
Probabilistic Integration

François-Xavier Briol1,∗, Chris. J. Oates2,3,∗, Mark Girolami1,4,
Michael A. Osborne5 and Dino Sejdinovic6

1Department of Statistics, University of Warwick
2School of Mathematical and Physical Sciences, University of Technology Sydney
3The ARC Centre of Excellence for Mathematical and Statistical Frontiers
4The Alan Turing Institute for Data Science
5Department of Engineering Science, University of Oxford
6Department of Statistics, University of Oxford
∗authors contributed equally

December 4, 2015

Abstract

Probabilistic numerical methods aim to model numerical error as a source of epistemic uncer-
tainty that is subject to probabilistic analysis and reasoning, enabling the principled propagation
of numerical uncertainty through a computational pipeline. In this paper we focus on numerical
methods for integration. We present probabilistic (Bayesian) versions of both Markov chain
and Quasi Monte Carlo methods for integration and provide rigorous theoretical guarantees for
convergence rates, in both posterior mean and posterior contraction. The performance of prob-
abilistic integrators is guaranteed to be no worse than non-probabilistic integrators and is, in
many cases, asymptotically superior. These probabilistic integrators therefore enjoy the “best of
both worlds”, leveraging the sampling efficiency of advanced Monte Carlo methods whilst being
equipped with valid probabilistic models for uncertainty quantification. Several applications
and illustrations are provided, including examples from computer vision and system modelling
using non-linear differential equations. A survey of open challenges in probabilistic integration
is provided.

1 Introduction

The aim of this paper is to provide rigorous theoretical foundations for the probabilistic approach
to integration introduced by O’Hagan (1991). A key feature of our analysis is the emphasis on
connections with existing (non-probabilistic) Markov chain and Quasi Monte Carlo methods.

Context Numerical procedures, such as linear solvers, quadrature methods for integration and
routines to approximately solve differential equations, are usually one of many building blocks in
modern statistical inference procedures. These are typically considered as black-boxes that return
a point estimate whose numerical error is considered to be negligible. Numerical methods are thus
the only part of the statistical analysis for which uncertainty is not routinely accounted for in a
fully probabilistic way (although analysis of errors and bounds on these are often available and
highly developed). Failure to properly account for numerical error could potentially have drastic
consequences on subsequent statistical inferences if the numerical error propagated through the
computational pipeline is allowed to accumulate (Mosbach and Turner, 2009; Conrad et al., 2015).

Probabilistic numerics aims to explicitly model the epistemic uncertainty over the solution that
remains after application of a particular numerical method (Hull and Swenson, 1966; Diaconis,
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1988; Hennig et al., 2015). This confers several important benefits. Firstly, it provides a principled
approach to quantify and propagate numerical uncertainty through computation, allowing for the
possibility of errors with complex statistical structure. Secondly, it enables the user to control the
uncertainty over the solution of the numerical procedure and identify key components of numerical
uncertainty using statistical techniques such as analysis of variance. Thirdly, this probabilistic
perspective can lead to new and effective numerical algorithms, as evidenced in recent work in
the case of differential equations (Schober et al., 2014; Conrad et al., 2015; Dashti and Stuart,
2016)), linear algebra (Hennig, 2015) and optimization (Snoek et al., 2012; Hennig and Kiefel,
2013; Mahsereci and Hennig, 2015). The philosophical foundations for probabilistic numerics were
first clearly exposed in the work of Diaconis (1988) and O’Hagan (1992) but elements can be traced
back to Poincaré (1912) and Hull and Swenson (1966). We refer the interested reader to the recent
exposition by Hennig et al. (2015).

Novel Contributions This paper develops probabilistic methods for numerical integration.
Given a probability measure Π on a state space X with density function π : X → [0,∞), de-
fined with respect to a reference measure σ, we aim to estimate integrals of the form

Π[f ] :=

∫
X
f(x)π(x)dσ(x) (1)

where f : X → R or C is a test function of interest. Two important scenarios motivate our work.
Firstly, when evaluation of f is computationally intensive, so that only crude estimates for integrals
can be obtained. Secondly, when many numerical integrals must be performed sequentially, so that
small errors are able to accumulate.

In the case of integration, Bayesian Quadrature (BQ; O’Hagan, 1991) is a probabilistic numerics
method that performs integration from a statistical perspective. Specifically, BQ assigns a Gaussian
process prior measure over the integrand f and then, based on data D = {xi, fi}ni=1 with xi ∈ X
and fi = f(xi), outputs a Gaussian process posterior measure f |D according to Bayes’ rule. In
turn this implies a Gaussian posterior distribution over Π[f ], since Π is a linear functional in f ,
representing a probabilistic model for uncertainty over the true value of Π[f ]. The approach applies
equally to a pre-determined set of states {xi}ni=1 or to states that are realisations from a random
process, such as samples from a probability distribution which is often, but not necessarily, Π. In
the latter, randomised case the method is known as Bayesian Monte Carlo (BMC; Rasmussen and
Ghahramani, 2002).

