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ABSTRACT. The local sensitivity of a posterior quantity p(P) to the choice of the prior P is 
considered. When the prior P>. is indexed by parameter A, a natural measure is the total derivative 
of p(P>.) w.r.t. A. Total derivative, however, is direction specific. To measure the local sensitivity 
of p(P>.) to specification of A, one may either use the norm (maximum over all directions) of the 
total derivative or alternatively, the average sensitivity which evaluates the average of this total 
derivative over all directions. Simple expressions are given for the maximum and average sensitivity 
which make their evaluations very easy. Discussion and several examples illustrate implications of 
these ideas. 

1. Introduction 

Bayesian paradigm requires one to specify two parametric models; the sampling density 
f(XI9) and the prior P(9). However, in practice, knowledge about these models are never 
accurate, and such specifications are only approximations or guesses at best. Hence, sen­
sitivity of the final action to deviations of these various inputs from their idealized models 
is of much concern. As Tukey (1960) writes, "A tacit hope in ignoring deviations from 
ideal models was that they would not matter; that statistical procedures which are opti­
mal under the strict model would still be approximately optimal under the approximate 
model. Unfortunately, it turned out that this hope was often drastically wrong; even mild 
deviations often have much larger effects than were anticipated by most statisticians". 

Robustness studies, in both Classical and Bayesian statistics, can broadly be divided 
into two subgroups; global sensitivity analysis and local or infinitesimal approach. The 
former examines the effect of misspecification, when the true model may or may not be 
close to the idealized one. In the Bayesian context, global sensitivity to misspecification 
of the prior has been expounded by many, see Berger (1993), Wasserman (1992), Basu 
and DasGupta (1992), Rivier et al. (1990), and the references therein. In contrast, local 
sensitivity studies explore the effect of infinitesimal perturbations from the idealized model. 
Recent advances in this area include Rodriguez (1994), Ruggeri and Wasserman (1993), and 
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Skilling (1990). Our efforts in this article will be directed towards studying local sensitivity 
of Bayesian analysis to the choice of the prior. 

Formally, we observe data X from the sampling density f(xiO). The observed likelihood 
function f(XIO) will be denoted by £(0) (with conditioning X understood), and P(·) will 
denote the prior distribution on 0. Let m(P) = f£(0)dP(O) denote the marginal w.r.t. 

e 
prior P. Given the likelihood £(-) and the prior P( ·),the posterior probability distribution, 
defined as P(AIX) = dp, J £(0) dP(O) for any set A, will be denoted by P(·IX) (with 

m\' I A 

dependence on £( 0) understood). Similarly, 11'( ·) and 11'( ·IX) will respectively denote the 
prior and the posterior densities (whenever appropriate). We will use p(P) or pP to denote 
a posterior quantity (such as the posterior mean) corresponding to the prior P. 

As we mentioned before, prior specification is typically imprecise. Thus, in reality, we 
have a multiplicity of P as possible choices of the prior, from which we choose a single Po 
as our idealized prior. We will use P to denote the class of all plausible priors. Sometimes, 
the prior class P is indexed by a parameter. For example, we may decide to use P = 
N(p,, r 2 ), but are not sure about any specific values of p, and r 2 , thus leading to the class 
{ N(p,, r 2 ) : (p,, r 2 )T E ( -oo, oo) 0 (0, oo) }. Such parametric classes will be denoted by 
P A = { P;., : A E A}. We will often assume that the indexing set A ~ Rk. In other 
situations, when any particular parametric form for the prior is not apparent, one uses a 
nonparametric class, such as an c:-contamination class pe, An c:-contamination class arises 
when one is 100(1-c:)% certain about the idealized P0 as the choice ofthe prior, and lOOc:% 
uncertain (0:::; E < 1), thus resulting in the class pe = {P: P = (1- c:)P0 + c:Q} where Q 
is any arbitrary prior distribution. 

