Commentary and Debate

To conserve space for the publication of original contributions to schol-
arship, the comments in this section must be limited to brief critiques; au-
thor replies must be concise as well. Comments are expected to address
specific substantive errors or flaws in articles published in AJS. They
are subject to editorial board approval and peer review. Only succinct
and substantive commentary will be considered; longer or less focused
papers should be submitted as articles in their own right. AJS does not
publish rebuttals to author replies.

THE SENSITIVITY OF THE INTRINSIC ESTIMATOR
TO CODING SCHEMES: COMMENT ON YANG,
SCHULHOFER-WOHL, FU, AND LAND'

INTRODUCTION

In aseries of articles, Wenjiang Fu, Yang Yang, and Kenneth Land (Fu 2000,
2008; Yang, Fu, and Land 2004; Yang, Schulhofer-Wohl, Fu, and Land
2008; Yang 2008) proposed the intrinsic estimator (IE) and argued that it is
a general-purpose, robust, reliable, and useful tool for estimating age-period-
cohort (APC) and similar models, where identification and estimation are
deeply problematic because of exact linear dependence among the explana-
tory variables. For example, in their article “The Intrinsic Estimator for Age-
Period-Cohort Analysis: What It Is and How to Use It” (American Journal of
Sociology 113 [2008]:1697—1736), Yang, Schulhofer-Wohl, Fu, and Land de-
scribe the IE and how to use it to disentangle age, period, and cohort effects in
empirical research. Using the General Social Survey (GSS) data as an exam-
ple, they argue that the IE produces estimates that approximate well true age,
period, and cohort trends (Yang et al. 2008, pp. 1712—16). They also use sim-
ulated data to argue that the IE performs better than the traditional con-
strained generalized linear model. They conclude that the IE can be used
to produce reliable and useful estimates of the underlying independent effects
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The Sensitivity of the Intrinsic Estimator to Coding Schemes

of age, period, and cohort in APC models (Yang et al. 2008, pp. 1716—22). The
IE now enjoys wide popularity in many disciplines and has been used in mul-
tiple empirical applications (e.g., Clark and Einsenstein 2013; Masters et al.
2014; Schwadel and Stout 2012; Schwadel 2011; Yang 2008).

O’Brien (2011) and Luo (2013a, 2013b) raise questions about whether the
IE is in fact a useful method for estimating the true effects of age, period,
and cohort. In particular, they show that, like other APC estimators, the
IE involves a constraint that is essentially arbitrary and that it performs
badly when the situation does not satisfy this constraint.

In this comment, we raise additional concerns about the robustness (i.e.,
sensitivity) and thus the usefulness of the IE. Specifically, we show that IE
estimates can be highly sensitive to a researcher’s choice of coding scheme
or model parameterization. For example, suppose that two researchers begin
with an identical age-by-period data array of rates, with age factor «; for
i=1,...,aand period factor B, forj =1, ..., p. They construct the cohort
factor vy, fork=j—i+a=1,..., a+p— 1 from the identity cohort =
period — age. Both researchers now wish to carry out an APC analysis on
these data but have not settled on a common coding to adopt. One researcher
adopts «, as the reference (i.e., the first level of the age factor is chosen as the
omitted category), and the other adopts o, as the omitted category (i.e., the
lastlevel of the age category as reference). The resulting dummy variable cod-
ing pertaining to the age factoris i, . . ., a, (for researcher 1) and o, . . ., 0ty
(for researcher 2) accordingly. Both apply the same respective coding schemes
toperiod, B3,, ..., B,and By, ..., B,—; and cohort, v,, . . ., Yasp—r @0d Y1, . . s Yo poa-
Because of these different parameterizations of the design matrix, the two
researchers will necessarily get different coefficient estimates for the same
rate data. In an identified model, they could easily obtain identical esti-
mates by transforming both results to a common parameterization such
as one in which the effects sum to zero across the a levels of age, p levels
of period, and a +p — 1 cohort categories. However, even after doing this,
the TE estimates that the two researchers get will be different and will often,
in fact, lead to opposite findings about the patterning of APC effects.

We reanalyze data from three published articles to demonstrate that cod-
ing the APC model using one coding scheme (e.g., the sum-to-zero/ ANOVA
coding) can give dramatically different results from those obtained using a
different coding scheme (e.g., using a reference group). The results are so dif-
ferent that a researcher would reach opposite conclusions about the effects of
age, period, and cohort depending on the choice of coding scheme.

INSENSITIVITY TO CODING SCHEMES IN IDENTIFIED MODELS

In most basic regression courses, students are taught that a regression model
with categorical variables can be parameterized in different ways, for exam-
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ple, using one category as the reference or base group or alternatively using
so-called sum-to-zero coding. They are then shown that these different cod-
ing schemes are equivalent in that (1) they give the same predicted or fitted
values, (2) one set is easily transformed into another, and most important,
(3) the substantive interpretation of estimated effects is invariant to the cod-
ing scheme. The last is true in a very precise sense: the age, period, and co-
hort effects estimated under the different coding schemes are identical if
they are reexpressed in a common coding scheme. For example, if one cod-
ing scheme gives estimates showing an increasing period effect, the alterna-
tive coding scheme will also give an identical increasing period effect. Be-
cause of this equivalence, the typical advice is to choose that coding
scheme within which it is easiest to interpret the results. In all other respects,
the choice of coding scheme is innocuous in an identified model.

For example, consider an identified Poisson model that regresses the out-
come—the U.S. female mortality rates from 1960 to 1999—on age and pe-
riod groups. Table 1 reports the estimation results for this age-period model
using the sum-to-zero coding with the last group omitted and also for coding
schemes using the first group and last group as reference groups. Because
the model is identified, these seemingly different effect estimates using dif-
ferent coding schemes are in fact identical after being transformed to a com-
mon scale. For example, the effect estimate for the 5-9 age group in the
Berse = 0 column in table 1 can be calculated by subtracting the effect esti-
mate for the 0—4 age group from that for 5-9 age group in column £, =0
—2.453 = —6.631 — (—4.178) . Similarly, to get the estimate for the 1990-94
period in the > =0 column in table 1 using the estimates in column S, =0,
we first calculate the average of the eight period effects shown in the (g, =0
and then subtract the average from the estimate for 1990-94 period effect:
—0.413 — (—0.246) = —0.167.

