well as in Figures
2 and 3, were obtained through simulation using SAS PROC IML.
All reported values are based on a minimum of 5,000 replications.

Table 7
Pattern of Statistically Significant Results in 2 ! 2 Analysis of
Variance When All Effects Are Medium

Significant effect
Cell size

n " 10 n " 20 n " 30 n " 40

No effect .29 .07 .01 $.01
A alone .15 .10 .04 .01
B alone .15 .10 .04 .01
A ! B alone .15 .10 .04 .01
A and B (but not A ! B) .08 .14 .14 .09
A and A ! B (but not B) .08 .14 .14 .09
B and A ! B (but not A) .08 .14 .14 .09
A and B and A ! B .04 .21 .47 .69
Note. Both main effects as well as the interaction are presumed to have
medium effect sizes. Table entries are probabilities calculated using a
binomial approximation. Column totals sum to 1.0, except for rounding
error.

Table 6
Patterns of Statistically Significant Regression Coefficients With Exchangeable Medium Zero-
Order Correlations and Five Predictors for a Range of Sample Sizes for the Subset of Studies
With at Least One Statistically Significant Predictor

No. of significant predictors
Sample size

n " 50 n " 100 n " 200 n " 400

Exactly one significant predictor .76 .54 .13 $.01
Exactly two significant predictors .21 .38 .41 .04
Exactly three significant predictors .03 .08 .37 .26
Four or more significant predictors $.01 $.01 .10 .70

Pattern

Any specific predictor (alone or in combination) .25 .31 .49 .78
Any specific predictor by itself .15 .11 .03 $.01
Any specific pair of predictors .02 .04 .04 $.01
Note. Power values shown here were obtained from a subset of the 10,000 replications performed to obtain the
values in Table 5. In all cases the power values in Table 6 are based on more than 5,500 replications. Each entry
in the table depicts the probability that a pattern of statistically significant results will occur with the specified
sample size. The sum of the first four probabilities within each column equals 1.0, except for rounding error.
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regarding the existence of spontaneous recovery of verbal
associations and showed that this controversy can be under-
stood in terms of inconsistent results as a consequence of
underpowered studies.

Effect Sizes and Confidence Intervals

As mentioned earlier, contributing factors to the problems
associated with small sample sizes are the overreliance on
and misinterpretation of significance tests. Wilkinson and
the Task Force on Statistical Inference (1999) recom-
mended that significance tests be accompanied by effect
size measures and, ideally, confidence intervals to better
inform readers. This section of the article revisits the mul-
tiple regression example and the multiple dependent vari-

able example to consider the potential benefits as well as
possible limitations of effect sizes and confidence intervals.
A convenient effect size measure in multiple regression is

the standardized regression coefficient. Thus, instead of
simply reporting a variable to be a significant or nonsignif-
icant predictor, a much better strategy may be to report a
confidence interval for the standardized regression coeffi-
cient for each predictor. For example, it would be possible
to form a 95% confidence interval for each regression
coefficient shown in Table 4.
Figure 1 displays the result of forming such confidence

intervals. An interval for each predictor in Replication 1 is
shown at the left of the figure. Moving to the right, the
middle portion of the figure shows comparable intervals for
each of the five predictors in Replication 2. Finally, the five
intervals appearing at the right of the figure are the intervals
obtained in Replication 3.
Figure 1 shows that in these studies all 15 confidence

intervals would overlap with one another. This has three
important implications. First, although the presence or ab-
sence of asterisks is often inconsistent from study to study,
confidence intervals show that for these three studies, the
collection of results is in fact consistent. For example, the
three 95% intervals for the academic domain are (–0.01,
0.41), (–0.14, 0.29), and (0.01, 0.39). Any belief that the
results of the third study are somehow truly different from
those of the first two simply because academic domain was
a statistically significant predictor in the third study but not
in the first two immediately vanishes when the three confi-
dence intervals are compared with one another. Second,
whereas the presence or absence of asterisks tends to con-
vey an air of finality that an effect exists or does not exist,
the confidence intervals tend to convey an attitude that
considerable uncertainty remains about the true population