When we have a class P of plausible priors, and an idealized prior P0 , the first question 
that comes to mind is : "if the true prior Q in Pis close to the idealized P0 , is it guaranteed 
that p(Q) will be close to p(Po) ?" In a limiting sense, this amounts to continuity of p(P) 
(as a function of P) at P = P0 , and in the terminology of classical robustness literature, 
this corresponds to Hampel's (1971) definition of qualitative robustness. Note that we are 
posing the question in terms of p(P), however, an exactly similar question can be posed in 
terms of the posterior distribution P(-IX). If qualitative robustness is achieved, a second 
natural question to ask would be : "is the change in p( P) bounded by the change in P ?". 
To formalize this question, suppose d(-, ·) is a metric on the space of priors, and v( ·, ·) is 
a metric on the space of the posterior quantities p(P). Then, we can pose our question as 
follows: "does 3 an a> 0 such that v(p(P), p(Po)) :::; M [d(P(·), Po(·)]"' for some M > 0?". 
Mathematically, this is a Lipschitz condition of order a. Basu, Jammalamadaka and 
Liu (1993) termed this second notion as stability, and studied the qualitative robustness and 
stability of p(P) and P(·IX). 

Qualitative robustness and stability are very necessary but rather weak characterizations 
of robustness. A local sensitivity study should also explore the rate of change of p(P) asP 
deviates infinitesimally from the idealized P0 . If the prior class P = PA is parametric and 
A~ R, this is easy. For Po = P;.,0 and p(P;.,) = p(A), one simply computes the derivative 
p'(A) = i>.P(A) at A = Ao. If p'(Ao) is small, it suggests that p(A) is not sensitive to mild 
perturbations of P;., around A = Ao. The situation gets complicated when A ~ Rk. We 
consider a more complex setup when p is also multidimensional, i.e., p = [p1 , ... , Pn]T. A 
proper concept of derivative in such multivariate situations is the total derivative. In section 
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2.1., we establish sufficient conditions for total differentiability of a posterior quantity p(.X). 
However, total derivative is direction specific, its value depends on the direction of deviation 
.X from the idealized value >.o. We thus evaluate the norm of the total derivative, or its 
maximum value over all directions. Theorem 2 supplies an easy formula for evaluation 
of this norm. An alternative viewpoint would suggest computing the average of the total 
derivative over all directions. This leads us to average sensitivity. Section 2.3. discusses 
this issue and again supplies simple expressions for ease of computation. Several univariate 
and multivariate applications are explored in section 3 .. Finally, section 4. briefly discusses 
the issue of quantification of local sensitivity over non parametric prior classes. 

Use of derivatives to quantify the sensitivity of a posterior quantity is not new. Diaco­
nis and Freedman (1986), and Ruggeri and Wasserman (1993) evaluated norm of Frechet 
derivatives over the class of all signed measures and/or its appropriate nonparametric sub­
classes. Rodriguez (1994) used the concept of Lie derivative to quantify the intrinsic ro­
bustness of a hypothesis space. To our knowledge, such explorations over parametric classes 
have not been explicitly considered before. 

2. Parametric prior classes 

2.1. Total derivative 

Mathematical and numerical convenience often attracts one to use a prior of a special 
parametric form (this is more true in multivariate situations). For example, in a linear 
model setup : ¥ "' N(X (}, u 2 I) with u 2 > (, mown, it is common to use a N(J}, f) prior 
for {}. Even if such a formulation is justified, specification of the prior hyperparameters poses 
a secondary problem, which is often handled through Empirical Bayes and/or Hierarchical 
Bayes methods, or the hyperparameters are specified as inputs by the user. Again, these 
inputs are never exactly accurate, so that local sensitivity to a particular choice of the 
hyperparameters is of concern. 

Let .X = [At, ... , Ak]T denote a generic element of A, and let PA = {P_x : .X E A} be 
the class of all plausible parametric priors from which we choose P_x0 as an idealized prior. 
We will assume that A is an open subset in Rk so that for each >.o E A, 3 a neighborhood 
No of >.o such that >.o E No ~ A. Let p(P_x) = p(.X) be the posterior quantity of interest. 
p(.X) may be univariate (a single posterior quantity), or multivariate (a vector of such 
quantities); in general, we will assume that pis n-dimensional and .X is k-dimensional, i.e., 
p = [pt, ... , Pn]T : A ~ Rk f-t Rn. Often, we will focus on ratio-linear posterior quantities, 
i.e., p(.X) = [Pt(.X), ... ,pn(.X}V = [m(~_x)fh;(8)l(8)dP_x(8)]f=t· Such quantities will be 

denoted by ph(.X). 
Our concern is the local sensitivity of the posterior quantity p(.X) to the particular 

choice of the parameter .X = .X0 . The weaker local sensitivity properties of p(.X), namely, 
qualitative robustness and stability, are explored in Basu, Jammalamadaka and Liu (1993). 
Here, we focus on measuring the rate of change of p(.X) to small perturbations in .X, in ot1ier 

words, the derivative of p(.X) w.r.t . .X at .X= .Xo. Let 'VP(.X.) = [[ 6P6\:·l Jj=1)f=1 denote the 
matrix of partial derivatives of p w.r.t . .X at .X= .X •. However, the appropriate derivative 
in multivariate calculus is not the partial derivative, but rather, the total derivative T P,X •. 