More formally, given a simple single-factor dummy variable model of the
form

K
v,=8,+ EBkDik +¢, 1)
k=1

where D, is a dummy variable derived from a factor with K levels, and
where any category k can be chosen as the reference (i.e., 3; = 0), we can
construct the sum-to-zero or centered effects parameterized model as

K
= (8, +B) + E B)D,, + ¢ = «, +2ale.k + g, (2)
paet k=1

where 8 = = 3,/K, and therefore =;_ o, = 0. (Alternatively, the same re-
sults can be obtained using matrix transformations as described in the ap-
pendix.)
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TABLE 1
ESTIMATED AGE AND PERIOD EFFECTS ON MORTALITY
UNDER THREE CODING SCHEMES

Category/Effects >=0 B =0 Bras=0

Intercept . ......... —5.343 —5.539 —1.778
Age
04 ... ... —.442 .000 —4.178
5-9 —2.894 —2.453 —6.631
10-14 ............ —2.989 —2.548 —6.726
15-19 ... —2.236 —1.794 —5.972
2024 ... —2.059 —1.618 —5.796
25-29 ... —1.900 —1.459 —5.637
3034 ... —1.607 —1.166 —5.344
35-39 ... —1.230 —.789 —4.966
4044 ... —.812 —.371 —4.549
4549 ... —.373 .068 —4.109
50-54 ............ .061 .503 —3.675
55-59 ... 475 916 —3.261
6064 ............ .903 1.345 —2.833
6569 ............ 1.328 1.769 —2.409
70-74 ... .. 1.779 2.220 —1.958
7579 ... 2.245 2.687 —1.491
8084 ............ 2.754 3.195 —.983
85-89 ............ 3.263 3.704 —.473
90-94 ............ 3.736 4.178 .000
Period

196064 .......... 246 .000 416
196569 .......... .196 —.050 367
1970-74 ... ..., 116 —.130 .287
197579 ..., —.025 —.270 146
198084 .......... —.083 —.329 .088
1985-89 .......... —.112 —.357 .059
199094 .......... —.167 —.413 .004
1995-99 .......... —.171 —.416 .000

Note.—Data are from Yang et al. (2004). > =0: sum-to-zero
coding. B4 = 0: reference-group coding with the first group
omitted for each effect. 3. = O: reference-group coding with
the last group omitted for each effect.

Because the APC model is not identified, the IE is sensitive to the coding
scheme used in an analysis in the sense that different coding schemes (that
would give identical results in an identified model after being transformed)
can give estimates that imply dramatically different substantive conclu-
sions. In addition, in the appendix, we show that IE will give any of the in-
finite number of solutions that fit the data equally well if the right coding
scheme is chosen and IE is performed in that scheme. Therefore, there is
no single TE solution, but rather a different IE solution for each coding
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scheme, and there will always be a coding scheme where the IE produces
any of the infinite number of feasible solutions.

In this comment, we reanalyze data from published articles to demon-
strate that estimated age, period, and cohort effects using one coding
scheme (e.g., the sum-to-zero coding) can be dramatically different from es-
timated effects obtained using a different coding scheme (e.g., reference-
group coding). This difference is particularly problematic because the
choice of coding schemes should be completely arbitrary or innocuous,
meaning that the resulting estimates should be identical after being trans-
formed. The empirical examples below demonstrate that since the choice
of coding scheme is arbitrary, any IE solution is arbitrary. Some might give
preference to the sum-to-zero coding scheme, but this choice is entively con-
ventional and without substantive foundation. Besides, the sum-to-zero
coding scheme itself requires an arbitrary choice of a category to omit
and the IE solution is sensitive to that choice as well. Below, we provide
a nontechnical explanation for this sensitivity; an appendix provides a
mathematical proof.

THE INTRINSIC ESTIMATOR

The IE achieves identification in ways that are both similar to and different
from more traditional approaches to estimation of APC models. Because
age, period, and cohort are linear functions of each other, there are an infi-
nite number of possible estimates for the APC model, all of which give iden-
tical fitted values for the response variable but which can give highly differ-
ent estimates of age, period, and cohort effects (Fienberg and Mason 1979).
Because all the possible estimates give the same fitted values, there is no
way to use the data to choose among them. These estimates can be said
to lie on a line, called the solution line, and each point on this line corre-
sponds to one set of the infinitely many estimates. As such, if one fixes the
value of one parameter estimate at any specific value, the values of all the
other parameter estimates are then determined by the data. The problem
in doing APC analysis is deciding which set of estimates—that is, which
point on the solution line—to privilege. As O’Brien (2011) shows, the IE,
like traditional APC estimators, imposes a particular constraint on the pa-
rameter estimates that determines which point along the solution line is
privileged.

Traditional approaches to identifying APC models involve either setting
some parameter(s) to zero, for example, assuming there is no period effect
(e.g., see Alwin 1991; Glenn 1994), or setting two or more parameters to
be equal, for example, setting adjacent cohorts or periods to have equal ef-
fects (e.g., Clark and Eisenstein 2013; Knoke and Hout 1974). The pre-
sumption is that such constraints should be based on theoretical assump-
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tions, though in many cases the constraints appear to be ad #oc (Glenn 1976;
Rodgers 1982).

Like traditional estimators, the IE also achieves identification by impos-
ing a constraint (O’Brien 2011; Luo 2013a), but one defined using a different
criterion. Specifically, the IE chooses that set of estimates on the solution
line that has the smallest variance. (This criterion has a few equivalent
forms, one of which is discussed just below.) Thus the IE uses a statistical
rather than theoretical or substantive rationale to determine which set of es-
timates should be privileged.

We make two critical mathematical observations: First, choosing the set
of estimates with the smallest variance is equivalent to choosing the set of
estimates that gives the smallest value when the individual parameter esti-
mates are squared and summed; that is, that set of estimates that is the
shortest distance from the origin.? Second, the IE depends on the design ma-
trix in two senses. One, for a given coding scheme (parameterization), the
constraint implicit in the IE depends on the number of age and period
(and thus cohort) categories (Kupper et al. 1985). Two, as we show below,
even with a fixed number of age and period categories, the IE depends on
the design matrix through the coding scheme that is used. This directly con-
tradicts Yang et al.’s (2008) critical assertion that the IE is invariant to the
choice of design matrix.

Following Glenn (2005, p. 20), Yang et al. (2008, p. 1699) argue that an APC
analysis should be evaluated with respect to its ability to provide correct es-
timates more often than not, that is, to estimate the true parameter estimates
or what O’Brien (2011) calls the data-generating parameters.’ They conclude
that the IE satisfies this criterion (Yang et al. 2008, p. 1732). Furthermore,
they argue that the essential purpose of the IE is to remove the influence of
the coding scheme, or in equivalent terms, the design matrix (p. 1707). Below
we show that this is not the case and show in detail that the IE is in fact sen-
sitive to the coding scheme, sometimes dramatically so. As such, there is no
basis to Yang et al.’s (2008) claim, critical in the assessment of its robustness

2 In articles in which IE is introduced, distance is defined for this purpose as Euclidean or
L2 norm, as we have described. While this choice is consistent with using least squares as
an estimation criterion, it is essentially arbitrary and could be replaced by other norms,
e.g., the sum of the absolute values of individual parameter estimates or L.1 norm, which
gives estimates differing from IE estimates and is consistent with the estimation criterion
in some robust estimation methods.

