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The Bayesian statistical paradigm has well-known optimality properties: given a full model specification
(prior and sampling distributions for inference and prediction, plus action space and utility function for
decision), a theorem due to Cox [9] — recently rigorized and extended by [51] — shows that the axiomatically-
correct (i.e., Bayesian) use of conditional probability is the only approach to inference, prediction and
decision that does not have at least the possibility of built-in information loss. Additionally, the paradigm
offers extensive modeling flexibility, and an immediate way of determining what a statistical model assumes
and what it is capable of learning from the data.
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Abstract

Gibbs sampling is a widely used Markov Chain Monte Carlo (MCMC) method for numerically
approximating integrals of interest in Bayesian statistics and other mathematical sciences. It is widely
believed that MCMC methods do not extend easily to parallel implementations, as their inherently
sequential nature incurs a large synchronization cost. This means that new solutions are needed to
bring Bayesian analysis fully into the era of large-scale computation. In this paper, we present a novel
scheme — Asynchronous Gibbs sampling — that allows us to perform MCMC in a parallel fashion with
no synchronization or locking, avoiding the typical performance bottlenecks of parallel algorithms. Our
method is especially attractive in settings, such as hierarchical random-effects modeling in which each
observation has its own random effect, where the problem dimension grows with the sample size. We
present two variants: an exact algorithm, and an approximate algorithm with better scaling properties.
We prove convergence of the exact algorithm under some basic regularity conditions, and discuss the
proof for similar parallelization schemes for other iterative algorithms. We provide three examples that
illustrate some of the algorithm’s properties with respect to scaling, and one example that compares
the exact and approximate algorithms. Because our hardware resources are bounded, we have not yet
found a limit to the algorithm’s scaling, and thus its true capabilities remain unknown.

Keywords: Bayesian mixed-effects models, Big Data, fixed-point algorithm, Gaussian Process regression,
high-dimensional statistical modeling, Markov Chain Monte Carlo, parallel computing, synchronization.
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The e-commerce company eBay, Inc. is interested in using the Bayesian paradigm for purposes of inference
and decision-making, and employs a number of Bayesian models as part of its operations. One of the
main practical challenges in using the Bayesian paradigm on a modern industrial scale is that the standard
approach to Bayesian computation for the past 25 years — Markov Chain Monte Carlo (MCMC) [22} 33] —
does not scale well, either with data set size or with model complexity. This is especially of concern in
e-commerce applications, where typical data set sizes range from n = 1,000, 000 to n = 10, 000, 000, 000.

In this paper we offer a new algorithm — Asynchronous Gibbs sampling — which removes synchronicity
barriers that hamper the efficient implementation of most MCMC methods in a distributed environment.
This is a crucial element in improving the behavior of MCMC samplers for complex models that fall within
the current “Big Data/Big Models” paradigm: Asynchronous Gibbs is well-suited for models where the
dimensionality of the parameter space increases with sample size. We show that Asynchronous Gibbs
performs well on both illustrative test cases and a real large-scale Bayesian application.

The layout for the rest of the paper is as follows. In Section [2| we review the problem of sampling-based
Bayesian inference, and Section |3| examines some alternatives to Asynchronous Gibbs for solving large-scale
Bayesian problems. In Section 4] we introduce two variations of the Asynchronous Gibbs algorithm — exact
and approximate — and discuss implementation. Section proves, using a widely applicable meta-theorem,
that exact Asynchronous Gibbs converges, and this convergence is demonstrated on increasingly complex
examples in Sections[6.IH6.3] In Section [6.4] we examine a setting in which approximate Asynchronous Gibbs
can fail, and we introduce a diagnostic to help avoid such situations. The overall picture of Asynchronous
Gibbs is evaluated in Section [7} where a number of future directions are also discussed.

2 The Problem

A Bayesian statistical model M has two components that arise out of the real-world problem in which it is
employed. Let & denote the data and 6 denote the parameters of the model. To fully specify M, we must
make assumptions regarding two components, the likelihood and the prior:

o Likelihood: f(x | @) describes what the distribution of the data would be if we knew the parameters.
e Prior: 7(60) describes our information (or lack thereof) about the parameters external to the data.

Note that @ and x are random variables — their precise form varies from problem to problem. In full
generality they can be defined on R* or just about any other well-behaved domain, even Fgiscrete, the space
of all discrete cumulative distribution functions (CDFs) on R.

Once the two assumptions above are made, M is fully specified — the likelihood and prior lead to a unique
posterior distribution:

e Posterior: f(6 | x) describes what we have learned about the parameters from the data.
The posterior distribution can be found via Bayes’ rule, which can be written in the following forms:

f(x|0)=(0)
Jop f(x | 0)7(6)d6

in which €y is the support of 8. Note that the posterior distribution is a function of @, whereas the integral
in the right-hand expression in is a function of &, and is hence a normalizing constant, ensuring that
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f(0 | x) integrates to 1. In practice this integral is almost always intractable. Instead, if we are able to draw
samples from f(0 | ) without knowing the normalizing constant, we can approximate its corresponding
CDF F(0 | x) to arbitrary precision by computing the empirical CDF F' based on those samples:

. 1 Y , .
F(o|z) =+ le{zgn) o, toranyy With Z0 ~ 0 |z (2)

If the Z™ are 1ID, this is a (standard) Monte Carlo estimator [32]. If Z™ are not IID, but instead form a
Markov Chain with f(0 | x) as its stationary distribution, this is a Markov Chain Monte Carlo (MCMC)
estimator [22, 33]. Under mild regularity conditions, both estimators converge to the right answer.

One way to create such a Markov Chain is to specify the full conditional distributions and construct a
(sequential-scan) Gibbs sampler |16, 17], which consists of repeated sequential sampling of the following full
conditional distributions:

07 ~ f(61] 0o, .., 0k, x) 05 ~ f(6a | 07,05, ..,0, x) .. Oy ~ f(Or | 07,...0,_, ). (3)

It has been shown [17] that under weak regularity conditions the Markov chain 0™ has the posterior
f(0 | x) as its stationary distribution. It is also possible — and sometimes preferable [41] — to draw the
samples from the full conditional distributions in random order, leading to a random-scan Gibbs sampler
[30]. In either case, the key property is that of synchronicity: each sample is completed before the next
begins.

Unfortunately, if the dimensionality of @ is large, the Gibbs sampler scales poorly, for a variety of reasons:

(a) Sheer size: in large models there are too many full conditionals from which we must draw, in order to
obtain enough samples from the full posterior distribution to be useful in any realistic time.

(b) Inherently sequential nature: to draw the next full conditional, the algorithm must know the values of
all of the most recent full conditionals, and hence can only proceed one step at a time.

(c) Centralization: all of the data typically needs to be present on the computer running the algorithm
— trying to do standard Gibbs sampling with data sets that are too big to fit on one machine, and
instead live on Hadoop clusters or other forms of distributed storage, is impossible.

(d) Mizing: the chain may be exploring the posterior distribution too slowly to produce useful results —
this mizing rate is completely dependent on the individual problem and the precise form of the full
conditional distributions.

In this article, we present an extension of Gibbs sampling that attacks problems (aHc) by running an
equivalent computation fully in parallel on a cluster, while striving to keep problem @ sufficiently under
control to remain useful.

3 Previous work on Bayesian computation at scale

There are a number of approaches that aim to provide exact or highly accurate approximate Bayesian
computation with large data sets. Alternatives to our approach include the following, in no particular order:

e Variational Bayesian methods. This approach, studied extensively by Jordan et al. [28], achieves
approximate Bayesian computation at scale by doing the following:
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(a) Define a space A of models in which computation with extremely large data sets is fast and
exact.

(b) Find the closest model M* in J to the actual model M, in a sense related to Kullback-Leibler
discrepancy.

(c) Perform fast and exact posterior calculations with M*.
(d) Use the results from (c)) to approximate the (unknown) results from model M.

The quality of this approach naturally rests on the distance from M* to M, on the scale of the integrals
whose approximation is desired (a quantity that is not typically made precise by this method). All
that is guaranteed is that M™* is the closest possible model to M in 4, not that this distance is
small enough to ensure good approximations. Examples can be found in which this method is highly
accurate, and other settings can be identified in which its performance is less satisfying.

Approzimate Bayesian computation (ABC). The idea here (e.g., Tavaré et al. [50]) is for the user
of this method to identify a set of statistics that are regarded by the user as close to sufficient (in
the usual statistical sense of sufficiency) — the method then in effect projects the problem under
study into the space spanned by these pseudo-sufficient statistics, a space in which (by the nature of
sufficiency) Bayesian calculations are extremely fast, and regards the results of these calculations as
approximations to the exact calculations in the original problem. Thus the quality of this method rises
and falls with the ingenuity of the user in identifying nearly-sufficient statistics — as with variational
methods, examples of results with varying accuracy are relatively easy to find.