Table 8
Pattern of Statistically Significant Results in 2 ! 2 Analysis of
Variance When All Effects Are Medium for Subset of Studies
With at Least One Statistically Significant Effect

Significant effect
Cell size

n " 10 n " 20 n " 30 n " 40

A alone .21 .10 .04 .01
B alone .21 .10 .04 .01
A ! B alone .21 .10 .04 .01
A and B (but not A ! B) .11 .15 .14 .09
A and A ! B (but not B) .11 .15 .14 .09
B and A ! B (but not A) .11 .15 .14 .09
A and B and A ! B .05 .23 .47 .69
Note. Both main effects as well as the interaction are presumed to have
medium effect sizes. Table entries are probabilities calculated using a
binomial approximation. Column totals sum to 1.0, except for rounding
error.

Table 9
Patterns of Statistically Significant Results for Four Dependent
Variables (DVs) All With Medium Effect Size

No. of significant DVs
Sample size per group

n " 25 n " 50 n " 100

No significant DVs .22 .04 $.01
Exactly one significant DV .28 .11 .01
Exactly two significant DVs .25 .21 .03
Exactly three significant DVs .17 .31 .16
Exactly four significant DVs .08 .33 .81
Pattern

Any specific DV
(alone or in combination) .41 .69 .94

Note. Each entry in the table depicts the probability that a specific pattern
of statistically significant results will occur with the specified sample size.
The sum of the first five probabilities within each column equals 1.0,
except for rounding error. A minimum of 5,000 replications were per-
formed for each sample size.

Table 10
Patterns of Statistically Significant Results for Four Dependent
Variables (DVs) All With Medium Effect Size for the Subset of
Studies With at Least One Statistically Significant Result

No. of significant DVs
Sample size per group

n " 25 n " 50 n " 100

Exactly one significant DV .35 .11 .01
Exactly two significant DVs .32 .22 .03
Exactly three significant DVs .22 .32 .16
Exactly four significant DVs .11 .35 .81
Pattern

Any specific DV
(alone or in combination) .52 .72 .94

Note. Each entry in the table depicts the probability that a specific pattern
of statistically significant results will occur with the specified sample size.
The sum of the first four probabilities within each column equals 1.0,
except for rounding error. A minimum of 5,000 replications were per-
formed for each sample size.
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value of this coefficient based on any single study. As
Cohen (1994) suggested, the very fact that confidence in-
tervals reveal such uncertainty may partly explain why
researchers have been reluctant to report them. A third
implication of reporting a confidence interval is that it
effectively emphasizes that the sample size of 100 may have
been too small here. In particular, confidence intervals
based on this sample size reveal all too clearly that any
single study has hardly pinpointed the precise true popula-
tion value of the regression coefficient associated with each
domain. Given the population from which these data were
drawn, the actual population value for each regression co-
efficient is 0.14 as shown by the horizontal line in the figure.
However, a sample size of 100 produces an interval whose
width is approximately .40, thus showing that more data are
needed to obtain a precise estimate of the true population
value.
Figure 1 suggests that confidence intervals may be less

prone to misinterpretation than significance tests. However,
even proper interpretation of confidence intervals can be-
come tricky when multiple intervals are constructed in a
single study. To put this remark in context, it is important to
realize that the same multiple comparison procedures (e.g.,
Bonferroni, Tukey, Scheffé) that are often used to control
familywise Type I error rates can usually be used to produce
simultaneous confidence intervals. Thus, researchers who
believe it to be important to produce intervals that provide
desired coverage probabilities across a set of intervals typ-

ically have a straightforward method available for accom-
plishing this goal. Less obvious, however, are other poten-
tial perils associated with interpreting intervals across
multiple variables or effects. For example, Schenker and
Gentleman (2001) showed that the common practice of
examining whether confidence intervals overlap is neces-
sarily conservative and lacks power when used as a basis for
deciding whether two independent point estimates are sta-
tistically significantly different from one another.
Proper interpretation of even a single interval can be