3 Some users of the IE appear to believe that it gives unbiased estimates of the true or data-
generating parameters (e.g., see Keyes and Miech 2013; Masters et al. 2014; Schwadel and
Stout 2012; Schwadel 2011). This is false. The IE gives an unbiased estimate of the set of
parameter values on the solution line that is closest to the origin. A/l constrained APC es-
timators give an unbiased estimate of some parameters. Thus the IE is not distinctive in
this respect.
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and desirability, that the TE removes the effect of the design matrix or, given
this, that it provides good estimates of the parameters that have generated the
data.*

EMPIRICAL EXAMPLES IN WHICH IE ESTIMATES CHANGE
WITH CODING SCHEMES

In this section we demonstrate how IE estimates can change with coding
schemes by considering three published empirical examples, including stud-
ies of mortality (Yang et al. 2004), vocabulary knowledge (Yang et al. 2008),
and trust (Schwadel and Stout 2012). In each case, we show that the IE es-
timates change depending on which of three coding schemes is used. Specif-
ically, we obtain the IE estimates using three different coding schemes,
namely, the sum-to-zero/ANOVA coding, reference coding with the first
group as the reference category, and reference coding with the last group
as the reference category. Because estimates with different codings are nec-
essarily different, we then transform these IE estimates to a common scale,
as shown in the figures below, to allow direct comparisons.

When working with categorical data, researchers typically choose a cod-
ing scheme because of interpretability or because it highlights a particular
result. The sum-to-zero/ANOVA and reference group coding schemes are
most popular because of their interpretability, though in principle an infi-
nite number of coding schemes exist. As discussed above, in fully identified
models, the choice of coding scheme does not affect estimation results when
those results are reexpressed in the same coding scheme. In other words, the
parameter estimates are unaffected by the coding—by mathematical neces-
sity, they must be identical. As our empirical analyses show, in the case of
unidentified models like the APC model, this is not the case.

Example 1

The first example is mortality rates for U.S. females from 1960 to 1999, used
in Yang et al. (2004). These authors found that mortality rates increase after
age 15, increased in the 1960s and early 1970s and rose again from 1980 to
1999, and decreased steadily across cohorts (Yang et al. 2004, p. 98). We rep-

4 The IE can be understood as a type of ridge regression estimator (Fu 2000). However,
when using dummy variables, the ridge estimator, like the IE, will be sensitive, poten-
tially seriously so, to the coding scheme chosen. Yang et al. (2008, p. 1707) describe the IE
as a type of principal component estimator. When the dimension of a factor space is two
or greater, there are identification issues that principal components does not solve analo-
gous to those in APC models. Principal components can discover the subspace in which
the data lie, but it cannot determine what the axes of that subspace should be.
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licated their estimates for age, period, and cohort effects using the sum-to-
zero/ANOVA coding. In appendix table A1, the > =0 columns show their
estimates, with each estimate expressed as the difference from the global
mean associated with an age, period, or cohort group. We then obtained
IE estimates using a reference coding with the first age, first period, and first
cohort category as reference groups, and we also computed the IE estimates
using a reference coding with the last age, last period, and last cohort cate-
gory as reference groups. Finally, to allow direct comparison of the two ref-
erence group analyses to the sum-to-zero scheme used by Yang et al. (2004),
we transformed the results of the reference group analyses using equation
(2) above, so that the estimated age effects sum to zero, as do the estimated
period and cohort effects. Appendix table A1 shows these transformed re-
sults in the (=0 and (},=0 columns. Figure 1 graphically presents the
estimates, transformed to a common coding, from the three coding schemes.

Figure 1 shows that the IE estimates can change substantially depending
on the choice of coding scheme. The IE estimated age and cohort effects are
qualitatively similar for the three coding schemes, but the IE estimates for
period effects using the 3;..=0 coding are strikingly different from the IE
estimates using the sum-to-zero coding. While the IE estimates using the
sum-to-zero coding in figure 1 (identical results are shown in Yang et al.
[2004, p. 98]) indicate an upward mortality trend across time periods from
1960 to 1970, the IE estimates using the first-reference-group coding show a
downward trend over the same periods. Similarly, for the years from 1975
to 1999, the IE estimates under the sum-to-zero coding suggest a sharp in-
crease in death rates, whereas the IE estimates under the first-reference-
group coding show a flat trend. Thus, a researcher would reach opposite
conclusions about the effects of period depending on the coding scheme
he or she happened to choose.

The magnitude of the cohort effects does depend on the choice of coding
scheme. For example, the estimated mortality rate for U.S. females in the
1870-74 birth cohort for the sum-to-zero coding (table A1, col. }=0) is
exp(1.008) = 2.740 times the global mean, while the estimated morality
rate for that birth cohort in the first-category reference coding is only
exp(0.502) = 1.652 times the global mean.

Example 2

The IE estimates also critically depend on coding scheme in the example of
vocabulary knowledge used in Yang et al. (2008, pp. 1712—16), where the
authors were concerned with age, period, and cohort trends in Americans’
vocabularies. The outcome is the variable WORDSUM in GSS data col-
lected from 1976 to 2000. Yang and colleagues reported that “the age effects
on vocabularies show a concave pattern, . . . rising to a peak in the forties”
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(2008, p. 1714). They also found period and cohort variations in vocabular-
ies, although there were no clear linear patterns (p. 1714). They compared
the estimates from the IE with the results from the hierarchical APC models
and concluded that the estimated trends are quite similar (p. 1716).

Appendix table A2 and figure 2 show IE estimates using the same three
coding schemes used in the previous example. As above, we transformed the
results using the 3;..=0 and f,,.=0 codings to the sum-to-zero coding so the
estimated effects can be compared directly. The age, period, and cohort ef-
fects estimated by IE shown in figure 2 differ dramatically depending on the
choice of coding scheme (model parameterization). For example, under the
> =0 coding, vocabulary scores first increase with age but then decrease
starting at age 60. Under the =0, they increase initially but decrease
starting at the ages of 30-39. The (3,..=0 coding, by contrast, shows that vo-
cabulary knowledge increases through the age span considered.

The estimated period effects also differ qualitatively depending on the
coding scheme. The Y =0 coding shows a modest decrease in vocabulary
scores until 1986—90 and then a sharp increase. The B4.=0 coding shows
a consistent increase, while the 3,,,=0 coding shows a sharp initial decrease
and then a flat trend after 1986—90.

The IE estimates for cohort effects also differ completely depending on the
coding scheme. With the Y =0 coding, there is little trend in the estimated ef-
fects. The B;«=0 coding shows strong evidence of an intercohort decline,
while the (3,,=0 coding shows just the opposite, a consistent increase in vo-
cabulary knowledge from the oldest to the youngest cohorts. Thus a re-
searcher who used the (;,=0 coding would reach conclusions about the pe-
riod and cohort trends in vocabulary knowledge opposite to those reached
by another researcher who happened to choose the §,.,=0 coding scheme.

Example 3

The third empirical example considers change in the level of trust among
Americans. Schwadel and Stout (2012) applied the IE to the 1972 to 2010
GSS data and showed that the cohorts born before the 1920s are less trust-
ing than those born in the 1920s through 1940s (p. 243). Following these au-
thors, we dichotomized the GSS measure of trust (1 = agree that people can
be trusted; 0 = disagree or depends). Appendix table A3 and figure 3 present
the IE estimates of the age, period, and cohort effects in trust level using the
sum-to-zero (3.=0) coding, the first-reference-group (B;.=0) coding, and
the last-reference-group (5,..=0) coding.