Consensus Monte Carlo. In this approach, due to Scott et al. [45], the (large) data set is broken into
small pieces (shards), with MCMC performed on each shard on a different processor in parallel and
with the results averaged together to produce what is hoped is a good approximation to the (possibly
intractable) MCMC calculations on the entire data set. The quality of this method depends on the
problem-specific data-partitioning scheme and the method used to perform the averaging — examples
with different degrees of accuracy can be constructed.

Subspace projection. Approximate Bayesian computation with large data sets may be accomplished
on a model-by-model basis — an example is given by Banerjee et al. [4] for Gaussian Process regression.
Using an idea from compressive sensing, these authors linearly project the entire data set onto a lower-
dimensional subspace in which calculations are much faster. This approach clearly depends on how
much information is lost in the projection process — the authors use stochastic matrix approximation
methods to arrive at “nearly optimal” projections. Examples can be constructed with both minimal
and significant information loss.

Latent Dirichlet allocation. Thler and Newman [24] proposed a special case of our algorithm, applied
to the topic of latent Dirichlet allocation (LDA). They derived a bound on the difference between the
Monte Carlo output proposed by their sampling scheme and the output of an LDA-specific standard
Gibbs sampler. They also tested the algorithm with a variety of hardware configurations and provided
some numerical results on its scaling properties in terms of Monte Carlo iterations. However, they did
not prove convergence, perform MCMC diagnostics, or analyze properties of the chain with respect to
mixing, and their approach is entirely limited in scope to LDA.

Gaussian Approzimate Asynchronous Gibbs. Johnson et al. [27] have analyzed our approximate
algorithm restricted to Gaussian targets. They have proved that if the Gaussian target’s precision
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matrix is diagonally dominant, approximate Asynchronous Gibbs converges to the correct mean. They
have also analyzed some connections with parallel algorithms for solving linear systems. However, their
approach is limited to the Gaussian case, and does not include any analysis of our exact algorithm.

We take no position in this paper on the positive and negative aspects of any of these methods when
contrasted with our new algorithm or each other — comparisons of this type are left to future work.

4 Asynchronous Gibbs Sampling

Asynchronous Gibbs sampling is an algorithm for performing MCMC inference in parallel, without synchro-
nization or locking. For notational simplicity, we omit all conditioning on the data, and henceforth assume
it to be implicit. To understand the algorithm, we introduce the following concepts and notation:

e w;: a worker that performs computations, such as a CPU core, or computer on a network.
e 0: a random variable representing the full distribution from which we wish to sample.
e 0;: a subset of @ that is assigned to worker w;.

e 0. | 0_s: a full conditional random variable or block of random variables contained in 6;. Full
conditional in this context means the most recent values of all other variables in @ that are known to
worker w; (which may not be the most recent values known to the cluster as a whole, due to network
delays, packet loss, outages, and other potential scenarios).

Asynchronous Gibbs sampling then proceeds as follows.
(a) Provide all workers with initial values of the chain.
(b) For each worker, repeat the following in parallel without synchronization:

(i) Select a variable or block 6, from 68; at random with constant probability 0 < py,, < 1, exactly
as in random-scan Gibbs.

(ii) Sample 0.; | 0_.
(iii) Send the update 6,; to all the other workers.
(iv) Process all updates received from other workers and proceed to the next iteration.

(c) Stop when the chain has converged and sufficient monitoring iterations (subsequent to convergence)
have been performed for the desired Monte Carlo accuracy, and then download the output from all
the workers.

This is similar to standard random-scan Gibbs sampling, but with one primary difference: instead of
sampling all the variables conditional on the most recent values, each worker is sampling within a subset of
the variables conditional on the most recent values that it knows about. Note that in full generality, there
are few restrictions on the way in which variables are sampled: Metropolis [33] and Metropolis-adjusted
Langevin [42] steps are allowed, as are Slice Sampling [36] steps, and virtually all other techniques, as
long as they can be used together to form a valid MCMC algorithm (see Section . Also note that not
all variables need to be transmitted — it is only necessary that each worker is able to either sample or
receive each variable. In practice, we have found it effective to partition and transmit latent variables that
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correspond to data points, and sample — locally on every worker — variables located at the top level of a
hierarchical model. We focus here on the case where all transmitted variables are sampled via Gibbs steps.

There are two ways in which updates received from other workers may be processed:

. : 13 : f(enew)f(eold‘escndcr) _ 3
e Exact: accept updates with probability min {1, FOa) f(0newesender)} see Section .

e Approximate: accept all updates.

The remarkable property we have observed is that, in many situations, the Metropolis-Hastings (MH)
acceptance probability is close to 1 sufficiently often that the approximate algorithm yields the same
numerical answer as the exact algorithm up to Monte Carlo noise. This allows us to ignore the MH
correction while still obtaining good numerical results: intuitively, we're replacing the MH acceptance ratio
with a biased estimator of it, namely 1. This type of approximation can sometimes be justified from a
Noisy Monte Carlo perspective — see Alquier et al. [1].

In Section we prove convergence for the exact algorithm. In Sections - we illustrate the
approximate algorithm, which has much better scaling properties. In Section [6.4] we examine a case where
the approximate algorithm can fail, and discuss when using it is appropriate.

If exactness is desired, the MH ratio can be computed quickly and inexpensively in a wide variety of
problems — in Section [5.2] we show how it can be calculated in exchangeable latent variable models using
only one data point. Note that the exact algorithm will not scale as well as the approximate algorithm,
because even if calculating the MH ratio is fast, the algorithm’s parallel nature will create a large number
of such evaluations. Thus, we recommend running the approximate algorithm and collecting a random
sample of the MH acceptance probabilities while the algorithm unfolds. This sample can be examined to
see whether its distribution is sufficiently concentrated around 1. This gives a diagnostic check for whether
the approximate algorithm is appropriate.

Our algorithm possesses a variety of positive characteristics with respect to parallelism.

e By relaxing the requirement of conditioning on the most recent value of each variable, we are able
to completely eliminate all requirements for synchronization or locking, which makes our algorithm
embarrassingly parallel with respect to the dimensionality of @. This is of interest in a large class
of Bayesian hierarchical models in which the number of full conditional distributions arising from 6
is greater than the number of data values, because each data point has its own latent variable that
needs to be reconstructed.

e The algorithm is also fault-tolerant. Not all updates that are sent will be received by all other workers
due to network traffic congestion and other types of failures. This does not adversely affect the
algorithm — each worker simply continues its work. Even if a variable is dropped, at some point in
the future it will be sampled again and sent again. Analogously, as long as workers write their output
to disk periodically, our algorithm is tolerant of crashes: workers can be restarted with no loss, and
the algorithm proceeds without interruption.

e In many practical situations, we find that the algorithm scales superlinearly with respect to workers.
This is because its parallel nature doesn’t just produce more samples, it also accelerates mixing when
compared to parallel independent chains. For an intuitive explanation, observe that if we have m
workers, p full conditional distributions, and workers broadcast their updates at every iteration, then
it will take each worker approximately £ iterations to either sample or receive each full conditional

m
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on average once. This allows each worker to explore the posterior at a much quicker rate, even though
on a one-sample single-worker basis, the algorithm may perform worse than standard Gibbs. This
can be seen in the sample autocorrelation functions (ACFs) for Asynchronous Gibbs, which can
exhibit long-memory tails. Note that this problem is significantly mitigated by what is otherwise
an undesirable feature in MCMC: strong positive sample autocorrelation. Conditioning on the most
recent known value is quite similar to conditioning on the absolutely most recent sample, because
they are positively correlated. The net result of all of these considerations is that, because parallelism
can both accelerate and slow down mixing at the same time in different ways, determining how the
algorithm scales is difficult. Nonetheless, in many situations, we have observed that if we double the
number of workers, Asynchronous Gibbs will be more than twice as fast.

e Asynchronous Gibbs can be performed in a variety of parallel environments. The simplest is the
multicore setting, in which each worker corresponds to a CPU core, and shared memory is located
on the machine. Our examples focus instead primarily on the cluster setting, in which each worker
corresponds to a computer, and shared memory is approximated via network communication. The
cluster setting is particularly interesting for problems that are too big to store on one machine, in
terms of size of the data set and the parameter space.