The function p : A ~ Rk f-t Rn is called (totally) differentiable at .X. E A if 3 a linear 
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• k n llp(~.+v)-p(~.)-TP~.('")IIn 
functiOn Tp~. : R ...... R such that llvllk --+ 0 as llvllk --+ 0 

(llvllk = Jv? + ... + v~ denotes the standard Euclidean norm on the k-dimensional space 

Rk). Note that each~. E A gives rise to a distinct linear transformation Tp~.· 
The existence of the total derivative T P~., however, is easier to prove through the 

existence and continuity of the partial derivatives sp!~~.). A well known result in differential 
J 

calculus states that the total derivative T p exists over a neighborhood No of ~0 and is 
continuous on the space £(Rk, Rn) of linear transformations from Rk ...... Rn iff the partial 

derivatives * exist and are continuous on N 0 V 1 ::::; i ::::; n, 1 ::::; j ::::; k (Rudin (1976), p 
J 

219). We use this result to investigate differentiability of the ratio-linear posterior quantity 
ph(~) in Theorem 1. It is easier to state the result in terms of densities, thus we will 
assume that each P~ EPA has a density 7!'~(8) = 1!'(8,~). 
Theorem 1 Let N0 be a neighborhood of~ E A. Assume 1£(8)1 ::::; M0 , and for all 
1::::; i::::; n, lh;(8)l(8)1::::; M; V8 E 0. We further assume the following: 

(i) For each 1::::; j::::; k, the partial derivative ;&-1!'(8,~) exists V (8,~) E 0 0 N0 , and is 
J 

continuous as a function of~ for every 8 E 0. 

(ii) For every 1::::; j::::; k, 3 a function gj(8) on 0 such that (a) gj(8) ~ 0 V8 E 0, 
(b) I gj(8dp,(8)::::; Lj < oo, and (c) Is~ 7r(8,~)1::::; gj(8) V (8,~) E 0 0 No. 

e ' 

Then the total derivative T p~ of the posterior quantity ph ( ~) exists for ~ E N 0 and T ph 

is continuous on £(Rk, Rn). 

Proof: Let N;(~) = Ih;(8)l(8)7r(d8,~), thus p;(~) = :(£~))' 1::::; i::::; n. The conditions 

of the theorem ensure that for 1 ::::; i ::::; n, 1 ::::; j ::::; k, and V ~ E N0 , the partial deriva­
tive 8~ N;(~) exists and =I h;(8) £(8) rl;:-1!'(8, ~)by the Dominated Convergence theorem. 

J J 

Continuity of ~j(~) = si 7r(8,~) and another application ofD.C.T. prove that 8fN;(~) is 
J J 

continuous in~ E N0• Similarly, 8~ m(7r~), and hence 8~ p~(~) exist and are continuous 
J J 

in ~ for every 1 ::::; i ::::; n, 1 ::::; j ::::; k. The proof of the theorem follows • 

2.2. Maximum sensitivity 

Our interest lies in measuring the rate of change of p( ~) as ~ deviates from ~0 . In particular, 
since we are not sure about any specific direction of deviation, we would like to find the 
maximum rate of change of p(~) over all directions. However, note that the total derivative 
T p~ is a linearfunction of v E Rk, i.e., even if we fix a direction v, T p~ ( c·v) = c·T p~ ( v) 
for any c > 0. Hence, sup IITp~(v)lln is clearly infinite. What we need is the 

all·v -::fi 0 

concept ofthe normofalinearfunctional, defined by IITP~II = sup~~ IITp~ (v)lln = 
1:7;,!0 ll"llk 0 

sup ~ IITp~0 (v)lln- Here c > 0 can be chosen arbitrarily small to make sure that 
IIVIIk=c 
p(~ + v) is well defined for all {v : llvllk = c} (see definition of Tp~0 ). Also, note that 
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if A and pare univariate, i.e., k = n = 1, then ~IITP>.0 (v)lh = ldp~~>.o)l· Thus, 

niiTk IITpA0 (v)lln has an intuitive interpretation as the rate of change of p(A) at Ao in the 
direction of Ao + v, and we are trying to find the maximum rate over all such directions v. 