As figure 3 shows, the IE again yields estimates that depend on the choice
of coding, though less so than in the other two examples. For example, the
estimated age and period effects have the same general trend in the three
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codings but much larger magnitude in the last-reference-group coding.
However, the magnitude and general trends in the estimated cohort effects
differ qualitatively for the cohorts born in 1942 and earlier, depending on
the coding used. For example, contrary to Schwadel and Stout’s (2012) con-
clusion about the intercohort increase in trust for cohorts born between
1892 and 1942, the IE estimates under the first-reference-group coding
show a flat pattern across those birth cohorts.

EXPLAINING THE IE’S SENSITIVITY

The above examples show that the results produced by the IE can be highly
sensitive to the coding scheme a researcher employs, a choice that is of no
consequence with fully identified models.® A full understanding of the sen-
sitivity of the IE to coding schemes requires a strong understanding of linear
algebra. Here, we attempt to provide an intuitive understanding of the IE’s
sensitivity. The mathematical appendix provides a more formal treatment.

Recall that the IE estimate is the point on the solution line that is closest to
the origin. Consider what happens when we change coding schemes. First,
the solution line in the original coding scheme is transformed to a new solu-
tion line in the new coding scheme. It is the same solution line, but now rep-
resented with respect to the new parameterization. Second, in transforming
from the original to the new coding scheme, distances between pairs of
points change.® As a result, the point on the solution line that is closest to
the origin changes; that is, the points that are closest to the origin under
the two coding schemes are different. In particular, suppose that in the orig-
inal coding scheme, a point b, on the solution line is closer to the origin than
any other point on the solution line; after transforming to the new coding
scheme, the transformed value T(b,) is, in general, no longer the point clos-
est to the origin among points on the transformed solution line. The IE es-
timate—the closest point to the origin on the solution line—is sensitive to
the coding scheme because the ordering of points on the solution line ac-
cording to their distance from the origin is generally not the same in the orig-
inal and new coding schemes. This is even true, as shown in the mathemat-

5 There is an important way in which the traditional constrained estimator is superior to
the IE estimator. By its very nature, as explained above and in the mathematical appen-
dix, the IE depends on the coding scheme. This is not the case with the traditional con-
strained estimator. When a coefficient constraint is imposed, the coding scheme has no
effect on the estimates because the constraint is invariant to the researcher’s choice of
coding scheme, unlike the TE.

¢ If the transformation is an orthogonal transformation, then the distances from the origin
of points on the solution line are preserved after the transformation. None of the changes
of coding scheme considered in previous sections is an orthogonal transformation.
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ical appendix, with sum-to-zero coding schemes that have different omitted
categories.’

The fact that the solution line and the measure of distance change with
coding schemes is illustrated in figures 4 and 5, which are necessarily styl-
ized because real APC problems have too many dimensions to show in a
two-dimensional figure. In figure 4, the dashed line denotes the solution line
in the sum-to-zero coding scheme (parameterization). Transforming to the
first-reference-group coding transforms the solution line to figure 5’s verti-
cal dashed line. In figure 4, the point on the solution line that is closest to the
origin is (0.5, 0.5), but after being transformed to the point (1, —1) in fig-
ure 5’s first-reference-group coding scheme, it is no longer closest to the or-
igin among points on the solution line.

This is a disturbing result: given that there are infinitely many possible
coding schemes (though most would be difficult to interpret), there are infi-
nitely many IE estimates. The seemingly innocuous choice of a coding
scheme affects the IE estimates, sometimes very much. As discussed above,
because of the identification problem in APC models, producing an estimate
amounts to choosing one set of estimates from the solution line, which con-
tains the infinitely many estimates that are consistent with the data. As
O’Brien (2011) showed, any constrained estimation procedure, including
the IE, simply picks out one particular set of estimates on the solution line.

7 For nonidentified models, changing coding scheme doesn’t inherently change the like-
lihood (Gelman 2004). However, choosing a unique estimate requires choosing one point
from the set that maximizes the likelihood, and that can depend on the coding scheme/
parameterization.
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For the IE, however, the situation is even worse. In the mathematical ap-
pendix, we show that any set of estimates on the solution line is the IE es-
timate for an appropriately chosen coding scheme/design matrix. In other
words, one can choose any set of estimates on the solution line that one
wants to privilege, and there will be a coding scheme in which the IE esti-
mates are that chosen set. Using the IE, we can privilege any point on the
solution line we want simply by choosing the right coding scheme.

Given these mathematical results, it is not surprising that different design
matrices produced different estimates in the empirical examples. But how
can the IE estimates differ as much as they do in the empirical examples? Ex-
act linear dependence, as in the APC model, can be understood as the most
extreme form of multicollinearity. As is well known regarding multicol-
linearity, small changes in the data or in the model specification can change
estimates dramatically. When multicollinearity is present, we simply do not
have sufficient variation in a variable of interest, holding other variables con-
stant, to precisely estimate the effect of that variable of interest. In the case of
exact linear dependence, as in the APC model, there is no variation at all in,
say, age, when the other variables (period and cohort) are held constant.® As
such, it is entirely reasonable to expect IE’s results to be highly unstable.

This comparison of linear dependence to multicollinearity suggests a di-
rection for future research. As the three empirical examples illustrate, the
choice of coding scheme, or equivalently the choice of constraint that is im-
posed on the parameters, affects parameter estimates dramatically in some
cases but not in others. As for multicollinearity (Belsley et al. 1980), it would

8 Strictly speaking, there is no variation in the linear component of age; the nonlinear
components of the three effects are identified (Holford 1983).
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be useful to have formal methods for analyzing the sensitivity of estimates to
the constraint (the IE or other) that is used to privilege one set of estimates.’
This is a topic for future research.

CONCLUSION

“The Intrinsic Estimator for Age-Period-Cohort Analysis” (Yang et al.
2008) has been cited 189 times as of October 2016 and has been used by re-
searchers in different disciplines to address important substantive questions.
Many researchers appear convinced that the assumptions implicit in the
IE do not affect the IE’s ability to estimate, even if only approximately,
the “true” age, period, and cohort effects (see, e.g., Keyes and Miech 2013;
Langley et al. 2011; Schwadel 2011; Masters et al. 2014). The empirical
and mathematical results presented in this comment contradict that optimis-
tic view. Social scientists should be aware that the seemingly innocuous
choice of a coding scheme can have a major effect on the estimates produced
by the IE and, as a result, on the conclusions they reach.

Social scientists have long looked for statistical methods that will provide
assumption-free results revealing the underlying structure of empirical data.
As with causal analysis of observational data (Pearl 2009; Morgan and Win-
ship 2007), we believe this is an impossible goal. Heckman and Robb (1985)
stated the situation correctly nearly three decades ago: “The age-period-
cohort effect identification problem arises because analysts want something
for nothing: a general statistical decomposition of data without specific sub-
ject matter motivation underlying the decomposition. In a sense it is a bless-
ing for social science that a purely statistical approach to the problemis bound
to fail” (pp. 144—45).