Significant care must be taken to properly tune the algorithm and monitor convergence. The standard
“effective sample size” calculation used for MCMC diagnostics does not immediately extend to multiple
workers, because their chains are not independent. We have found it helpful in practice to examine the
sample ACF at large time lags, on the order of thousands or tens of thousands of observations: the point is
to check whether the ACF goes to 0 at a number of lags that is lower than the total number of Monte
Carlo iterations performed on its corresponding worker.

Our first two examples in Sections and contain simulated data with a known correct answer. In
our second example we are able to perform Gaussian Process regression on n = 71,500 observations, with
143 workers on single-core machines communicating over a network and 10,000 Monte Carlo samples per
variable, in around 20 minutes (all references to time in this paper are based on clock time, not CPU time).
If we only use 70 workers, the algorithm takes approximately twice as long to run (so in this example we
do not obtain superlinearity). Our third example in Section involves a real-world data set, and we
compare our results to the output produced by a sequential-scan Gibbs sampler with identical numerical
computation routines that takes about 12 hours to run (whereas Asynchronous Gibbs produces comparable
results in about 1 hour). We also compare our results to a highly optimized C++ [25] implementation to
verify accuracy. In all of the problems we have examined to date, we have not yet hit any dimensionality
limit. Thus the true high-end capabilities of Asynchronous Gibbs remain unknown.

Our algorithm is implemented in Scala |38], a compiled language similar to and interoperable with Java [19)
that is well equipped for parallel processing use cases. Network communication and cluster management is
handled by Akka [52], a decentralized actor-based message-passing framework written in Scala for large-scale
distributed applications. Numerical computation is done via Breeze [21], a Scala library written for fast and
accurate computation, designed for natural language processing and scientific computing. Random number
generation is handled via Matsumoto and Nishimura’s Mersenne Twister [31] random number generation
algorithm. With slight modifications, our implementation could run on large-scale distributed data sets in
the Hadoop [46] environment. However, since Asynchronous Gibbs sampling is not a deterministic algorithm,
it does not translate directly into the MapReduce [10] paradigm.



5 Convergence and Properties of the Algorithm

5.1 Convergence

In this section we prove that, provided we start with a well-defined Markov Chain, Asynchronous Gibbs
sampling will converge to the correct target distribution. Our strategy is two-fold. Firstly, we define
a synchronous parallel MCMC algorithm that formalizes the way in which workers draw samples and
communicate with one another, under the assumption that communication is instantaneous and synchronous.
This part of the proof was inspired by ideas from the coupling of chains in parallel tempering [48]. Then we
note that MCMC methods belong to the class of fixed-point algorithms, and hence we can use a result from
the asynchronous convergence of these algorithms, due to Bertsekas [6] and Baudet [5], to prove that the
asynchronous version of our parallel algorithm with non-instantaneous communication converges as well.
We use total variation || - ||y as our distance metric.

Our notation is as follows:
e w;: an arbitrary worker.

e k: the current iteration of the chain.

p: the total number of full conditional distributions.

m: the total number of workers.

(Q,%,P): the probability triple upon which the target distribution is defined.

A ;: all probability measures on 2. Note that (trivially) J; = A for all i,4’.

M= )(:.il A ;: all product probability measures on ™.
e 7: the measure corresponding to the target density, i.e., the posterior distribution f(@ | x).
e X:.il 7 the product measure of m independent copies of 7.
e (. the full conditional random variable corresponding to coordinate ¢ on worker .

We begin by defining the MCMC algorithm that we wish to parallelize.

Definition 1 (Underlying Chain).

Let the underlying chain be a well-defined first-order Markov operator P satisfying the following:
e Stationarity: P(mw) = .
e Convergence: ||[P*(-) — ||y — 0 as k — oc.
e Gibbs Kernel: P is constructed via full conditional distributions f(6. | 6_.).

Conditions for stationarity and convergence typically follow from ¢-irreducibility, aperiodicity, and related

assumptions required by standard MCMC schemes.

We now define a Markov chain on an extended space that captures the behavior of our algorithm if
communication is instantaneous, i.e., if there are no asynchronous delays.



Definition 2 (Synchronous Parallel Chain).
Let the synchronous parallel chain be a first-order Markov operator H : M — M with a Metropolis-Hastings
transition kernel defined as follows:

(i) Randomly select a worker wj.

(ii) Randomly select a full conditional coordinate ¢ from the set of coordinates that ws works on.
(iii) Propose 0., from f(Oqs | 0_cs).
(iv) For each worker w;, accept the proposal with probability

f(gi;sa e—ci) f(ecz | e—cs) }

(4)

a; = min< 1, ;
{ f(00i7 g—ci) f(@cs | 9—05)

staying at the previous value otherwise.

Thus the synchronous parallel chain selects a worker at random and proposes from that worker’s full
conditional at every worker. Note that a; = 1, because on worker wy — whose full conditional was selected —
the proposal is exactly a Gibbs step and is hence always accepted. It’s clear that if the combined proposal
for all workers is evaluated jointly with acceptance probability a = [[%, a;, then this is just a standard
Metropolis-Hastings algorithm and thus converges. We now show that if each worker performs the MH test
independently given the proposal, the resulting chain also converges.

Theorem 3 (Synchronous Parallel Convergence).
H admits IT as its stationary distribution and unique limiting distribution.

Proof. 1t’s sufficient to show that H satisfies the detailed balance equation
f(0) a0 0) = f(6") a0 | 6), (5)

in which f is the target density, ¢ is our transition density, 6 is the old state, and ' is the new state. Let
I C {1,..,m} be the set of workers that accept the newly proposed ¢,,. We write I = {iy,4s,..,7)7/}. Our
chain begins with initial density

F0) =11716:), (6)
i=1
and for ¢ € I it replaces each 6,.; with ¢/,. This yields the updated density

iel igl
corresponding to a move of the form:
Wy, - Ocil — 925
Wiyt Oy — O

(8)
wim: Gcim — 025

Our proposal density on each worker is the full conditional distribution for coordinate i on worker w,. With
the MH acceptance probability «;, the transition density for each worker is

qi(0" 1 0) = f(0rs | O-cs) i (9)
9



For all workers taken together, this yields

(0" 0) =TI f(@. ) s (10)
el
and the reverse transition density is
0 | 0/ Hf ci | Q—CS i (11)
i€l

Note that the asymmetry in (10]) and arises because [ singles out workers that accept the proposed
move. The reverse move takes the form

wi, + 0, = O
Wi, - 028 — 0

. /
wim. (9 — Qcim

CcSs
with reverse acceptance probability:

y ) SO 0) f(0L 1 0-0s)
“ {1 (0 0-) <mre_cs>} (13)

Note that by construction a; =1 <= o <landa, =1 < o; <1. Let A={iel:q; <1} and
A'=T\A={iel:a]<1}. Note further that

f(QCiyg—C) (I |0 cs)

fori € A, 14
0.0 0) [0 |0 (14)

o, =1forie A, and o] =

and similarly
f(eéwe—c’t) ( ci | 0—(35)

f(ecw e—cz) ( cs | 9—08)

With these definitions, we can demonstrate detailed balance as follows:

a;=1fori e A and o; =

forie A. (15)

f(0)q(0']6) = II 0,) [T (0L | 0-cs)

1=1 icl

= H f(ecia Q—Ci) f(eés | e—cs) o7} H f(e
il T

= H f(eciv efci) f(e/ —cs az H f ecza 0 C’L —cs Hf
1€A 1€ A’ €1

/ f(eésﬂ 9 CZ) ( ci | efcs /
= 901'7 g—ci ch Q—cs 00’“ 0_ cz 905 g—cs 0
1176t 0-i) 0. | >ﬂ%ﬁﬂ)( w ng O 10-es) TLAC

iZl
H f(eésae c’L) ( ct ‘ e_cs H f(eciaefci cs ‘ 9703> Hf(g

€A i€ A’ i€l
/ / / / f(eésv Q—Ci) f(QCZ | QLCS)
0., 0- eci 9705 i ‘gciu e—ci QCS ‘9—05 / 01
gf( esr O—ci) [ (Oci | 07 ) @ ig,f( ) f(Oes | )f(Hgs,Q_m-)f(@ci o) Mf( )
/ f(ecia e—ci) f(gtljs | e—cs)
9 0 cz 9705 cs ’ cz ci ‘9705 7 01
21;1[4f< cs? ) ‘ ZEHA, f ( | )f<0és, 0_61‘) f(ecz | 0_05) Zg]f( )
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= H f(efzm Q—Ci) f(eCl | Ql—cs) O[; H f(eés’ Q—Ci) f(eCZ | el—cs) Oé’; H f(el)

€A A or
= T/ (00 0-ci) F(6es | 0-0) QL T] £(6)

el il
=1 /(0. 0-) TL (0 T £ (B | 0-.,)

iel i1 i€l
= f(0")a(0] 6. o

This holds for all I C {1,..,m}, and hence for all 2™ possible distinct moves that can occur in one iteration
of the chain. Thus H satisfies detailed balance with respect to II, and admits II as its stationary distribution
and unique limiting distribution. [

We now move to the second stage of the proof. From here, we would like to show that H converges
asynchronously, i.e., convergence is still valid in the setting in which each worker doesn’t know the precise
current state of all other workers, and instead works with the latest state that it knows about. We begin by
stating Frommer and Szyld’s model of distributed computation. Some of their notation, such as H and k,
overlaps with ours.