problematic when that interval has been selected from
among a group of several intervals. For example, consider
once again a situation in which two groups are being com-
pared on four dependent variables. As before, for simplicity
we assume a medium population effect size for each depen-
dent variable, and we also assume that variables correlate at
a medium level with one another. What should we expect
effect sizes and confidence intervals to reveal in such a
situation? In particular, one question of interest is what
might be observed for the dependent variable with the
largest effect size, because all other things being equal, this
is the variable an investigator might choose to emphasize in
his or her interpretation of group differences.
Figure 2 provides a graphical answer to the question of

what results can be expected for the dependent variable with
the largest effect size in the sample. Specifically, Figure 2
shows the average d value as well as the average upper and
lower limits of a 95% confidence interval for d, for group
sample sizes of 25, 50, and 100 among studies with at least

Figure 1. Confidence intervals for regression coefficients of five
predictors across three replications. The first five bars represent
95% confidence intervals for each of the five predictor variables as
obtained in the first replication. The second five bars are for the
second replication, and the final five bars are for the third repli-
cation. The horizontal line depicts the true population value of all
regression coefficients.

Figure 2. Average confidence interval for d based on the depen-
dent variable with the largest sample difference among studies
with at least one statistically significant result when population d
value is 0.5. The horizontal line depicts the true population effect
size value of 0.5. The percentages under each bar show the actual
percentage of coverage of the nominal 95% confidence interval.
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one statistically significant group difference. For simplicity,
we assume that the published literature contains all such
studies and that studies failing to find at least one statisti-
cally significant difference do not appear in the literature.
To understand the implications of the figure, consider the
results shown for a sample size of 25 per group. In this
situation, the average d value obtained for the dependent
variable with the largest effect in the sample is 0.85. Even
though every dependent variable truly has a medium effect
size of 0.50 in the population, the average study will show
one dependent variable with a d value slightly above Co-
hen’s (1988) definition of a large effect. Thus, there is an
extreme temptation to conclude that the group difference is
truly large for at least one of the variables included in the
study when in reality the population group difference is only
medium. Fortunately, this temptation can be at least par-
tially addressed by requiring researchers to form a confi-
dence interval. In this case, the average interval would
stretch from 0.26 to 1.42 for the variable with the largest
sample d. Even though this interval is still centered around
a large effect, it is much less tempting to infer a strong belief
that the true population value of d is large, because the
interval is so wide.
Unfortunately, forming a confidence interval does not

fully solve the underlying problem. It turns out that only
89.25% of intervals formed for the variable with the largest
sample value of d contain the true population value of 0.50.
Worse yet, 10.75% of intervals have a lower limit above
0.50. This means that slightly more than 10% of reported
intervals will fail to contain the true population value of
0.50 and will instead imply that the true population value of
d is above 0.50 with apparent confidence of 95%. This is
more than a fourfold increase over the 2.5% figure an
unsuspecting reader or researcher would expect based on
the nominal confidence level of 95%. Four factors contrib-
ute to this distortion. First, the focus here is on the variable
with the largest sample effect. Obviously, variables with
smaller sample effects will produce smaller values of d, and
intervals less likely to overestimate d. However, this is
small consolation for researchers who understandably may
be most focused on interpreting their largest effects. Sec-
ond, the intervals shown here are not simultaneous 95%
confidence intervals. Requiring simultaneous confidence of
95% would widen every interval and thus reduce the
10.75% figure. However, little emphasis has been paid to
simultaneous confidence intervals, except in some very spe-
cific ANOVA situations (see Maxwell & Delaney, 2004, for
more information about simultaneous confidence intervals
in this context). Third, these intervals reflect only those
studies with at least one statistically significant result. How-
ever, studies without a statistically significant result are
usually unlikely to be published, so in this respect the results
shown here can be expected to more closely resemble the

published literature. Fourth, a major reason for the bias
found here is the small sample size.
The middle and right-most intervals in Figure 2 show that