Liying Luo
Pennsylvania State University

James Hodges
University of Minnesota

Christopher Winship
Harvard University

Daniel Powers
University of Texas at Austin

9 Comparing the IE’s estimates under just three coding schemes, the sum-to-zero and the
two reference-group coding schemes, is unlikely to indicate the true sensitivity of IE es-
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APPENDIX
Preliminaries: Defining notation, the IE estimate

Suppose we have an outcome measure Y that we are willing to treat as con-
tinuous, for example, WORDSUM score. (This is not necessary but simpli-
fies the presentation.) Suppose also that we have a age groups and p periods,
and thus a + p — 1 cohorts, and that we have chosen a coding scheme (pa-
rameterization) for the APC model, for example, the sum-to-zero coding
scheme. Then in the usual APC model analysis, we have a vector of out-
comes, Y, that has mean Xb, with design matrix X and parameter vector
b as follows. The design matrix X has one row for each observation (i.e.,
for each element in the vector Y) and one column for each element in b.
The parameter vector b has one element for an intercept, a — 1 elements
for the age effect, p — 1 elements for the period effect, and a + p — 2 ele-
ments for the cohort effects. Thus b has 2(a + p) — 3 elements.

The APC model is not identified in the sense that the design matrix X has
rank less than 2(a + p) — 3;in particular, its rank is smaller than this by one.
Thus, there is exactly one null vector B,, having 2(a + p) — 3 elements like b,
such that XB, = 0 and B{ B, = 1, that is, B, has Euclidean length 1. For a
given data set Y, the ordinary least squares estimates of b satisfy the equa-
tion X”Xb = X"Y, but this equation does not have a unique solution because
Xis not of full rank. If b, is a solution to this equation, then any solution can
be written as b, + B, for some real number ». This defines the solution line
for this coding scheme and data set Y. In this coding scheme, the IE estimate
is given by the value of » that minimizes the (Euclidean) length of b, + 7B, or
equivalentlyitssquaredlength, whichis (b, +7B,)” (b, +¥B,). Simple calculus
shows that the squared length is minimized for » = —BZb, so the IE estimate
is

b, =b, — (ngl)BO
= b, — B,(B!b,) because Bb, is a scalar (A1)
= (I — B,B!)b, where I is the identity matrix of order 2(a + p) — 3.

Note that b, and B, are orthogonal by construction: BYb, = (BY — BJ)b, =0
because B{B, = 1. Any parameter vector b on the solution line can now be
written as b, +sB, for s = BZ'b.

timates to the coding scheme. The sum-to-zero and reference-group coding schemes are
simply common, conventional choices. An alternative approach would be to examine the
full set of estimates on the solution line. This would be analogous to what is done in prin-
cipal components analysis, where various rotations of the axes are tried in order to deter-
mine what solution makes the most sense. Of course, this has led people using this ap-
proach to be accused of trying to “read tea leaves.”
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Reparameterizing can change the ordering of points on the solution
line according to their distance from the origin

Suppose we have written the APC model in one coding scheme with the de-
sign matrix and parameter vector X and b, respectively. Suppose now that
we want to change to a new coding scheme. Then there is an invertible
square matrix T of dimension 2(e¢ + p) — 3 that effects the change from
the original to the new coding scheme, as follows:

Xb = XT 'Tb = X(T)b(T), (A2)

where X(T) = XT™' is the design matrix in the new coding scheme and
b(T) = Tb is the parameter in the new coding scheme corresponding to b
in the original coding scheme. Below in this appendix we show how to de-
rive T for any choice of original and new coding schemes.

So suppose we have an original coding scheme, with design matrix X and
null vector B,. Suppose also we have a data set Y, and that the IE estimate
for this data set is b,, as above. Then as noted, any estimate b in the solution
line for this coding scheme has the form b, + sB,, for s = BY'b. Any solution b
in the original coding scheme is therefore transformed to Tb = T(b, + sB,)
in the new coding scheme. In the new coding scheme, the squared distance
of Tb to the origin is b T Tb = (b, + sB,)" T"T(b, + sB,). This distance is
a quadratic in the scalar s, and simple calculus shows that this squared dis-
tance is minimized by
= —B;T'Tb,/B.T"TB,. (A3)

St

Thus, the IE solution in the new coding scheme, back transformed to the
original coding scheme, is b, + stB,. This is equal to the IE solution in
the original coding scheme if and only if sy = 0. It is easy to show that sy =
0 if (1) T is an orthogonal matrix, or (2) T has one row proportional to B,
and its other rows are orthogonal to B,. (Orthogonal matrices correspond
to rigid transformations such as rotations and reflections, which preserve
distances between pairs of points.) It is also easy to show that all other T giv-
ing sy = 0 depend on by, that is, on the specific data set Y. In other words,
some T exist for which s; = 0, but they are few and very specific, and they
do not include the T that effect changes between any pair of familiar coding
schemes, such as those considered in the main body of this paper. Thus, ex-
cept for uninteresting cases, changing coding schemes changes the distances
between pairs of points. In particular, changing coding schemes changes the
ordering of points in the original coding scheme’s solution line according to
their distance from the origin in the coding scheme defined by T. This hap-
pens because the transformation T is not rigid, which means that a vector b
is stretched by different amounts in different directions when it is trans-
formed to Th. If T has singular value decomposition T = UDV?, for U
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and V orthogonal matrices and D diagonal, then D’s diagonal elements de-
scribe the differential stretching applied to directions defined by V”. The
following section gives an example.

For any estimate b on the solution line, there exists a coding scheme such
that b is the IE estimate in that coding scheme, back transformed to the
original coding scheme

Suppose we have a age groups and p periods and data Y, and that we have
chosen a coding scheme, which we will call the original coding scheme.
Then this implies a design matrix X, a null vector B,, and the IE estimate
b,. Any other solution to the equation X”Xb = X’Y has the form b, + sB,,
for some real number s. The burden of this section is to show that for any
real number ¢, there is an invertible square matrix T of dimension » =
2(a + p) — 3 and a new coding scheme Tb such that the IE estimate in the
new coding scheme, back transformed to the original coding scheme, is b,
+ tB,. First we prove this main claim; then we prove a closely related sec-
ondary claim, which is stated below.

Proof of the main claim

This proof uses the fact that in any given coding scheme, IE’s estimate min-
imizes, among points on the solution line, the squared distance from the es-
timate to the origin. As noted above, for a given transformation (recoding)
T, the IE estimate in the new coding scheme, back transformed to the orig-
inal coding scheme, has

s; = —B{T'Tb,/B!T"TB,. (A4)
We need to prove that for any real number £, we can choose a T such that
t = s, = —B!T'Tb,/B.T"TB,. (A5)

If b, is the zero vector, then the IE solution in all coding schemes is also the
zero vector. This case is so unlikely that it is of no interest, so we assume that
b, is not the zero vector.

T”T is positive definite and symmetric of dimension 7, so it has spectral
decomposition T’ T = GDG’, where G is an orthogonal matrix of dimension
r and D is diagonal with 7 positive diagonal entries; by convention, D’s di-
agonal entries d; are sorted in decreasing order, so d, >d, ... >d,. Choosing
T is equivalent to choosing G and D.