Definition 4 (Asynchronous Computation).
Start with the following fixed-point computation problem:

(P1) Let £ £ XZI E; be a product space. Index i refers to the component of E belonging to worker w;.
(P2) Let H : E — FE be a function (here, a Markov operator), and denote its individual components by H;.
(P3) Let * be a fixed point of H, i.e., * = H(z*).
Now, define the following cluster computation model:

— Let k € Ny be the total number of iterations performed by all workers.

— Let s;(k) € Ny be the total number of iterations on component i by all workers.

— Let I be an index set containing the components updated at iteration k.
Next, assume the following basic regularity conditions on the cluster:
(R1) s;(k) <k —1, ie., a worker’s current state cannot be based on future values.
(R2) limy o $;(k) = 00, i.e., workers don’t stop permanently mid-run.
(R3) {k € N:i € I*}| = 00, i.e., no component stops being updated or communicated.
Finally, define 2% component-wise via the following:

; m

k=1 otherwise.

(17)

s1(k Sm .
ey {HZ (xll( U (k)> fori € I*,
T

Then z* is termed an asynchronous iteration, and {x* : k € Ny} is termed an asynchronous computation.

The above definition is broad enough to encompass almost every asynchronous distributed computation that
possesses any hope of convergence, and its requirements should be trivially true in any such computation.
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In particular, it does not make sense to even think about convergence in situations where work on some
portion of the problem stops prematurely and permanently, violating ( It also does not make sense to
think about asynchronous distributed computations for which there does not exist a way to split up the
problem among the workers.

With this computational model in mind, the following general theorem gives a sufficient set of conditions
under which the asynchronous iterates z* converge to the correct answer.

Result 5 (Asynchronous Convergence).
Given a well-defined asynchronous computation as in Definition 4} assume the following conditions hold for
all £ € Noi

(C1) There are sets E¥ C E satisfying E* = X" EF (box condition).
(C2) For E* in (Cl), H(E*) C E¥*' C E* (nested sets condition).
(C3) There exists 2* such that y* € E¥ = y* — 2* in some metric (synchronous convergence condition).

Then z* — x* in the same metric.
Proof. See Frommer and Szyld [14], Bertsekas [6], and Baudet [5]. |

This result can be used to prove that a wide variety of asynchronous iterative algorithms converge. In
particular, we believe that it can be used to construct an alternative proof that the Hogwild scheme
(asynchronous stochastic gradient descent) [37] converges, as well as for asynchronously parallelizing other
iterative stochastic algorithms such as EM [11].

To write a proof using the above result, the main thing that needs to be shown is that the state space for
the iterative algorithm in question can be partitioned into a sequence of boxes that shrink toward the fixed
point in question in a sequentially continuous way as the iterative operation is applied. Intuitively, once
such a sequence is defined, the Banach Contraction Mapping Theorem [3] guarantees that it will eventually
land within a neighborhood of the fixed point. Within the context of Asynchronous Gibbs sampling, this
amounts to proving that a well-defined standard Gibbs sampler can be partitioned according to ( and
passes conditions ((JIFC3)) described above.

We need the following basic regularity assumption.

Assumption 6 (No Worker Dies).
All of the following hold:

(i) At least one worker is assigned to each full conditional 6. | #_. defined in the underlying chain.
(ii) For each worker w; and each coordinate ¢, the sequence 6,; | _.; is infinite.

(iii) For each worker w;, coordinate ¢, and iteration s;(k), 6% is updated conditional on 6% where k' < k—1.

Justification. Without these assumptions, asynchronous convergence is hopeless. Condition (fil) ensures that,
taken together, the workers actually work on the full problem. Condition is needed because without
it there will be some dimension that stops either being updated or communicated after finite time. Note
that in practice, if a worker does crash, it suffices to restart the worker sufficiently quickly. Condition (i)
ensures that workers cannot receive updates from the future.

12



We need the following result from Markov Chain theory.

Result 7 (Monotonic Convergence).
Suppose P is a Markov operator with unique stationary distribution 7, initial distribution 4 € 4. Then

1P (i) = oy < 1PH (i) = oy - (18)

Proof. Meyn and Tweedie [34], Proposition 13.3.2. |

We now proceed with the proof.

Lemma 8 (Box Condition).
Take £ = M and E; = AM;. Fix initial distribution u € 4. Define the following:

Ef £ {ved :|lv—rl|lrv < [[H (1) = 7llwv}. (19)
Then there exist sets E¥ such that E* = X;L EE.
Proof. From the definitions we know that £ = X?; E;. By construction, E¥ C E. Let Ef = FEFNE,.

Because all of these sets are by definition nonempty, and the sets F; form a partition of E (since M =
X M), we get BF = X EF. |

Lemma 9 (Nested Sets Condition).
Let E* be defined as in the previous lemma. Then H(E*) C E*! C EF.

Proof. Fix v and consider E*. By monotonic convergence, ||H*(u) — ||ty is non-increasing in k, and we
get EFt1 C E*. We also have E**! = H(E*) by construction. |

Theorem 10 (Asynchronous Gibbs Converges).
Assume all assumptions and theorems above. Then Asynchronous Gibbs sampling converges to 7 on each
worker in total variation.

Proof. Below, we verify that all of the conditions required in Result |5| (Asynchronous Convergence) hold.
P1) Take £ = M.

P2) Take H as defined in the Synchronous Parallel Chain Definition.

P3) Take x* = II.

R*) All satisfied by the No Worker Dies Assumption.

C1)

C2)

Satisfied by the Box Condition Lemma.

(
(
(
(
(
( Satisfied by the Nested Sets Condition Lemma.

(C3) Satisfied by the Synchronous Parallel Convergence Theorem.

Now invoke the Asynchronous Convergence Result to conclude that the distribution from the combined
Asynchronous Gibbs sampling chain across all workers converges to Il in total variation, and thus each
worker’s chain converges to m marginally. |

13



We note in conclusion that this proof does not require any structure on the underlying chain, beyond the
basic assumptions required for it to converge. In the example in Section [6.2] for instance, each worker
updates all of its assigned variables 6; in a single block.

5.2 Exchangeable Latent Variable Models and Exact Asynchronous Gibbs

If we are interested in sampling from an exchangeable latent variable hierarchical Bayesian model, the
posterior ratio used in the MH acceptance test in exact Asynchronous Gibbs simplifies to an expression
involving only one data point — this means that this ratio can be evaluated locally to each worker in a
parallel environment. To illustrate, consider the following model:

i | vi oc A(v;) vi | 6% B(6) 0 o m(6), (20)
in which A and B are arbitrary distributions. We can define a Gibbs sampler of the form
v; | 9,1’2‘ NC(Q,J?Z) 0 | Vl,..,l/NND(I/l,..,VN), (21)

where C' and D are arbitrary distributions. Assume that we can sample from C' directly. This model’s
posterior distribution has the form

N N N

IS (i | v) f(wi | ) m(0) o< [T f(wi | ) F(O | vi) o< [T (O, v | ) . (22)

i=1 i=1 i=1
Now define an Asynchronous Gibbs sampler in which all workers transmit the values of their corresponding
v; but never transmit ¢. Consider a transmitted update from v; to Vj/-. Let ¢ be the full conditional proposal
distribution on the worker that sent V;-, and assume that this worker transmits the parameters of that

distribution along with V;». Notice that since ¢ is a full conditional distribution, it does not depend on v; or
the previous value of v; on the transmitting worker. Then the MH acceptance probability takes the form:

mind 1 f(Q;V} | ;) [Tz (O, vi | @3) q(vy) — min?1 f(@,y]’- | ;) q(v5)
’ f(ea’/j | %‘) Hi;ﬁj f0,v; | ;) Q(V]/') ’ f(ea’/j | %‘)Q(Vg/') '

(23)

Thus we can carry out the evaluation using only one data point. The details for doing so are problem-specific
and depend on how the data is stored. For example, if x; is not available on other workers, we can transmit
it over network along with v/. If v; is also not available on other workers, but the latent variables v; form
a non-overlapping partition among the workers, then we can transmit (V;, v, %j,q), because v; can only
be updated on others workers through communication. This situation occurs in some problems where
parameters — such as 6 in Equation (20)) — that are located at the top of a hierarchical model may depend on
v; only through sufficient statistics, and where storing v; for all j on every worker is thus unnecessary. These
details illustrate the flexibility Asynchronous Gibbs sampling gives the user in handling large distributed
data sets.