the degree of bias and distortion is less for group sample
sizes of 50 and 100. The midpoints of the intervals are
considerably closer to the true population value of 0.50 than
was the case for the smaller sample size of 25. Of course,
the intervals themselves are also narrower, although even
with a total of 200 participants, the average interval has a
width of more than 0.50, which underscores that even with
this sample size considerable uncertainty remains about the
population value of d. Furthermore, the coverage probabil-
ity of 90.86% for a 95% interval is only very slightly
improved. Almost 10% of intervals will still have a lower
limit above the true population value of 0.50 even with 200
participants.
Some traditionalists might suggest that part of the prob-

lem shown in Figure 2 reflects capitalization on chance that
could be reduced or even eliminated by requiring a statis-
tically significant multivariate test. Figure 3 shows the result
of adding this requirement. Although fewer studies will
meet this additional criterion, the smaller subset of studies
that would now presumably appear in the literature are even
more biased than the studies depicted in Figure 2. For
example, with n " 25, the average value of d has risen from
0.85 to 0.96. Correspondingly, the true coverage probability
of a 95% interval is now 81.66%, even smaller than before.
As a result, nearly one in every five studies would show a

Figure 3. Average confidence interval for d based on the depen-
dent variable with the largest sample difference among studies
with at least one statistically significant result and statistically
significant multivariate test when population d value is 0.5. The
horizontal line depicts the true population effect size value of 0.5.
The percentages under each bar show the actual percentage of
coverage of the nominal 95% confidence interval.
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variable whose lower limit exceeds 0.50, mistakenly imply-
ing that with 95% confidence the true population effect is
larger than medium.
It is important to emphasize that the distortion seen in

Figures 2 and 3 can potentially be addressed by a careful
interpretation of results accumulated over multiple studies.
In particular, the effect size and accompanying interval for
any specific dependent variable will tend to overestimate the
true population value one half of the time and underestimate
the true population value the other half of the time. As long
as investigators focus on a specific variable, multiple studies
will eliminate any apparent bias. Multiple studies would fail
to reveal this bias only in the case in which researchers
focus their interpretation in each study on whichever depen-
dent variable happens to show the largest effect in that
individual study. A worst case scenario might exist when
each study reports the results only for the variable with the
largest effect and yet a meta-analyst reading the collection
of studies might reasonably regard the various dependent
variables reported across studies as being comparable to one
another, thus seeming to justify accumulating results across
studies even though the results are not uniformly reported
for exactly the same dependent measure.
Tables 9 and 10, along with Figures 2 and 3, illustrate

complications that can emerge when multiple dependent
variables are combined in a single study, especially with
small sample sizes. However, similar complications can
exist with regard to multiple independent variables. For
example, consider the following statement from Aronson,
Wilson, and Brewer (1998):

One of the most frequently misunderstood aspects of experi-
mentation is the amount of pretesting that is often required to
make sure that the independent variable is having the desired
impact. When students read published experiments in psycho-
logical journals, they often have the impression that the re-
searchers had an idea, designed a study, collected the data in a
few weeks, analyzed the data, and presto, found exactly what
they predicted. Little do they know that in most cases the
experiment was preceded by a good deal of pretesting, whereby
different versions of the independent variable were “tried
out.”. . . This might seem to be misleading, in that the research-
ers ended up reporting only the version of the independent
variable that had the desired effect. (p. 117)

The effects of such pretesting on a body of literature
depend on exactly how the pretesting is conducted. One
possibility is that after discovering a version of the inde-
pendent variable that produces the desired effect, an inves-
tigator begins his or her study from scratch, collecting brand
new data. In this case, the only real harm is that some forms
of the independent variable that are truly effective might
have gone undetected because of low power. However,
another possibility is that the researcher reports the data
obtained during pretesting or, at the very least, analyzes data
in which additional participants have been added to the
pretesting participants. This practice is analogous to select-

ing the dependent variable with the largest effect, as shown
in Figures 2 and 3, and will tend to produce biased estimates
of effect sizes.