Direct evaluations of the total derivative TpA and its norm, however, are hard. The 

next theorem expresses liT P' II as a function of the partial derivatives 6 ~·iA), which are Ao ; 
much easier to calculate. 

Theorem 2 Let A, p(A), and VP(A) be as defined before. Assume p(·) :A,__. ~n is 
totally differentiable at an interior point Ao of A. Then liT pAo W = maximum eigenvalue 
of the k X k nonnegative definite matrix 'VP(Aof 'VP(Ao). 

Proof: It is well known that the total derivative T pAo is a linear combination of the 
partial derivatives, i.e., TpAo ( v) = 'VP(Ao) v (Rudin (1976), pp. 215). Hence, IITpAo W = 

sup viv VT\7P(Aof'VP(Ao)v =maximum eigenvalue of 'VP(AofVp(Ao) (see, for 
vrv~o 

instance, Rao, C.R. (1973), p 62) • 

Corollary 1 Suppose we consider a single posterior quantity, i.e., p(·) : A <;::: ~k ,__. ~­

k 6 
Then IITP.xnll = I: [rr p(Ao)F. 

i=l I 

Proof : Immediate from Theorem 2 • 

2.3. Average sensitivity 

It should be mentioned that the norm of the total derivative, or the maximum sensitivity, is a 
very conservative estimate in the sense that it tries to guard against large changes in p( A) by 
computing the fastest rate of change over all possible directions. Another less conservative 
concept would be to average the rate of change over all directions. Mathematically, this 
amounts to evaluating I IITp.xn(v)lln dv. But since this integral is hard to compute, 

{IIVIIk=l} 
we square the integrand and evaluate J IITpA0 (v)ll~ dv instead. The choice of "1" 

{IIVIIk=l} 
as the radius of the hypersphere is completely arbitrary here; any other radius leads to an 
equivalent definition (through the linear structure ofT pAo ( v )). 

Definition 1 Assume p( ·) : A <;::: ~k ,__. ~n is totally differentiable at an interior point Ao 
of A. Then the average sensitivity of the posterior quantity p(A) = p(PA) w.r.t. the choice 
of the prior parameter A= Ao is defined to be TpAo = ;& I IITpA0 (v)ll; dv. Here 

{IIVIIk=r} 
r > 0 is arbitrary (the definition is independent of the choice of r ). 

The next theorem shows how to evaluate TpAo for a totally differentiable posterior quantity 
p(A). 

Theorem 3 Assume the setup of Theorem 2 with A <;::: ~k. Then T pAo = 7f x 
{sum of eigenvalues of the k X k matrix \7 p( Ao f \7 p( Ao)}, where Wk = surface area of the 

{ I } 2 7fk/2 
hypersphere v: lvllk = 1 = r{k/2)· 
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Proof: Since Tp>.,(v) = 'VP(Ao)v, IITP>.,(v)W = vT Av with A(kxk) = 
'VP(Aof 'VP(Ao). Let /31, .. . ,f3k be the eigenvalues of A, i.e., A= pT D P where D(kxk) = 
diag{/31, ... , f3k} and P is an orthogonal matrix. Let u = ( u1, ... , ukf = P v. Then 

k 

TpAo = f (vT Av)dv = l:{/3; f u~du}. Clearly, S = f urdu is 
{llvllk=1} i=1 {11UIIk=1} {lluiik=1} 

k 
independent of "i", and k S = J { L uT}du = Wk. This completes the proof of the 

{llullk=1} i=1 
theorem • 

Corollary 2 Suppose p(.X) is univariate, i.e, p(·): A~ ~k 1---+ ~. Then 
k ;k TpAo = iE [ot P(Ao)F = IITP>.,W· 

Proof : Follows trivially from Theorem 3 • 
Remark : It is clear that for n = 1, these two concepts of maximum and average sensitivity 
are equivalent (see Corollaries 1 and 2) 0 