Note that due to the large number of MH evaluations, it will typically be too expensive to perform all of
them. We instead recommend computing and storing the MH ratios at random with small probability, and
using them as a convergence diagnostic — see Section [6.4]
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Figure 1: Diagnostics for Asynchronous Gibbs (top row) and standard Gibbs sampling (bottom row), in the
correlated standard multivariate normal example of Section |6. 1.

6 Examples

6.1 Example: Toy Problem, an 8-dimensional correlated standard normal

In this example, we generated samples with approximate Asynchronous Gibbs sampling from a correlated
8-dimensional Gaussian with mean zero, variance 1, and exponential covariance function, i.e., ¥;; =
exp {—o¢|i — j|} with ¢ set to 0.5. This example was the first instance of Asynchronous Gibbs sampling that
we implemented, with the intention of numerically testing whether the algorithm that we conceptualized
would converge to the correct stationary distribution. Note that this is not necessarily a trivial problem
from a Gibbs sampling standpoint: a correlated standard normal has a “narrow” density (running along a
ridge that is not parallel to the axes), which makes it relatively difficult for the sampler, which can only
move at 90° angles, to explore the distribution — the exact difficulty depends on the covariance matrix.
Our sampler was started from absurd initial conditions: 10g, a vector with all values set to 10 (i.e., 10
standard deviations away from the correct answer). We used 8 total workers, each of which was assigned
one full-conditional dimension of the Gaussian to sample. The workers communicated with each other over
the network. Trace plots of the output for the first of the 8 multivariate normal components are presented
in Figure [1| (the plots for all other components were essentially identical to those in this figure), along with
diagnostic plots of the output of a standard Gibbs sampler. The algorithm quickly finds the correct location
parameter, and the QQ plots (Figure [2]) show no evidence of non-normality in the samples.

It is difficult to assess whether Asynchronous Gibbs or the standard Gibbs sampler performed better. The
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Figure 2: Top row: QQ plots of Asynchronous Gibbs, standard Gibbs sampling, and mvrnorm [53] in the
example of Section |6.1), as well as the throttled variant described in the text. Bottom row: diagnostics for
Asynchronous Gibbs, throttled variation, in the same example. All plots are based on the first of the 8
multivariate normal components.

trace plots for the standard sampler look better: it was able to find the correct location almost instantly,
whereas Asynchronous Gibbs took around 10,000 iterations to do so. The ACF plot for Asynchronous
Gibbs has smaller values at low time lags, but it decays to zero at a rate slower than that of standard
Gibbs. However, Asynchronous Gibbs runs entirely in parallel, and is able to produce a vastly larger
number of iterations in the same amount of time. The partial autocorrelation function (PACF: for a
review of properties of the ACF and PACF see, e.g., ) goes to zero after about 12 lags, indicating that
Asynchronous Gibbs is behaving in a way consistent with a 12th order autoregressive process — this provides
a rough measure of how much delay is associated with communicating over the network.

Given that Asynchronous Gibbs worked so well without interference, we ran a subsequent test to study how
decreased network traffic would affect the sampling, with the goal of seeing whether the algorithm would
converge at all — we call this the “throttled” variation. We instructed each worker to send out messages
with probability only 0.01, instead of deterministically sending out messages at each iteration (and allowing
the computer’s operating system and network infrastructure to handle traffic management). Trace plots
for this reduced-communication variant can be seen in Figure 2 The algorithm again finds the correct
location, and the QQ plots show no evidence for non-normality. However, the ACF and PACF plots look
substantially worse than in the previous case, indicating that the decreased frequency of communication
resulted in a slower-mixing chain.
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6.2 Example: Gaussian Process regression, a highly simplified spatial model with n = 71, 500

This problem originally appeared in an example due to Neal [35] — we examine a variation due to Kottas
[29] (personal communication). In this example, we used our algorithm to sample from the posterior
distribution arising from a simple Gaussian Process regression problem. Our method is close to exact
— inexactness is introduced only through a block matrix inverse approximation scheme, and through
approximate Asynchronous Gibbs.

This example is far too simple for use in a real spatial statistics problem — rather, we present it as a way to
illustrate how approximate Asynchronous Gibbs sampling can be used for computation at scale. We expect
that future work will be able to extend our approach to more realistic settings. Our goal was to reconstruct
the following function:

1.1

fl@) =03+ 040+ 04 sin(27a) + =

xr € [-3,3]. (24)
This is then reflected and copied around the lines x = 3,9, .., and x = —3, =9, .., in such a way that f(x)
becomes periodic with period 6 and is continuous everywhere. To simplify our example, we assumed that
our data lives on a grid with spacing equal to 0.06 (i.e., x;1 = 0,29 = 0.06, 23 = —0.06,..). To generate
the data, we added Gaussian white noise with standard deviation 0.2. Our model for reconstructing this
function is then defined in the following way:

yi = f2:) + & f(x;) ~ GP g S N(0,07). (25)

Here i = 1,..,n = 71,500 with x on [—2,145, 2,145). For simplicity, we selected a Gaussian Process with
constant mean function p and exponential covariance function —72exp {—¢|x — 2’|}, together with the
following hyperpriors:

p~ N(ay,b,) 0? ~1G(ay, bs) 7° ~ 1G(a,, b,) ¢~ U(0,by) . (26)

By introducing latent variables ; corresponding to each data point, the model can then be expressed in the
following way:

i | 0;, 0% ~ N(6;,07) 0~N, (u 1,,7° H(¢)) H;;j(¢) = exp {—¢]:zcl — x]\} ) (27)

By conjugate updating, this yields Inverse-Gamma posteriors for o2 and 72, a normal posterior for u, and
an n-dimensional multivariate normal posterior for 8. Since ¢ is non-conjugate, to simplify things for our
example we fixed it at 0.5, which is an interpretable value that is close to its MLE. If n is large, block
sampling from this posterior is intractable because it requires the frequent inversion of two (n X n) matrices.
It’s possible to integrate @ out of the model, but this does not avoid large matrix inversion. We propose
the following scheme to sample from the posterior of u,o?, 72, 0.

In our approach, we update individual slices of 6, consisting of 500 elements, via Gibbs steps. To do this,
we sample from full conditional distributions of the form @1.500 | @501, i1, 02, 72 for arbitrary indices (recall
that ¢ is fixed). Thus we need to sample from conditional Gaussian distributions of portions of €, given the
rest of 8. To do this without ever constructing the large covariance matrix, which may be too big to store
in memory, we need to be able to invert H(¢), multiply by 772, add ¢2I,,, and invert back. The following
scheme allows us to do this elementwise, with only one approximate inversion along the way, which can
with further work likely be refined into an exact inversion.
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Figure 3: Partial subset of @ for two workers (split at center), in the Gaussian Process regression example

of Section [6.3

Since we have made the simplifying assumption that our grid is evenly spaced, the covariance matrix H(¢)
is Toeplitz. Additionally, since our covariance function is exponential, the resulting covariance matrix is
hyperbolic, and can be inverted element-wise analytically via a technique due to Dow , with inverse
that simplifies to

d() a 0 0
a b a 0 b = — coth(—¢p)
a ) ) ) : _ csch(2—¢p)
— . e~ ¢P(2N=3) c5ch(— —coth(—
H 1(¢) = |: 0 0 dO _ 2_2:£¢,?}§2V+—13) th(—¢p) ) (28)
b a 0 p = grid spacing size = 0.06
0 a4 b a N = dimension of H(¢)

Note that this H™(¢) is tridiagonal with modified corner elements. Does this inversion scheme hopelessly
limit the generality of our technique? We conjecture that the answer is no. Given their structure, similar
closed-form inversion techniques should be possible for other covariance functions. With further work, such
techniques could possibly apply to non-Toeplitz covariance matrices as well.