Further Considerations and Possible Remedies

The previous sections have offered explanations for why
underpowered studies persist and why they may be harmful
to the development of a coherent scientific literature. An
argument could be advanced that consistency of results is
less important in the initial stages of research, in which the
major goal is to explore a variety of potential relationships
in the hope of identifying those are most deserving of
subsequent confirmatory studies. Although this argument
may have some merit, nevertheless it is important that
researchers appreciate the fact that many actual nonzero
relationships will go undetected and hence be dropped from
further consideration to the extent that initial exploratory
studies are underpowered. Even worse, legitimate explora-
tion may slip into what Kerr (1998) labeled as “HARKing,”
(hypothesizing after the results are known), which he de-
fined as “presenting a post hoc hypothesis in the introduc-
tion of a research report as if it were an a priori hypothesis”
(p. 197). Kerr reported the results of a survey suggesting
that HARKing is widespread in psychological research and
has been encouraged by the suggestion of some eminent
researchers such as Bem (1987) that

the data may be strong enough to justify recentering your article
around the new findings and subordinating or even ignoring
your original hypotheses.. . . If your results suggest a compel-
ling framework for their presentation, adopt it and make the
most instructive finding your centerpiece. (p. 173)

The results presented in Tables 1 through 10 show that a
researcher adopting such a strategy may have a reasonable
probability of discovering apparent justification for recen-
tering his or her article around a new finding. Unfortunately,
however, this recentering may simply reflect sampling error
given the sample sizes typical of most psychological re-
search. Similarly, the effect sizes shown in Figures 2 and 3
show that this strategy will inevitably produce positively
biased estimates of effect sizes, accompanied by apparent
95% confidence intervals whose lower limit may fail to
contain the value of the true population parameter 10% to
20% of the time. In any case, notice that no bias results if
recentering involves only varying the emphasis of what is
written in the discussion section of an article. However,
recentering can create a serious bias if it involves selective
presentation of results.
A related problem is that even a literal replication in a

situation such as this would be expected to reveal smaller
effect sizes than those originally reported. The large bias
shown in Figures 2 and 3 suggests that the magnitude of
effect sizes found in attempts to replicate can be much

159UNDERPOWERED STUDIES



smaller than those originally reported, especially when the
original research is based on small samples. A less obvious
implication of Figures 2 and 3 is that these smaller effect
sizes might not even appear in the literature because at-
tempts to replicate may result in nonsignificant results. For
example, suppose a researcher decides to replicate a study
that reports a d value of 0.96 for a comparison of two
independent groups based on a sample size of 25 per group.
A power analysis would reveal that only 19 participants per
group are required to have a power of .80 to detect a
difference corresponding to a population d value of 0.96.
However, suppose that the original d value of 0.96 was in
fact obtained as the largest difference among four dependent
variables. Figure 3 shows that a d value of 0.96 is the
average maximum sample d value observed in a study with
25 participants per group when four dependent variables
each have a true population d value of 0.50 and correlate .30
with one another. The actual power with 19 participants per
group for a single dependent variable in this situation will
be only 0.32. Thus, the investigator has only a one third
chance of obtaining a statistically significant result in this
case. The original sample size of 25 per group raises the
power only to 0.41. The end result is that there is clearly a
high probability of failing to replicate the original finding,
primarily because the original d value reported in the liter-
ature is in this case a badly biased estimate of the true
underlying population d value.
Of course, the most obvious solution to this problem is

simply to use larger samples. As Cohen (1962) said, “Since
power is a direct monotonic function of sample size, it is
recommended that investigators use larger samples than
they customarily do” (p. 153). Cohen (1962) based this
recommendation on the principle that “unless one is to
increase the significance level (i.e., increase the risk of Type
I errors) or use directional tests (e.g., a one-sided test for t)
power can generally be increased only by an increase in
sample size” (pp. 151–152). From this perspective, there is
one and only one solution to the problem of underpowered
studies, namely, to increase sample size. Indeed, with an
increase in attention to the importance of power, statistics
books are increasingly likely to emphasize the role of sam-
ple size in influencing power. However, researchers who are
faced with practical limitations of sample size may feel that
there is little point in conducting a formal power analysis
because they may have little ultimate ability to acquire as
large a sample as the power analysis might suggest. Thus,
researchers may be inclined to do the best they can within
reasonable limits in obtaining a reasonable sample size and
then simply hope for the best. Unfortunately, this attitude
ignores the increasing realization that sample size is not the
only factor influencing statistical power. In fact, Cohen
(1962) himself alluded to such possibilities more than 40
years ago in a footnote, where he briefly included “improv-
ing experimental design efficiency and/or experimental con-

