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“Isla de Muerta (…) cannot be found except by those who already know where it is.” – Captain Jack Sparrow [4]

Introduction
A common problem in experimental science is if the analysis of a data set yields no significant result
even though there is a strong prior belief that the effect exists. In this case, overfitting can help, a
technique that has become common practice in psychology [1] and neuroimaging [2]. Functional
magnetic resonance imaging (fMRI) is very suitable for overfitting, because general linear models
(GLMs) allow to test a hypothesis at several ten thousand voxels, such that significant results are likely
to be found. Furthermore, analysis pipelines have a high number of free parameters supporting a large
model space. We present The Overfitting Toolbox (TOT), a set of computational tools that allow to
systematically exploit multiple model estimation, parallel statistical testing, varying statistical thresholds
and other techniques that allow to increase the number of positive inferences.

Features
The Overfitting Toolbox (TOT):
• assists in massive model set-up for a given fMRI data set;
• allows to circumvent the laborious burden of interrogating all these models;
• automatically searches through the model space for experimental effects;
• takes expected effect and desired brain regions as input parameters and

identifies models which make this effect significant in these regions;
• can help if the effect is still not being observed despite large number of statistical tests by

implementing different significance levels, extent thresholds and multiple comparison corrections.

Discussion

We have demonstrated the potential of overfitting in fMRI data analysis and how to turn it from a
subjective enterprise into an objective procedure. An important advantage over previous manual
overfitting approaches is that TOT allows to automatically search through a large model space. These
methods could have improved some 40,000 fMRI studies and may have a large impact on the
interpretation of neuroimaging results [3]. As a next step, it would be desirable to reanalyze the entire
amount of previous fMRI studies to harvest the false-positive effects that might have been missed using
conventional statistical techniques [1,2]. Widespread use of The Overfitting Toolbox (TOT) will allow
researchers to uncover literally unthinkable sorts of effects and lead to more spectacular findings and
news coverage for the entire fMRI community [3].
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Empirical Validation of the The Overfitting Toolbox
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We analyze an SPM template
data set [5,6] which was based
on a 2 x 2 factorial design with
4 experimental conditions:

F = 33.25, p < 0.001, k = 12

repetition (Rep)
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The experimental design implies that
4 different effects can be tested:

We look for
these effects
in 90 different
regions [7]:

1

3 4

When R = number of regions
and M = number of models,
this gives us an R x M matrix
for each contrast indicating
how many voxels are activated
when testing for this effect in a
specific region using a specific
model. Here‘s this matrix for
the average effect of condition
(AE Con) when not correcting
for multiple comparisons
(unc., p < 0.001, k = 10).

5

6
Let‘s say we „know“ that there
is an interaction of familiarity
and repetition (IA FxR) in left
auditory cortex (AAL 79). The
toolbox can help us to identify
a model for which this effect
becomes significant in that
region. In fact, such a model
exists, even when correcting
for multiple comparisons
(FWE, p < 0.05, k = 10).

AE Con unc., p < 0.001, k = 10

IA FxR FWE, p < 0.05, k = 10

With TOT, we detected experimental effects in
almost every region using at least one model.
This was not the case when controlling for
multiple analyses using model selection [8] or
model averaging [9]. In particular, the demons-
trated interaction of familiarity and repetition
(IA FxR) in left auditory cortex (Step 6) was
not significant with cvBMS [8] and cvBMA [9]:

Proportion of regions with significant voxels

TOT cvBMS cvBMA

unc. FWE unc. FWE unc. FWE

AE Con 97% 81% 82% 43% 81% 40%

ME Fam 88% 27% 28% 0% 22% 0%

ME Rep 89% 22% 14% 0% 11% 0%

IA FxR 80% 23% 52% 1% 51% 1%

8
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Your turn! Ask the presenter to identify a GLM
that makes your favorite effect significant!
Input the expected effect (Step 3) and the
desired region (Step 4) as well as statistical
thresholds (Step 5/6) and TOT outputs models
that allow to detect this effect in that region.

Model space dimensions

1 event
onsets –2s –1s ±0s +1s +2s 5

2 event
durations 0s 0.5s 1s 1.5s 2s 2.5s 6

3 parametric
regressors 0 1 2 3 4 5 6

4 movement 
params none transl. rotat. all 4

5 hemodyn.
derivatives none 1st only 1st & 2nd 3

6 AR
model AR(0) AR(1) 2

Π Total number of models 4,320

We specify and estimate a very large
model space consisting of 4,320 GLMs:2

AE Con

ME Fam ME Rep

IA FxR

AAL atlas

N1  N2   F1  F2
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