Next, we multiply by 772, and add ¢~2 to the diagonal. The resulting covariance matrix is still tridiagonal
with modified corner elements. We do not know how to invert this matrix analytically, but we do know
how to invert the general tridiagonal Toeplitz matrix without modified corner elements, via a technique
due to Hu and O’Connell [23]. We approximate the tridiagonal form by assuming that dy = b in (28) - this
works well except at the points where the partition slices of 8 join, where some error is introduced. It
turns out that this inversion scheme includes the numerically unstable terms sech(z) and cosh(z), which
are unbounded and asymptotically increasing on R*. Fortunately, for large values of z, these terms are
approximately equal to %e””, allowing us to cancel out numerically unstable terms, and this approximation

18



Trace Plot ACF Partial ACF

1 1.04 1.04
1
0.801 0.5 0.5
3 .75 0.0 = 0.0
-0.51 -0.51
0.70 1
—-1.0 1 -1.0 1
0 2500 5000 7500 1000¢ 0 10 20 30 0 10 20 30
Trace Plot ACF Partial ACF
1 1.04 1.04
0.066 - 1 |
0.065 - 0.5 | 0.5 1
0.064
0.0634 -0.51 -0.51
1 -1.0 A1 -1.0 1
0 2500 5000 7500 1000( 0 10 20 30 0 10 20 30
Trace Plot ACF Partial ACF
1.04 1.04
0.51 1
HHN||||||||||||||||||m 1l
N 0.49 1 0.0 et Ig UL ”Jm"” 0.0 = L
0481 051 051
0.47 1
T } T T T -1.01 T T T _1'0-| T T T
0 2500 5000 7500 1000( 0 10 20 30 0 10 20 30
Trace Plot ACF Partial ACF
2.00 1.0 1.0
1.75+4
0.5 0.5 1
1.504
@ 0.0 - 0.0
1.254
1.00- -0.51 -0.5 1
0.75 1 ] —-1.0 1 —-1.0 1
0 2500 5000 7500 1000¢ 0 10 20 30 0 10 20 30

Figure 4: Diagnostics for p,o%, 7%, and one 0;, in the Gaussian Process regression example of Section .

is asymptotically exact.

Finally, to find the mean vector, we need to multiply the covariance matrix defined by by a term that
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includes the full data. Since the data set can be too large to store on a single machine, this is intractable.
However, not all is lost: since the resulting covariance function decreases rapidly to 0 as the distance away
from the full conditional of interest increases, this multiplication can be carried out to arbitrary precision
by simply taking a slice in the center of the matrix in a neighborhood around the full conditional of interest.
In this way we’re able to calculate the mean function to within numerical precision without ever performing
a computation involving the full data set. This idea also underlies covariance tapering [15] and composite
likelihood methods for spatial problems [47].

After all of these steps, we can sample any slice of @ full conditionally via the standard Schur complement
formula (for a review of this result, see [39]), since the full conditional of a Gaussian is Gaussian.

With standard Gibbs, this technique is still intractable: there are too many full conditionals to sample for
the chain to produce its output in a reasonable amount of time. Asynchronous Gibbs lets us parallelize this
computation, producing results in minutes (given sufficient hardware) that would have taken days or weeks
with standard MCMC. In this example we used 143 workers with 1 CPU each. Each worker was responsible
for 500 values of @ (different from those handled by the other workers), and for u, 02 7% . We started our
algorithm from garbage initial values: p = 10,02 = 10,72 = 10,0 = 0. Our algorithm converged rapidly to
within a small neighborhood of the correct solution. It finished, producing approximately 10,000 samples
per worker, in around 20 minutes.

In Figure (3| we plot a slice of the data, together with the correct solution. As noted above, our matrix
inversion approximation scheme is inaccurate around the edges of each slice of 8 (this can be seen in the
middle of Figure , at index 300), and hence these values are not as accurate as those elsewhere. The
algorithm converged in an analogous fashion for all other slices of the data. Figure || presents diagnostic
plots for u, 0%, 7% and one 6.

All of of the components of (i, 0, T) are relatively easy to learn. We have observed similar results for a
wide variety of statistical models in the large-data setting: parameters that depend on the full data tend to
be easy to learn, with low posterior variance, and can often safely be fixed at their MLEs if doing so helps
computation. Note that if we had not fixed ¢, we would have needed to compute a large matrix expression
involving H™!(¢) in its entirety for every sample of 72 and u. Because H™!(¢) is available analytically, this
is tractable, but for simplicity, we chose to fix ¢ instead. This choice is reasonable given that ¢ and 72 are
(jointly) weakly identifiable.

We conclude that Asynchronous Gibbs sampling allows us to fit Gaussian Process regression models at
scale without variational methods and the other classes of approximations described in Section [3]

6.3 Example: Mixed-effects regression, a complex hierarchical model with n = 1, 000, 000

The following model, due to von Brzeski et al. [54], was used in a large-scale analysis of product updates
at eBay Inc. Because users choose when to update to the latest version of the product, analysis of
product updates is done not by experiment but by observational study, and causal inference is difficult.
In particular, it’s necessary to control for the early-adopter effect, in which the behavior of the response
is correlated with how quickly a user adopts the treatment after release. To adjust for this effect, a
Bayesian hierarchical mixed-effects regression model was selected. Since we are primarily interested in the
computational aspects of this problem, we omit further discussion of how and why the particular model
was selected and interpretation of the results — such discussion can be found in the original publication. A
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Figure 5: (Left panel) Distribution of MH acceptance probability, and (right panel) directed acyclic graph
for the model, in the hierarchical mized-effects regression example of Section [6.5

variety of different data sets have been used with this model — the data set that we employed, selected for
convenience, consists of n = 1,000,000 users. The model can be written in the following way:

iid iid

y, = F:B8, + Wiy +¢; B | 13X~ Ny(p,X) g |v~Nr_,(0,v1r_,), (29)
with the following data:
y;: (T —p)x1 Fi:(T'—p)xd W (T —p) x (T'—p), (30)
the following parameters:
B;:(dx1) ~v:(T'—p)x1 p(dx1) ¥ (dxd) v : scalar, (31)
and the following priors:
p~ Ng(0,r,1;) Y ~IW4(d+1,1,) v ~ Np_p(0, 5 Ip_,) v ~1G(e/2,¢/2) . (32)

Here i = 1,..,n indexes individual data points (eBay users), y, is a vector of values representing customer
satisfaction for user i over time (aggregated to the weekly level), F; and W, are user-specific matrices of
known constants (fixed effects), d is the length of the random-effects vector, T = 52 is the number of weeks
of data for each user, p is the number of lags of autoregression in the model (typically no more than 5), and
Ku, kv, € are fixed hyperparameters. The posterior distribution arising from this model has the following
full conditionals:

B; | 1, 3,7, v, data ~ Ny(m;, C;) Ci=Z '+ v 'FIF)!
m; = Ci(v'F} (y, - Wiy) + ')
plB,E ~Nya,B) B=(k,'I;+nX7")"!
a = B(”E_llg)a with B = %Zznzl Bi
| Bizy,.n, v, data ~ Np_p (e, D) D=w'YL, WIW, + k' Tp )™

c=v"'Dg, with g =>" , W,(y, — F;3,)
oY 5i:1,..,m p~IWy(n+d+1,S + 1) S =28 —m)(B; — N)T

e+n(T —p) e+l "
v ﬁi:l,..,m data ~ IG ( (2 )7 9 > l= Z(yz -F.B8;, — Wﬁ)T(?Ji -F8, —Wyy). (33)

=1
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These full conditionals can be sampled using a standard sequential-scan Gibbs sampler. To increase efficiency,
the variables 8,_; ,, can be treated as a block and updated in parallel. Since they’re all conditionally
independent given u, 3, v, v, this multicore algorithm is still a standard sequential-scan Gibbs sampler.

Unfortunately, this parallelization scheme extends poorly from the multicore setting to the cluster setting,
for a variety of reasons:

(i) Synchronization: The cluster must wait for all of the nodes to finish updating the f3; before proceeding
with updating other variables.

(ii) Full-data Reduce Operations: Large sums, such as those involved in calculating [ and S, need to be
performed in a distributed setting. Due to network overhead, these sums take significant time to
compute.

(iii) Resource Allocation: Some parameters, such as v, are both approximately constant and expensive to
sample (see the discussion at the end of Section [6.2]), slowing down the entire algorithm. As noted
previously, this feature is common in large-data problems.

(iv) Fault Tolerance: If a single node performing any task goes offline, the entire algorithm stops. Given
sufficient nodes, this will occur with probability close to 1.