trol” (p. 152) as two possible methods of increasing power.
Methodologists have developed a number of such methods
for improving efficiency and control since the time of Co-
hen’s (1962) original article on power, yet most researchers
still seem to equate power with sample size. A number of
recent sources (Dennis, Lennox, & Williams, 1997; Hansen
& Collins, 1994; Higginbotham, West, & Forsyth, 1988;
Lipsey, 1997; Shadish, Cook, & Campbell, 2002; West,
Biesanz, & Pitts, 2000) present methods for increasing
statistical power without increasing sample size.
Of course, it would be equally shortsighted to believe that

simply adopting some of these methods will single-hand-
edly lead to cumulative knowledge in psychology. As
Schmidt (1996) pointed out, in many situations it may be the
case that the sample size required to have adequate power is
still beyond the resources of a single investigator and a
single study. As he and others have suggested, meta-anal-
ysis provides one method for developing cumulative knowl-
edge over and above single studies. In particular, as Cohn
and Becker (2003) showed, meta-analysis can increase
power to detect an effect by providing a more precise
estimate of a population effect size than would be available
from a single study. However, a question can be raised
about the extent to which meta-analysis is likely to provide
an unbiased estimate of this true underlying effect size. For
example, Kraemer, Gardner, Brooks, and Yesavage (1998)
showed that including underpowered studies in meta-anal-
yses leads to biased estimates of effect size whenever ac-
cessibility of studies depends at least in part on the presence
of statistically significant results. Ironically, to the extent
that multiple tests are conducted in most studies, the prob-
lem identified by Kraemer et al. may be less severe. Pre-
sumably many published studies contain a mix of statisti-
cally significant as well as nonsignificant results. Even if
statistical significance somewhere in the collection of tests
is a virtual prerequisite for publication, it may nevertheless
be the case that published literature contains tests of specific
hypotheses whose statistical test was nonsignificant. Even
so, bias will be absent only to the extent that researchers
fully report all results, not just those that are statistically
significant.
In any event, Kraemer et al. (1998) recommended that

underpowered studies be excluded from meta-analyses in
order to obtain more nearly unbiased estimates of effect
sizes. In fact, this perspective has led some medical re-
searchers to maintain that conducting underpowered clinical
trials is unethical to research participants (Halpern, Karla-
wish, & Berlin, 2002; but for contrary views see Janosky,
2002; Lilford & Stevens, 2002). Thus, even those who argue
that meta-analysis is necessary to make up for the lack of
power in individual studies may need to realize that the
individual studies themselves must have adequate power or
else the results of the meta-analysis are likely to be biased.
Indeed, this view receives some support from health re-
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searchers who have compared the results of meta-analyses
to large-scale clinical trials. Although there is some evi-
dence suggesting that results of large-scale trials tend to fall
within the boundaries implied by a random effects meta-
analytic model (e.g., Berry, 2000), other studies suggest that
meta-analytic effect sizes tend to overestimate effects found
in large-scale studies, just as would be expected to the
extent that underpowered studies are included in the meta-
analyses (e.g., Chalmers et al., 1987; LeLorier, Gregoire,
Benhaddad, Lapierre, & Derderian, 1997; Villar, Carroll, &
Belizan, 1995). Even so, an alternative to excluding under-
powered studies from meta-analyses is to include all studies
but take into account possible effects of publication bias.
For example, Sterne, Egger, and Davey Smith (2001) de-
scribed a variety of graphical methods to detect the presence
of publication bias as well as statistical models intended to
adjust for the effects of possible publication bias (see also
Hedges & Vevea, 1996; Vevea & Hedges, 1995).
Psychology might borrow yet one other perspective from