For any legal G and D, B]T'Tb, = 3,a,c,d,, where BIG = (a,, a,, . . . a,)
and b?G = (cy, ¢,, . . . ¢,) and the sum runs overi = 1, ... r. (Note that
3.a. = BlGG'B, = 1because B haslength 1,and =.c; = bb,.) With these
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definitions, Bl T"TB, = X,a;d,. Thus, we need to choose G—that is, choose
the a; and ¢,—and choose D—that is, choose the d,—so that

t = _Eaicidi/zafdi : (A6)

If d,, . . . d,, are fixed at some values and d, is made very large, then
—3.a,c,d,/2,a;d, becomes arbitrarily close to —c,/a,. Our proof is finished if
we choose G so that —c¢,/a,= t; then we let d, grow very large and s becomes
arbitrarily close to ¢, as needed. To choose such a G, define 8, = b, (bOTbO)fo's,
so BB, = 1 and B5B, = 0. Then let the first column of G be G, = apB, + (1 —
ao)B,, where avis between O and 1, and ¢ is —1if£>0and 1if£<0. Thena, =
1 —aandc, = (bibo)>’ ap,s0 —c¢,/a;, = —p(biby)™* o/ (1 — ). Set o = |t/
((b!b,)** + |t]); then —c, /a, = t.

Secondary claim

Suppose that in the original coding scheme, the true value of the parameter
is b. Then the IE estimate is an unbiased estimate of by, = (I — B.B)b,
where the subscript # indicates true, referring to the true b. For any real
number £, there is an invertible square matrix T of dimension » = 2(a +
p) — 3 and a new coding scheme Tb such that the IE estimate in the new
coding scheme, back transformed to the original coding scheme, is unbiased
for by, + ¢B,. The proof follows.

Again, if b,, is the zero vector, then Th,, is also the zero vector for all T. As
before, this case so unlikely that it is of no interest, so we assume that by, is
not the zero vector. The difference between b,, and the back-transformed
IE estimand in the new coding scheme is

(1-B,B)b—T'(I — T B,B/T)Tb
(AT)
= B,[B{(T'T — I)b],

where the expression in square brackets is a scalar and I is the identity ma-
trix of dimension 2(a + p) — 3. The burden of this proof is to show how to
choose T sot = BY (T”T — I)b. Recalling that b = b, + s B, for a particular
scalar s, we need
t =B/ (T'T — I)b = B/T'Tb,, + sBIT'TB, — s, (A8)
where B, b,,, and s are fixed and Bl'b,, = 0.
As above, choosing T is equivalent to choosing an orthogonal matrix
G and a diagonal matrix D with all diagonal elements positive so that
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T?”T = GDG’, and using the notation defined in proving the main claim, we

need to choose a;, ¢;, and d;,7 = 1, ... 7 so that
t = Yacd, +sdaid, —s. (A9)
As in the earlier proof, we do so by fixing d,, . . ., d, at some values (which do

not matter) and adjusting d, to get the desired result. To do this, define the
function g(d,) = Z.a,c,d, + s=,a.d, — s; then g’s derivative with respect to
d,is

g(d,) = a,c, +sa, (A10)

which doesnotdepend ond,. To get the desired result, we need only show that
we canpick Gsothata,c, + sa; is positive for the given s and that we also can
pick G so thata,c, + sa; isnegative for the given s. Then we can fix a;, ¢;, and
difori=2,...,ratany values, pick G so that ¢'(d,) has the appropriate sign,
and increase d, until g(d,) = ¢.

If s =0,¢'(d,) = a,c,. As in the proof of the main claim, let the first column
of G be G, = apf, + (1 — a)B,, and set o« = 0.5. Then ¢'(d,) = a,c, = 0.25
(b'b)**¢, which is made positive or negative by choosing positive or nega-
tive ¢, respectively. Now suppose s # 0. Then g'(d,) = a,c, + sa; > 0 if
c,a,>—s,and g'(d,) = a,c, + sa; < 0ifc,/a, > —s. Either of these inequal-
ities can be satisfied as in the proof of the main claim, by defining G, as above
and selecting o and ¢ as needed.

Constructing the transformation matrix T for any change
in coding scheme

Recall that T transforms the (2(a + p) — 3) -vector b in the original coding
scheme to the (2(a + p) — 3) -vector Th in the new coding scheme. The (2(a +
p) — 3) X (2(a + p) — 3) matrix T can be constructed as follows. First, con-
struct the (2(a + p) x (2(a + p) — 3) matrix T, that transforms b in the orig-
inal coding scheme to a 2(a + p) -vector T;b in the full (redundant) coding
scheme with a parameters for the age effect, p for the period effect, and a +
p — 1 for the cohort effect, along with the intercept. Second, construct the
(2(a + p) — 3) x 2(a + p) matrix T, that transforms a 2(a + p) -vector in the
full (redundant) coding scheme to a (2(a + p) — 3) -vector in the new coding
scheme. Then T = T,T,.

For example, suppose we have three age groups and four periods, soa = 3
and p = 4. Suppose the original coding scheme is sum-to-zero with the last
group omitted for each of the age, period, and cohort effects, so the param-
eter vector b has 11 elements: the intercept, the first two age group effects,
the first three period effects, and the first five cohort effects. Then T, is the
14 x 11 matrix
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10000 0O0O0UOO O
01 000000 0 0 O
00 1 00000 0 0 0
0-1-10 0 0 0 0 0 0 0
00 010000 0 0 0
00 0010000 0 0
00 0001000 0 0

T = 00 0-1-1-10 0 0 0 0
00 0000 T1 0 0 0 0
00 000001 0 0 0
00 000000 1 0 0
00 000000 0 1 0
00 000000 0 0 1
00 0 0 0 0 —1-1-1-1-1

Suppose the new coding scheme is the first-category reference group
scheme, so that the parameter vector Th has 11 elements: the intercept,
the last two age group effects minus the first age group effect, the last three
period effects minus the first period effect, and the last five cohort effects mi-
nus the first cohort effect. Then T, is the 11 X 14 matrix

11 00 1 000 1 OO0O0O0O
0-110 0 000 O O0O0O0O0O
0-101 0 000 O O0O0O0O0O
00 0O0-11000 0O0O0O0O
00 0O0O-1010 0 0O0O0O0O
T, = 00 0O0O-1001O0 0O0O0O0O
00 00 0 000-110000
00 00 0 000-101000
00 OO0 0 000-100100
00 OO0 0 000-1000T10
0O 0 OO0 0 000-1000P01
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Then T is the 11 x 11 matrix T = T,T, =

11 0 1 0 O 1 O O O O
o0-11 0 0 0O O O O O O
0O-2-10 O O O O O O O
oo 6-11 0 0 0O O 0 O
o0 06 -10 1 0 0 0 0 O
o0 0 -2-1-10 0O O O O
oo 0 0 0 0 -11 0 0 O
oo 0 0 0 0 -10 1 0 O
oo 0 0 0 0 -10 0 1 O
Ooo0 0 0 0 0 -10 0 0 1
o0 0 0 0 0 —2-1-1-1-1

This matrix is invertible; its 11 singular values range in absolute value from
0.78 to 3.27, so the ratio of b’s maximally and minimally stretched directions
is 3.27/0.78 = 4.20.