Approximate Asynchronous Gibbs can enable this computation to be performed fully in parallel by an
arbitrarily-large cluster, while eliminating many of these difficulties. It addresses each of them in the
following way:

(i) By design, Asynchronous Gibbs is completely lockfree and fully asynchronous.

(ii) To avoid Reduce operations over the full data, we maintain a cache of B, S, g, I. To illustrate this,
consider a new update of a single B,. When it’s generated or received, the cache is updated by
subtracting the portion of the sum corresponding to the old 8, and adding the portion corresponding
to the new value. This significantly speeds up computation, but results in higher memory use. Note
that for S, since storing large matrices in memory is expensive, we instead store the value of (8, — )
for each i — this is equivalent to storing (8; — p)(8; — )T, as it can be quickly computed when the
need arises.

(iii) Each worker updates p, 3, 4, v with the same probability as each individual element 3,. With 12
workers and 1,000 iterations for each B,, the algorithm generates 12(1,000) = 12,000 total samples for
each variable. This helps with mixing, leading to higher Monte Carlo accuracy.

(iv) A single worker going offline effectively results in the temporary loss of a small number of data points,
which — given the large data set size — is highly unlikely to affect the posterior distributions of the
parameters.

For a fair performance comparison between approximate Asynchronous Gibbs and standard Gibbs (with
multithreaded sampling of B,_; ), we implemented a simple sequential-scan Gibbs sampler in Scala, using
the exact same matrix computation routines (Breeze) as in our cluster sampler. For data size n = 1,000, 000
and 1,000 Monte Carlo iterations, running in parallel with 8 threads, the sequential-scan Gibbs sampler
takes about 12 hours to finish. (Due to expected length of time, we did not attempt to run a single-threaded
version.) Asynchronous Gibbs was much faster: with 20 workers, each with 8 threads (160 threads in total),
the algorithm finished in about 1 hour.

Figure |5 gives the distribution of the MH acceptance probabilities, together with a directed acyclic graph
22
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Figure 6: Diagnostics for element 1 of p, in the mized-effects regression example of Section[6.5 Top row:
sequential-scan, original C++ implementation. Middle row: sequential scan, Scala implementation. Bottom
row: Asynchronous Gibbs, worker 1 only.

representation of model (29H32). The probability of rejecting a random update is about 0.02, indicating
that the behavior of the approximate algorithm is close to what the exact algorithm would have done
(up to Monte Carlo noise) — see Section for further discussion of this diagnostic. Figures |§| and (7] give
diagnostics for row 1 of the pu vector, one of the 3; and v. From a Monte Carlo accuracy standpoint, it’s
again hard to tell whether the sequential-scan Gibbs sampler or Asynchronous Gibbs is better. Both chains
have poor diagnostic plots, indicating issues with mixing. Note that the increased amount of total Monte
Carlo iterations per variable (12,000 total, 1,000 from each worker) increases the Monte Carlo accuracy of
Asynchronous Gibbs sampling, but this is not reflected in these figures because it would take too much
space to plot all of the chains together.

Note from Figure [7] that it takes substantially longer for v to reach equilibrium with the Asynchronous
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Figure 7: Diagnostics for an unspecified B; (top row) and v (middle and bottom rows) in the mized-
effects regression example of Section[6.3. Middle row: sequental scan Scala implementation. Bottom row:
Asynchronous Gibbs, worker 1 only, with the caching option turned on.

Gibbs sampler: this is a result of caching. Before we implemented caching, the Asynchronous Gibbs trace
plot looked similar to the sequential-scan trace plot, but the algorithm ran substantially more slowly
due to time spent computing the sum. Note also that caching helps to ensure that all variables take
a similar amount of time to sample, which is needed to ensure that the parallel chain is approximately
time-homogeneous. An example due to Murray Pollock (personal communication) has demonstrated that
violating time-homogeneity in a systematic way can sometimes introduce additional bias into the algorithm.
Given that v is approximately constant and not a primary parameter of interest in the real-world problem,
it’s quite computationally wasteful to sample it at all as part of the MCMC scheme. Instead, it would
be more efficient to run Asynchronous Gibbs with v fixed at its MLE. This can be done by using a
maximization algorithm such as Stochastic Gradient Descent, which (as noted earlier) can be computed in
parallel asynchronously via the Hogwild scheme [37].
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Given the massively faster run time, Asynchronous Gibbs appears to outperform multicore sequential-scan
Gibbs sampling. We were unable to acquire a cluster with more hardware on which to test our algorithm
at larger scale — thus, the top end of its actual capability remains unknown. To summarize this example,
Asynchronous Gibbs sampling produces output that appears to have sufficient Monte Carlo accuracy for the
real-world problem at hand. The resulting chain mixes poorly, but the real-world problem only demands
minimal precision: the main factors of interest in the original analysis are the signs of the individual
components of p and ~. The output of Asynchronous Gibbs sampling appears sufficient for these purposes,
and the benefits of parallelism and speed appear to outweigh the costs associated with slower mixing.

6.4 Jacobi Sampling and Approximate Asynchronous Gibbs

We now illustrate a way in which Asynchronous Gibbs sampling without a Metropolis-Hastings correction
can fail. The example here is due to Johnson [26], personal communication. Suppose that we have a Gibbs
sampler on (61, ..,0,,) with target distribution = ~ N,,(0, X).

Consider the following partially synchronous sampler with workers (wy, .., w,,), each of which updates one
coordinate. Initialize arbitrary (6, ..,60° ) and, in parallel, update the following:

wy : update 0} | 65, ..,6° .. wy, : update 61 | 69,..,0° . (34)

Now synchronize by writing to shared memory and then reading from it, and repeat indefinitely. This
sampling scheme does not converge for all ¥ [7]. In particular, it can diverge if the precision matrix 37 is
not diagonally dominant. Furthermore, even when it does converge, the sample covariance matrix of the
output can be incorrect. We call this algorithm Jacobi sampling, because the mean vector at each update is
an iteration of the Jacobi algorithm for solving linear systems [44] — for the corresponding linear system,
diagonal dominance suffices to ensure stability of the iterations.

We analyze the following case:

1011 1 1 1 1 1 1 87.5 —12.5 —12.5 —12.5 —12.5 —12.5 —12.5 —12.5
11011 1 1 1 1 1 —12.5 87.5 —12.,5 —12.5 —12.5 —12.5 —12.5 —12.5
1 11011 1 1 1 1 —12.5 —-12.5 875 —-12.5 —12.5 —12.5 —12.5 —12.5
sl 1 1 11011 1 1 1 3~ —12.5 =125 =125 87.5 —12.5 —12.5 —12.5 —12.5
1 1 1 11011 1 1 —12.5 —-12.5 —-12.5 —12.5 875 —12.5 —12.5 —12.5
1 1 1 1 11011 1 —12.5 =125 —-12.5 —12.5 =125 875 —12.5 —12.5
1 1 1 1 1 11011 —12.5 —12.5 —12.5 —12.5 —12.5 —12.5 87.5 —12.5
1 11 1 1 1 1101 —12.5 —-12.5 =125 —12.5 —-12.5 —12.5 —-12.5 875

(35)

This is clearly a rather difficult target from the parallel sampling perspective due to strong dependence.
Note that unlike the exponential covariance matrix in the Toy Example of Section there is no spatial
decay. We call the ¥ in the Jacobi covariance matrix to distinguish it from the ¥ in the Toy Example.

Jacobi Sampling with a target that has the covariance matrix diverges to co. What goes wrong?
Without the MH accept-reject step, the algorithm is a Noisy Monte Carlo [1] approximation to exact
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Figure 8: Diagnostic for the Jacobi sampling algorithm, exact and approrimate variations, with exponential
and Jacobi covariance matrices: approzimate exponential (upper left), approximate Jacobi (upper right),
exact exponential (lower left), exact Jacobi (lower right).

Asynchronous Gibbs: the MH acceptance probability is replaced by a biased estimator, namely 1. If this
approximation is bad, the algorithm can fail. By comparing this target to the one in Section [6.1] we seek to
provide some characterization of when this approximation is good and therefore when the MH correction in
exact Asynchronous Gibbs can safely be ignored.

We now examine a variation of Jacobi sampling that numerically converges to the correct mean and incorrect
covariance matrix if the approximate algorithm is used. Suppose that there are 4 workers, each with 2 full
conditionals assigned to them from our 8-dimensional Gaussian target. Each worker selects one of its full
conditionals at random, performs a Gibbs step, and transmits the resulting draw to each other worker with
probability 0.75. The other workers then perform a Metropolis-Hastings calculation and either accept or
reject the transmitted value. As long as the MH correction step is performed, this algorithm’s convergence
is implied by our theorem in Section 5} If the MH step is ignored, the algorithm’s convergence will depend
on the target covariance matrix.