3. Examples 

We look at several applications of Theorem 2 and Theorem 3 in this section. The first 
three examples evaluate the maximum sensitivity of posterior quantities, while Example 4 
examines average sensitivity. 
Example 1: Suppose we observe X from N(8,a2 ), where a2 > 0 is known, and decide to 
use a N(Jl, r 2 ) prior for 8. Thus, PA = N(Jl, r 2) with A= (Jl, r 2f E ~lSI (0, oo ). Our inter­

est is the Bayes estimate of(} under squared-errorloss, i.e., p(Jl, r) = E A ( (} I X) = 72 J: ;; t£ • 

To evaluate local sensitivity of p(Jl, r) w.r.t. a particular choice of the prior location param­
eter Jl and scale parameter r, we evaluate the total derivative of p. Clearly, -/-P = ~+2 

,-------~~-- T q 

d 6 - 2Tu2(X-~) h b C ll liT II- u2 4T2(X-~)2 . an 07p- (7 2+u2)2 , t us, y oro ary 1, P(~,7 ) - ~ 1 + (72 +u2 )i. Notice 

that the local sensitivity index IITP(~,7 )11 decreases as IX- 111 decreases and/or as r in­
creases (subject toT ~ a). Thus, for this particular example, our evaluation of IITP(~,T)II 
mathematically justifies the popular belief that if the center of the prior matches with that 
of the likelihood and/ or if the prior has a flat tail, then (generally) posterior robustness 
(w.r.t. the prior) is achieved 0 

Example 2: Let X be observed from N(O, 1), and the user or a finite elicitation pro­
cess specifies the prior median and quartiles of (} at 0 and ± 1 respectively. Several 
distributions satisfy these requirements (see Basu and DasGupta (1992)). For compar­
ison, we only consider the sharp tailed 7rn(Jl, r 2 ) = N(Jl, r 2) with Jl = 0, r = 1.48, 
and the flat tailed 7rc(Jl, r 2 ) = Cauchy(Jl, r 2 ) with Jl = 0, T = 1. However, the spec­
ifications of median = 0 and quartiles = ± 1 often can not be taken as exactly accu­
rate. We thus consider the local sensitivity of the specification Jl = 0, r = 1.48 in 
the class of all N(J-t, r 2) priors, and compare it with the sensitivity of the specification 
Jl = 0, T = 1 in the class of all Cauchy(/-L, r 2 ) priors. Let pn(Jl, r 2 ) and pc(Jl, r 2 ) de­
note the posterior means w.r.t. 7rn(Jl, r 2 ) and 7rc(Jl, r 2 ) respectively. The local sensitiv­
ity in the Normal class, i.e., IITp(~=D,T=L4s)ll, can be easily found from the calculations 
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done in Example 1. Let pc(J.t, r 2 ) = ri:f::;~j, where Nc(J.t, r 2 ) = I Bl( B)1rc( BIJ.t, r 2 ) dB, 
nc(J.t, r 2 ) = I l(B)7rc(BIJ.t, r 2 ) dB, and l(B) is the appropriate likelihood. Nc(J.t, r 2 ) is diffi­
cult to compute analytically. However, it is easy to check that the condition for interchange 
of derivative and integral is satisfied, i.e., /IL Nc(J.t, r 2 ) = I Bl(B) [./IL 7rc(BIJ.t, r 2 )] dB. Sim-

ilar result holds for nc(J.t, r 2 ). NOW' /IL pc(J.t, r 2 ) = vc(;,,.2)2 { nc(J.t, r 2) /IL Nc(J.t, r 2) -

Nc(J.t, r 2 ) /IL nc(J.t, r 2)}, and each term in the above expression involves a simple numerical 

integration. Same is true for /r pc(J.t, r 2). Thus, IITp(JL=O,r=l)ll can be obtained with little 
numerical work. 