The IE estimate is sensitive to the coding scheme, which is even true with
sum-to-zero coding schemes that have different omitted categories

Consider an example of three age groups and three periods, soa = 3and p =
3. Suppose the original coding scheme is sum-to-zero with the last group omit-
ted for each of the age, period, and cohort effects, so the parameter vector b
has nine elements: the intercept, the first two age group effects, the first two
period effects, and the first four cohort effects. As shown in the section above,
the 12 x 9 matrix T, that transforms b in the original coding scheme to the full
coding is
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1 0 0 0O OO 0 0 O
01 0 0 0O O O O O
00 1 0 0O 0 O 0 O
0-1-10 0 O O O O
00 0 1 0 0 O 0 O
00 0 0 1 0 0O 0 O
T, =
00 0 —-1-10 0 0 O
00 0 0 o0 1 0 0 O
00 0 0 0O 0 1 0 O
00 0 0 0 0 o0 1 O
00 0 0 O 0 O 0 1
00 0 0 0 —-1-1-1-1

Suppose the new coding scheme is the sum-to-zero coding scheme with
the first category of each effect omitted, so that the parameter vector Th
has nine elements: the intercept, the last two age group effects, the last two
period effects, and the last four cohort effects. Then T, is a 9 x 12 matrix

100000O0O0O0O0O0O
0010000O0O0O0O0CO
0001000O0O0O0O00O
0000010O0O0OO0OO0CO
T,=]1000000100000O0
000000O0OO01O0O0O
000O0O0OO0OO0OO0OO0OT1TO0O
000000O0OO0OOT1O0
000O0OO0OOOOOOSOT1
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Then T is a 9 x 9 matrix, where T = T,T, =

10 0 0 0 0 0 0 O
00 1 0 0 0 0 0 O
0-1-10 0 O O O O
00 0 o0 1 0 0 0 O
00 0 -1-10 0 O O
00 0 0 0 0 1 0 O
00 0 0 0 0 0 1 O
00 0 0 0 0 0 0 1
00 0 0 0 —-1-1-1-1

T is invertible but not orthogonal; its nine singular values range in absolute
value from 0.46 to 2.19, so the ratio of b’s maximally and minimally
stretched directions is 2.19/0.46 = 4.76.

Toillustrate, we simulate a data set with three age groups, three periods,
and five cohorts as follows:

Yy~ {10 + 2 x age, — 0.5 X age, — 1 x period;, — 0.5 X periodjz. +1

x cohort;; + 0.5 x cohort;, s = 0}.

For each age-by-period combination, there is one observation, so the total
sample size is nine. Table A4 and figure A1 show IE estimates for the sim-
ulated data using two different sum-to-zero coding schemes, namely, the
sum-to-zero coding with the last category of each effect omitted and the
same coding with the first category omitted; note the estimates in table A4
and figure A1 are obtained using the sum-to-zero coding with the first cat-
egory omitted and then transformed to the same coding with the first cate-
gory omitted. The resulting two sets of IE estimates are different. For exam-
ple, the estimated cohort effect for the first cohort is 0.75 under the first type
of sum-to-zero coding, whereas the estimated effect is 1.75 under the second
type after being transformed.
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TABLE A1
ESTIMATED AGE, PERIOD, AND COHORT EFFECTS ON MORTALITY
UNDER THREE CODING SCHEMES

Category/Effects >=0 Bar=0 B*ma=0 Brast=0 B#.a=0

Intercept . ........... —5.400 —4.708 —5.400 —3.729 —5.400
Age
04 ... .. 453 A .088 —=2.710 .366
5-9 —2.144 —2.556 —2.468 —5.297 —2.221
10-14 . ............. —2.354 —2.726 —2.637 —5.497 —2.421
1519 ... —1.704 —2.035 —1.947 —4.838 —1.762
2024 ... —1.630 —1.921 —1.833 —4.754 —1.678
25-29 ... —1.571 —1.821 —1.733 —4.685 —1.610
3034 ... —1.377 —1.587 —1.499 —4.482 —1.406
35-39 ... —1.091 —1.260 —1.172 —4.186 —1.111
4044 . —.751 —.879 —.701 —3.836 —.760
4549 ... —.398 —.486 —.398 —3.473 —.398
50-54 ... .. —.057 —.104 —.016 —3.123 —.047
55-59 ... .266 .259 .347 —2.790 .286
6064 .............. .610 .644 732 —2.436 .639
6569 ... ... 956 1.030 1.118 —2.081 .995
T0-74 ... ... 1.331 1.446 1.534 —1.696 1.380
7579 .. 1.724 1.879 1.967 —1.293 1.782
8084 .......... ..., 2.157 2.352 2.440 —.851 2.224
85-89 ... ... 2.590 2.826 2.914 —.408 2.667
9094 .............. 2.988 3.265 3.353 - 3.076
Period
1960-64 ............ —.039 - .103 —.087 —.005
1965-69 . ........... —.009 —.011 .092 —.067 .015
1970-74 ............ —.007 —.049 .054 —.074 .007
1975-79 .. .......... —.067 —.150 —.047 —.144 —.062
198084 ............ —.043 —.166 —.063 —.129 —.047
1985-89 . ........... 011 —.152 —.049 —.085 —.003
199094 ............ .038 —.166 —.063 —.068 .014
1995-99 ............ 115 —.129 —.026 S .082
Cohort
1870 . ... ... ... .. 1.008 A .502 2.374 .887
1875 o 977 .009 511 2.352 .866
1880 ... .. 922 —.006 496 2.306 .820
1885 ... .853 —.033 468 2.247 761
1890 ... 7176 —.071 431 2.179 .693
1895 o .698 —.107 .394 2.112 626
1900 . ... .610 —.155 347 2.034 548
1905 . ... ... 522 —.203 .299 1.954 468
1910 ... 455 —.229 273 1.898 412
1915 ..o .383 —.261 241 1.835 .349
1920 ... 317 —.286 216 1.779 .293
1925 ... 262 —.301 .201 1.733 247
1930 ... 178 —.344 158 1.659 173
1935 .o 077 —.404 .097 1.568 .082
956
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TABLE A1 (Continued)

Category/Effects >=0 Ba=0 B* =0 Bls=0 B*.=0
Period

1940 ... ... ... —.067 —.508 —.006 1.434 —.052
1945 ... —.204 —.605 —.103 1.306 —.180
1950 . ... .. —.287 —.647 —.145 1.233 —.253
1955 ... —.312 —.631 —.129 1.218 —.268
1960 ............... —.319 —.597 —.096 1.221 —.266
1965 .o —.460 —.699 —.197 1.088 —.398
1970 ... ... —.620 —.818 —.316 .939 —.547
1975 ... —.748 —.905 —.403 821 —.665
1980 ... ... ... —.934 —1.051 —.549 .644 —.842
1985 .o —1.137 —1.213 —.712 450 —1.036
1990 ... ..., —1.342 —1.378 —.876 .255 —1.231
1995 ... —1.607 —1.602 —1.100 - —1.486

Note.—Data are from Yang et al. (2004). > =0: sum-to-zero coding. Bs. = O: reference-
group coding with the first group omitted for each effect. 3, = O: reference-group coding with
the last group omitted for each effect. 8%;.. = 0: 8. = O estimates transformed to the sum-to-
zero scale. %, = 0: B = 0 estimates transformed to the sum-to-zero scale.