We implemented both the exact and approximate versions of this variation with the covariance matrix
(35) on one machine with simulated parallelism. For comparison, we also ran the variation with the same
exponential covariance matrix that we used in the Toy Example. Diagnostic plots are given in Figure
Clearly, the algorithm does far better with the exponential covariance. The exact algorithm with Jacobi
covariance matrix mixes poorly, but ends up yielding a Monte Carlo mean and covariance matrix that are
not too far away from the correct answer. The approximate algorithm with Jacobi covariance matrix yields
the correct mean, but vastly incorrect covariance matrix.
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Figure 9: Distribution of the Metropolis-Hastings acceptance ratio for both approximate and exact Asyn-
chronous Gibbs, with the algorithm described in Section[6.4], and exponential and Jacobi covariance matrices.

To further study the differences between the exact and approximate algorithm, we examined the distribution
of the MH acceptance ratios in all four examples (Figure E[) — in the case of the approximate algorithm this
was accomplished by calculating and storing the MH probabilities and then ignoring them by accepting all
updates (as noted previously, this calculation would be expensive if performed on every iteration, but it’s
only necessary to perform it a small percentage of the time at random). This distribution was concentrated
around 1 for the approximate exponential case. It was substantially lower for the approximate Jacobi case
that yielded the wrong answer. Interestingly, it was also different when comparing both exact algorithms to
their approximate counterparts. We are not sure how to interpret this difference, other than to note that
the exact and approximate algorithms may behave differently even in situations where the approximation is
relatively good.

The intuition suggested by this example leads to the following diagnostic:

Diagnostic A.
Approximate Asynchronous Gibbs is reasonable if the distribution of the Metropolis-Hastings acceptance
ratio in the approximate algorithm is concentrated around 1.

If the condition in Diagnostic A is satisfied, the behavior of the approximate algorithm will be similar to
that of the exact algorithm in the posterior regions that it explores. This suggests that the bias introduced
though the Noisy Monte Carlo [1] approximation should not be too large.

Further work is needed to formalize this intuition. In particular, additional results on Noisy Monte Carlo
would grant additional understanding of how such approximations can affect the results of the algorithm.
See Section [7] for additional discussion.

To conclude, we provide the following heuristic for describing problems in which the approximate algorithm

is appropriate.

Heuristic B.
Asynchronous Gibbs without Metropolis-Hastings correction produces a good approximation if all of the
following hold:

(i) The target density m does not possess too much dependence between all coordinates.

27



(ii) The dimensionality of 7 is significantly larger than the number of workers.

(iii) All transmitted variables are drawn via Gibbs steps.

We propose this Heuristic for the following reasons: ({i) suggests that full conditional distributions in nearby
posterior regions are similar, suggests that there is not too much movement happening at once, and
suggests, given the previous two conditions, that the algorithm will consist of moves that are approximately
Gibbs steps and hence should be accepted often.

Both Diagnostic A and Heuristic B are intuitive tools designed to help practitioners use approximate
Asynchronous Gibbs in situations where it is likely to work well. We cannot at this time prove any theorems
formalizing the intuition that we have provided. Future work is necessary to understand the behavior of
the algorithm.

7 Concluding Remarks

Approximate Asynchronous Gibbs sampling appears to offer a way forward for Bayesian inference at scale
in a large class of models (as noted previously, the exact algorithm will not scale as well as the approximate
algorithm, because the number of Metropolis-Hastings evaluations that need to be performed will increase
with the number of workers). In particular, models with a structure similar to the one found in the
hierarchical mixed-effects regression example of Section — in which each data point has its own latent
variable — appear especially promising, because the dependence between almost all dimensions, for instance
two vectors 8;, B; for i # j, in the posterior is weak. Models with strong posterior dependence will likely
remain difficult, because we expect poor mixing in that context. One way around this would be to tailor
blocking of the Gibbs sampler to the specific problem at hand. For example, the performance of the
Gaussian Process regression in Section could be further improved by considering an overlapping block
scheme, such as the Additive Schwartz method [43].

Other models, such as those involving high-dimensional (for example, of order 10,000 or more) Inverse
Wishart priors, remain intractable because they unavoidably require the construction of matrices that are
too big to invert quickly, or perhaps even too big to fit into a single computer’s memory. Similarly, models
that depend strongly on each individual data point will not perform well in this context, as some amount
of data-level redundancy is needed to make the scheme robust against temporary worker failures. We
conjecture that the solution to these problems will not arise wholly from within the realm of statistical
computing, but will also rely on new insight into Bayesian modeling of large data sets.

Finally, models involving excessive Reduce operations over large portions of the data also remain intractable,
because these computations massively slow down the speed at which individual steps of Asynchronous
Gibbs proceed — this difficulty can be mitigated through caching, but this may result in unacceptably slow
mixing.

The theory of Asynchronous Gibbs sampling can be further expanded. While we focused on convergence,
it would be useful to quantify the degree to which a lack of synchronicity affects the performance of the
algorithm. As can be seen in the partial autocorrelation plots in Section [6] Asynchronous Gibbs produces a
higher order Markov chain, the direct analysis of which is non-trivial. However, we believe that a finer
understanding of the interplay between the convergence behavior of the chain and Markov chain’s order
will be a useful step toward developing “partially asynchronous” MCMC methods, which may mix better or
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possess other useful properties, and could potentially use asynchronous steps to hide latency during the
global Reduce operations required for synchronization. This would mirror recent advances in massively
parallel iterative algorithms for solving linear systems [18§].

Further research in Noisy Monte Carlo [1] is needed to understand the approximate algorithm. By replacing
the Metropolis-Hastings ratio with a biased estimator (namely 1), we are able to get significantly better
scaling, but this introduces some bias into our answer. A variety of results would help in understanding
this bias. It’s also unclear whether properties such as geometric ergodicity are inherited by the synchronous
parallel chain H from the underlying chain P. Further work is needed to understand the approximate
algorithm from these perspectives.

Asynchronous Gibbs sampling is nontrivial to implement. It is a fully parallel method that in our
implementation mixes thread-based and actor-based parallelism, which is widely considered in the parallel
computation literature to be a very bad idea due to the coding complexity involved, including increased
potential for race conditions and other nondeterministic errors that are difficult to debug. All of the data
structures used need to be capable of functioning correctly in parallel. We highly recommend Scala as
the programming language of choice, because its design makes it much more compatible with parallel
programming than most other languages. Implementation is also specific to both the problem being solved
and the hardware used — in particular, it’s necessary to decide how to divide the workload among all of the
workers. We found that different choices produced widely different mixing efficiencies: in the extreme, one
worker can bottleneck the entire algorithm if it’s sampling, at too slow a rate, a dimension upon which all
other workers depend. Similar issues can occur with respect to network traffic control: if one worker is
producing output too fast, it can flood the network, preventing other workers from communicating with
each other. This is not solely an issue in complex problems — at one point in time (due to an incorrect
Akka configuration) this difficulty manifested itself in the Toy Example: because the variables can be
sampled quickly, a large number of them were produced, resulting in significant network traffic in spite
of the problem’s small size. Thus care was required to properly tune the algorithm and ensure that it
converged in the problems that we studied.

Our current implementation is nowhere near optimal. Akka is designed for large-scale distributed applications
rather than high-performance computing. This makes for convenient development, but does not give us
the kind of low-level hardware control available in a framework like MPI [20]. For examine, we cannot
easily tell our application’s threads to run on CPU 1 while working only on variables stored in a particular
memory address range. This may be desirable because CPU 1 may have faster access to one portion of the
memory, and slower access to other portions. Our cluster also was selected for convenience rather than
performance — indeed, the machines of which it is comprised are physically located in data centers in three
different US states. This is an extremely high latency environment from a high-performance computing
perspective. While this illustrates our algorithm’s robustness, it also means that we do not know how it
will perform in the traditional scientific computing environment.

These challenges are common to any parallel computation scheme, where fully generic solutions are difficult.
Instead, we have focused on building Asynchronous Gibbs for solving a common class of big-data Bayesian
problems, for which the number of latent variables grows with the number of data points. In doing this, we
traded off some sequential efficiency for the promise of better parallel behavior, and the initial results are
highly promising. Asynchronous computing is almost completely unexplored for Bayesian computation — in
our view, Asynchronous Gibbs makes a strong argument that this should no longer be the case.
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