health researchers. When researchers find themselves facing
Schmidt’s (1996) concern that requiring a power of .80
implies a sample so large as to “make it impossible for most
studies ever to be conducted” (p. 123), an alternative is to
consider a collaborative multisite study. Health researchers
seem to have recognized the benefits of such designs and
implemented support structures to encourage such studies
beyond the historical norm in the behavioral sciences. Iron-
ically, more than 50 years ago Toops made a very similar
suggestion in advocating the “standard million,” whereby
each of 1,000 psychologists would obtain data on 1,000
individuals (Widaman, 2000). Thankfully, samples this
large are unnecessary even to detect minuscule effect sizes,
but it may be an appropriate time to reconsider the merit of
Toops’s idea, albeit on a much smaller scale. In fact,
Howard, Maxwell, and Fleming (2000) recently illustrated
how Bayesian methods and meta-analysis can be used as a
primary data analytic method when primary data are col-
lected over multiple studies. In principle, another solution is
for psychology as a discipline to change publication prac-
tices so that studies with nonsignificant results are as likely
to be accepted for publication as are studies with statisti-
cally significant results. Although such a change would
have much to recommend itself in theory, Kraemer et al.
(1998) pointed out that in practice such a dramatic change in
editorial policy, reviewers’ judgments, and authors’ expec-
tations is unlikely in the near future. Of course, even if such
a policy were adopted, it is still the case that studies with
greater power and precision are more informative than their
underpowered counterparts, all else being equal.

Conclusion

Unless psychologists begin to incorporate methods for
increasing the power of their studies, the published literature

is likely to contain a mixture of apparent results buzzing
with confusion. Increased reporting of effect sizes and con-
fidence intervals will not by itself increase the consistency
of the literature, although it may motivate more powerful
studies by highlighting a major source of likely confusion.
Not only do underpowered studies lead to a confusing
literature but they also create a literature that contains
biased estimates of effect sizes. Furthermore, as implied in
the curse of multiplicity, researchers may have felt little
pressure to increase the power of their studies, because by
testing multiple hypotheses, they often assured themselves
of a reasonable probability of achieving a goal of obtaining
at least one statistically significant result. However, the fact
that most methodological reviews have continued to show
that studies are underpowered implies that tests of individ-
ual hypotheses more often than not lack sufficient power,
even though adequate power exists for detecting an effect
somewhere in the collection of tests. This discrepancy in
conceptualizations of power has almost certainly contrib-
uted to a literature that not only is inconsistent but also
overestimates actual values of effect sizes.
If psychology is to continue to develop a coherent and

accurate body of scientific literature, it is imperative that
further attention be given to the role of power in designing
studies and interpreting results. In particular, it would seem
advisable to require that a priori power calculations be
performed and reported routinely in empirical research.
Ideally, such calculations would reveal not only the proba-
bility that any specific single test is statistically significant
but also the probabilities of obtaining at least one statisti-
cally significant result as well as the probability that all
hypotheses to be tested will be rejected. Of course, one hope
in requiring such power calculations is that this would
effectively force researchers to design more powerful stud-
ies. Fortunately, an assumption that the only way to increase
power is to increase sample size is almost always wrong.
Psychologists are encouraged to familiarize themselves with
additional methods for increasing power. Unfortunately,
this step by itself is unlikely to be sufficient.
In most situations, it is simply unrealistic to believe that

a single study will provide a definitive answer to the most
important question of interest, much less all questions of
interest, in part because precise estimates require such large
samples but also because of the idiosyncratic nature of
many single studies (Wilson & Lipsey, 2001). Thus, either
multicenter studies or meta-analysis will often be necessary.
In any case, several additional steps, all of which have been
suggested previously, seem called for: (a) complete report-
ing of results, including nonsignificant as well as significant
findings, a policy made much more feasible with the advent
of electronic presentation of results; (b) the archiving of raw
data; (c) the registration of studies prior to carrying them
out, so that studies on a given topic are equally accessible
regardless of their findings; and (d) the presentation of
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confidence intervals even when their major contribution is
to reveal the lack of precision with which important param-
eters are being estimated. Although these policies are
clearly not a panacea, their adoption would contribute to a
cumulative science of psychology.
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