TABLE A2
ESTIMATED AGE, PERIOD, AND COHORT EFFECTS ON VOCABULARIES
UNDER THREE CODING SCHEMES

Category/Effects 2=0 B =0 ¥ =0 Brs=0 B*1=0

Intercept .. .......... —2.820 —2.688 —2.820 —2.664 —2.820
Age
2024 .. —.073 L. .030 —.227 —.191
25-29 ... —.025 .030 .059 —.158 —.121
30-34 ... ... .018 .054 .084 —.093 —.057
3530 ... .039 .056 .086 —.051 —.015
4044 ..o .044 .042 .072 —.025 .012
4549 ... .038 .017 .047 —.009 .027
50-54 ... ... .022 —.017 .013 —.004 .033
55-59 ... .041 —.017 .013 .036 .073
6064 ... .001 —.076 —.046 .018 .054
6569 .............. .008 —.088 —.058 .046 .083
T0-74 ... —.031 —.145 —.115 .029 .066
TS5+ —.081 —.214 —.184 A .036
Period
1976-80 ............ —.004 - —.042 .059 .038
1981-85 ............ —.017 .006 —.036 .025 .004
198690 ............ —.023 .019 —.023 —.002 —.023
1991-95 ............ .022 .083 .041 .022 .001
199600 ............ .022 .102 .060 - —.021
957
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TABLE A2 (Continued)

Category/Effects >=0 B =0 B*s=0 B =0 B*1=0
Cohort

1901 ... .003 . 144 —.297 —.157
1906 . ... ... —.052 —.074 .070 —.331 —.191
1911 ... .006 —.034 .110 —.251 —.111
1916 . ... ... . .042 —.018 126 —.194 —.054
1921 ... .004 —.074 .070 —.210 —.070
1926 ... .004 —.093 .051 —.189 —.049
1931 ... —.014 —.130 .014 —.186 —.046
1936 ... —.007 —.141 .003 —.157 —.017
1941 ... .023 —.130 .014 —.106 .034
1946 . ... ..o .054 —.119 .025 —.054 .086
1951 ... .038 —.153 —.009 —.048 .091
1956 ... —.011 —.220 —.076 —.076 .064
1961 ... ... —.011 —.240 —.096 —.055 .085
1966 . ... ... . —.027 —.274 —.130 —.049 .090
1971 ... —.033 —.299 —.155 —.034 .106
1976 ... —.021 —.305 —.161 . .140

NotE.—Data are from Yang et al. (2008). > =0: sum-to-zero coding. 34 = 0: reference-
group coding with the first group omitted for each effect. 3, = O: reference-group coding with
the last group omitted for each effect. 5%, = 0: B4 = O estimates transformed to the sum-to-
zero scale. 3%, = 0: B = 0 estimates transformed to the sum-to-zero scale.

TABLE A3
EsTIMATED AGE, PERIOD, AND COHORT EFFECTS ON TRUST UNDER THREE CODING SCHEMES

Category/Effects 2.=0 B =0 B*as=0 Brus=0 B*.=0

Intercept ............ —.996 —1.015 —.996 —1.074 —.996
Age
2024 ... —.245 - —.163 —.517 —.340
25-29 ... —.151 .080 —.083 —.407 —.230
3034 ... —.116 .102 —.062 —.356 —.179
35-39 ... .013 217 .053 —.212 —.035
4044 ..o .073 .264 .100 —.136 041
4549 ... .097 274 111 —.096 .081
50-54 ... .041 .204 .041 —.136 041
55-59 .. ... ... 047 197 .034 —.114 .063
6064 .............. .052 .188 .025 —.093 .084
6569 .............. .030 153 —.010 —.099 .078
T0-74 ... ... —.004 .105 —.058 —.117 .060
75-79 ... .080 175 .012 —.018 159
80+ ... .082 .164 .001 — 177
958

This content downloaded from 073.091.017.005 on December 15, 2016 06:54:07 AM
All use subject to University of Chicago Press Terms and Conditions (http://www.journal s.uchicago.edu/t-and-c).



TABLE A3 (Continued)

Category/Effects >=0 Bar=0 BF s =0 Blas=0 B*.4=0
Period
1972-75 ... ... ... .. 121 — .073 0.337 176
1976-80 ............ .094 —.013 .060 .294 134
1981-85 ............ .119 .026 .099 0.304 143
198690 ............ —.001 —.081 —.008 .168 .007
1991-95 ............ —.095 —.162 —.088 .057 —.103
199600 ............ —.073 —.126 —.053 .064 —.097
2001-05 ............ —.060 —.100 —.026 .061 —.100
200610 ... ... —.105 -.131 -.058 - —.161
Cohort

1892 ... ... ... —.058 — .071 —.114 —.209
1897 ... —.057 —.012 .059 —.097 —.192
1902 ... .056 .088 158 .033 —.062
1907 ... —.036 —.019 .052 —.045 —.139
1912 ... ... ... .021 .025 .096 .029 —.066
1917 ... . ... ..., .020 .010 .081 .043 —.052
1922 .o 121 .098 168 .160 .065
1927 ... .093 .057 127 .149 .054
1932 ... 120 .070 141 .192 .097
1937 ... .092 .029 .099 .179 .085
1942 ... .168 .091 161 271 176
1947 ... 179 .088 .159 .298 .203
1952 ... ... ... .108 .003 .074 242 147
1957 ... .044 —.074 —.004 .194 .099
1962 ... .037 —.095 —.024 .203 .108
1967 .. ... ... .. —.065 —.210 —.139 117 .023
1972 ... —.167 —.326 —.255 .031 —.064
1977 ... —.223 —.396 —.325 —.009 —.104
1982 .o —.209 —.395 —.324 .021 —.074
1987 ... —.245 —.445 —.374 A —.095

Note.—Data are from Schwadel and Stout (2012). Y =0: sum-to-zero coding. B4 = 0:
reference-group coding with the first group omitted for each effect. 8., = O: reference-group
coding with the last group omitted for each effect. 8%, = 0: B4 = O estimates transformed
to the sum-to-zero scale. 3%, = 0: B, = O estimates transformed to the sum-to-zero scale.

TABLE A4
INTRINSIC ESTIMATOR ESTIMATES UNDER TWO DIFFERENT
SUM-TO-ZERO CODING SCHEMES FOR A SIMULATED DATA SET

Category/Effects last =0  first Y =0%
Intercept ..................... 8.333 8.333
Age
1o 708 1.208
2 e 333 333
2N —1.042 —1.542
959
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TABLE A4 (Continued)

Category/Effects last =0  first > =0%
Period
1 o 1.958 1.458
2 333 333
3 —2.292 —1.792
Cohort
1o .750 1.750
/2 —.625 —.125
3 —1.000 —1.000
4 —.375 —.875
S 1.250 .250

Note.—Last ) =0: estimates obtained under the sum-to-zero
coding with the last group omitted for each effect. First ) =0%*:
estimates obtained under the sum-to-zero coding with the first
group omitted for each effect, then transformed to the sum-to-
zero coding with the last group omitted scale.
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