Table 1: IITpll for N(O, 2.19) and Cauchy(O, 1) priors 
X 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 

IITpnll 0.346 0.428 0.537 0.661 0.792 0.927 1.065 1.205 
IITpcll 0.481 0.497 0.512 0 . .511 0.476 0.402 0.309 0.225 

Table 1 shows the values of IITP(IL=1,r=1.48)11 and IITp(JL=O,r=1 )11 for different values of 
X. As can be seen, the value of IITpnll increases with X, and is large for X? 2.5, whereas 
IITpcll fluctuates very little. Thus, misspecification of the prior parameters results in much 
less sensitivity for the heavy tailed Cauchy prior than for the sharp tailed Normal prior 
(especially when the the center ofthe prior and the likelihood do not match), which again 
agrees with prevalent beliefs D 

Example 3: Consider a standard linear model setup: f"' Nm (X(}, E). Here, t"mx 1 is 
an observed vector, Xmxk is a known design matrix, Eisa known positive definite matrix, 
and flkx 1 is an unknown parameter vector. Under the Bayesian paradigm, we assume a 
Nk (Jl, f) prior for (}. It is well known that in this setup, the posterior mean for (} is 
(}* = [r-1 + XT E-1 X)-1 [r-1 Jl + XT E-1 X f.!), where f.! = [XT E-1 XJ-1 XT E-1 f is 
the generalized least square estimate (or mle) of fl. For notational simplicity, we denote 
XT E-1 X by A from now on. However, specification of the prior parameters Jl and r is 
again of concern. First, we assume r is e:x;actly known, and find the local sensitivity of 

5 (}* 
(}* w.r.t. misspecifications of 11· Clearly, [TLL]kxk = [r-1 + A]-1 r-1 , thus IITfl~W = 

maximum eigenvalue of [r-1 + AJ-1 r-1 r-1 [r-1 + At1 • Surprisingly, this local sensitivity 
liT(}~ II does not depend on 11 or on the observed value of r. 

We next assume that 11 is correctly specified and examine the sensitivity of(}* to mis­
specifications of r. In particular, we presume that r has a equicorrelated structure, i.e., 
f = a{(1- r )I+ r 11 T}, thus specification off requires specifying the variance term a and 
the correlation term r (The following calculations can also be done for a general positive def­
inite r, but with increased complexity). For ease in calculations, we writer = r{I +p 11 T}, 

5 (}* 5 (}* 
thus T = a(1- r), p = 1~r' and r-1 =~[I- rf;;p 11 TJ. Calculation of 6T and SiJ' how-
ever, requires use of matrix derivatives. In particular, we need: (i) if V and W (both matri-

ces) are functions of a matrix Umxn, then d(~:) = ( ~~) (W 0 In) + (V 0 Im) ( ~r; ), and ( ii) 
if Vis invertible, then d(~;1 > = -(V- 1 0Im)(~~)(V-1 0In)· Here, 0 denotes a Kronecker 

product and, for Vpxq, Umxn, [~~]mpxnq = V 0 ;Jb where dh is a matrix of derivative oper-
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ators [~]mxn (see MacRae (1974), Polasek (1985) for more on matrix derivatives). Using 
u u,1 

5[}• 5[}• 
these formulae, we finds:;:-=~ [r-1+At1 r-1 {[r-1+At1 [r-1Jl + A.Q]-1!} and 5iJ = 

(I+ !P)2 -r [r-1+At1 U T {[r-1 +A]-1 [r-1 Jl +A .Q]-1!}· Going back to our original param-

l'l*( ) _ [ 5[}• ] _ [ 5[}• ] [5!-r,pjJ _ [5g• 5[}•] (1-r -u) 
eters, we have \J 1:: a, r - 6(u,r) kx2 - 6(-r,p) kx2 6 u,r 2x2 - s:;:-, 5/} 0 1/(1-r)2 · 
Moreover, liT§*( )11 2 = maximum eigenvalue of [\l [J*JT [\l §*]. Notice that the matrix on u,r 
the r.h.s is only 2 x 2, so that the maximum eigenvalue can be found easily. 

For example, suppose we consider a simple linear regression model : Y; = f3o + {31 x; + 
E;, i = 1, ... , m, where E;'s are i.i.d. N(O, 1) and lx;l::; 1. Using an optimal design strategy, 
we take 10 observations at x; = 1 and 10 at x; = -1. Thus, m = 20, k = 2, 'E =I, and 
xr X= 20I. In this setup, IIT!J~II = 1+20u\1 lrll" Notice, we did not require to specify 

either r or 1! to evaluate IIT!J~II· Moreover, IIT!J~II decreases, i.e.,[}* becomes less sensi­

tive to specification of 1! as the variance term a increases and/or as the correlation r gets 
close to 0. Evaluation of IIT!J(u,r)ll, however, requires us to know lf, and¥, or equivalently, 

the least square estimate .Q. We specify 1! = (O,Of, and evaluate IIT!J(u,r)ll in Table 2 for 

three different values of§., namely, Q = (1, 1)T, (1, 3)T, and (3, 3f. From Table 2, we see 
that §* becomes less sensitive to specifications of (a, r) as a increases and/ or r gets close to 
0. However, positive and negative r values have different effects. Also, [}* is less sensitive 
to (a, r) for Q = ( 1, 1 f (which is close to the prior specification 1! = ( 0, 0 )T) than for other 
values of Q 0 

Example 4 (Example 3 continued) : As before, consider a linear model setup : ¥ "' 

Table 2: IIT!J(u,r)ll for different values of Q, a and r 

a=l a=2 
r -.75 -.5 0 .5 .75 -.75 -.5 0 .5 .75 

Q = (1,1)1 .22 .13 .09 .27 .30 .08 .04 .04 .14 .15 

Q = (1,3f .44 .26 .18 .58 .99 .16 .09 .08 .30 .56 

Q = (3,3f .66 .38 .27 .81 .90 .25 .13 .11 .41 .46 

Nm (X§, 'E) with !Jkx 1 "'Nk (lf, f). When r is known and we focus on the average sen­

sitivity of [}* (the posterior mean of [}) to specification of lf, we have : T!J~ = r X 

{sum of eigenvalues of (r-1 + At1 r-1 r-1[f-1 + At1 }, where A= XT 'E-1 X. If 1f is 
correctly specified, and we want to evaluate the average sensitivity of[}* w.r.t. a and r 

(where r = a{(1- r)I + r ll T} ), then T!J(u,r) = 1l"X {sum of eigenvalues of 

[ \J [}*(a, r )V [V §*(a, r )]} (see Example 3). 
In particular, if we consider the specific example: m = 20, k = 2, 'E =I, and xr X= 

20 I, then T[J~ = 7r X {[I+ 20u1(1+ r)]2 + [I+ 20u1(1- r)]2 }. Notice, T!J~ increases as a decreases. 

It also increases as lrl increases. For 1! = (O,Of, we also evaluated T[J(* )'and plotted it u,r 
against r for different values of Q (the least square estimate of[}) and a (plot not shown). 
These plots showed that the average sensitivity decreases with increase of a. However, 
the effect of r was somewhat surprising, T!J(u,r) (for fixed Q and a) did not attain its 
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minimum at r = 0 as was expected D 

4. Nonparametric classes 

An important issue in prior elicitation is that a parametric functional form of the prior is 
generally hard to determine. Recent attention in robust Bayesian analysis is thus more fo­
cused towards nonparametric prior classes. Our technique of computing the total derivative 
to quantify the sensitivity of p( P) fails here, since the relevant domain of p( P) is no longer a 
Euclidean space, but a general polish space M of all probability measures on 0. Thus, the 
notion of functional derivatives, in particular, Frechet derivatives enters the picture. Diaco­
nis and Freedman (1986), and Ruggeri and Wasserman (1990) quantified the local sensitivity 
of a posterior quantity p(P) by computing the norm of its Frechet derivative over the class 
of all signed measures or its appropriate subclasses. Srinivasan and Truszczynska (1990) 
used Frechet derivatives to approximate ranges of posterior quantities. 

Frechet derivatives are defined on normed linear spaces, or more generally, on topological 
vector spaces. However, the posterior quantity p(P) is defined on M which is convex, but 
not linear. Thus p has to be artificially extended to the linear space of all signed measures 
~ before the notion of Frechet differentiability could be applied to p. 

A different line of attack was proposed by Huber (1981) and others who generalized the 
definition of Frechet derivatives to encompass the case when p is defined only on M. We 
find this approach more natural from a statistical viewpoint. This generalized definition, 
however, comes with a price since we can not use strong theorems which are available for 
Frechet derivatives on vector spaces. In our current ongoing work, we have established 
(Huber's) Frechet differentiability of ratio-linear posterior quantities. We have also argued 
that since M is only convex, a direct maximization of the Frechet derivative is more intuitive 
rather than treating M as a subspace of the linear space ~ and computing the norm of 
the Frechet derivative over M. We are in the process of developing methods for computing 
this maximum over different subclasses of M. 

Acknowledgement : The authors thank Benny Cheng for suggesting an improvement 
in the proof of Theorem 3. 
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