Compared to non-probabilistic integrators, BQ has lacked rigorous theoretical foundations; this
is addressed by the present paper. We propose and analyse Bayesian approaches to Quasi-Monte
Carlo (QMC) and Markov Chain Monte Carlo (MCMC). The resulting Bayesian QMC (BQMC)
and Bayesian MCMC (BMCMC) methods confer the benefits of efficient sampling schemes to a
Bayesian approach to integration. In each case, we provide theoretical analysis of convergence rates
for the posterior mean, which will always improve on the non-probabilistic counterparts, as well
as rates for contraction of the Bayesian posterior. In doing so we lay to rest one of the principle
critiques of Bayesian approaches to integration by establishing rigorous theoretical guarantees for
these procedures.

The present paper significantly extends recent work by Briol et al. (2015) and provides a much
more comprehensive exposition. A more abstract treatment of BMC has recently been provided
by Bach (2015). Our work differs by focussing on explicit, constructive approaches to integration,
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while Bach (2015) requires a specific importance sampling distribution which is not always available
in closed-form.

Outline The paper is structured as follows. Sec. 2 provides an introduction to existing probabilis-
tic numerics methodology for integration. Sec. 3 describes our proposed probabilistic integrators
and analyses their theoretical properties. The two main theoretical results concern convergence
and contraction rates, which will depend on both prior information and the method that is used
to select states. Several technical issues are discussed in Sec. 4. Sec. 5 demonstrates the power of
probabilistic integration in a variety of challenging applications and Sec. 6 surveys the remaining
challenges in this area.

2 Background

Existing mathematical numerical analysis underpins our investigation. Challenging integration
problems arise in almost every area of the sciences, engineering and applied mathematics. The de-
velopment of high-performance approximations remains a central research problem in the numerical
analysis and statistics communities. For this paper, we follow the majority of this literature and
frame numerical integration as a problem of quadrature. To begin we review the reproducing kernel
approach to numerical quadrature and describe the associated theoretical analysis.

2.1 Quadrature Rules and Numerical Error Analysis

2.1.1 Set-up and Notation

This paper considers the problem of computing integrals over a d-dimensional measure space X
whose measure is denoted by σ. Our integrand is a measurable function f : X → R or C whose
expectation Π[f ] we seek with respect to a probability measure Π. The measure Π is assumed to
admit a density with respect to the reference measure σ, denoted by π : X → [0,∞). Write ‖f‖2 :=( ∫
X f(x)2π(x)dσ(x)

)1/2
and write L2(Π) for the set of functions which are square-integrable with

respect to Π (i.e. ‖f‖2 < ∞). For vector arguments we also define ‖u‖2 = (u2
1 + · · ·+ u2

d)
1/2. We

will make use of the notation [u]+ = max{0, u}.
A quadrature rule is any method for approximating integrals Π[f ] that can be written in the

form

Π̂[f ] =

n∑
i=1

wif(xi), (2)

for n ∈ N states {xi}ni=1 ⊂ X and weights {wi}ni=1 ⊂ R. The term cubature rule is sometimes
used when the domain of integration is multi-dimensional (i.e. d > 1), although the two terms
are often used interchangeably. The notation Π̂[f ] is motivated by the fact that this expression
can be re-written as the integral of f with respect to an empirical measure Π̂ with density π̂(x) =∑n

i=1wiδ(x − xi), where δ(·) is the Dirac delta measure and the weights wi can be negative and
need not sum to one. Well-known quadrature rules include (in d = 1 dimension) the Newton-Coates
rules (trapezoid rule, midpoint rule, Simpson’s rule), and Gaussian quadrature (Gauss-Legendre,
Gauss-Hermite, Chebyshev-Gauss). In settings where f has additional regularity structure, π is
unavailable or non-standard, or X is irregular or high-dimensional, these numerical rules can be
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insufficient for practical purposes, motivating more efficient methods (including MCMC and QMC;
see below).

2.1.2 Quadrature in Reproducing Kernel Hilbert Spaces

Analysis of the approximation properties of quadrature rules is naturally performed in terms of
function spaces, and in particular in terms of reproducing kernel Hilbert space (RKHS) (e.g. Bach,
2015). Consider a Hilbert space H with inner product 〈·, ·〉H and associated norm ‖ · ‖H. H is said
to be an RKHS if there exists a symmetric, positive definite function k : X × X → R or C, called
a kernel, that satisfies two properties: (1) k(·,x) ∈ H for all x ∈ X and; (2) f(x) = 〈f, k(·,x)〉H
for all x ∈ X and f ∈ H (the reproducing property). It can be shown that every kernel defines an
RKHS and every RKHS admits a unique reproducing kernel (Berlinet and Thomas-Agnan, 2004,
Sec. 1.3). For simplicity of presentation we generally assume that functions are real-valued below.
In this paper all kernels k are assumed to satisfy

(A1)
∫
X k(x,x)π(x)dσ(x) <∞,

which guarantees f ∈ L2(Π) for all f ∈ H. Indeed for R =
∫
k(x,x)π(x)dσ(x) <∞, we can upper

bound ‖f‖2 using the reproducing property and Cauchy-Schwarz:

‖f‖22 =

∫
X
f(x)2π(x)dσ(x) ≤

∫
X
‖f‖2Hk(x,x)π(x)dσ(x) = R‖f‖2H.

We refer the reader to Chapter 1 of Berlinet and Thomas-Agnan (2004) for properties and detailed
examples of RKHSs. For an RKHS H with kernel k we define the kernel mean map µπ : X → R as

µπ(x) :=

∫
X
k(x,y)π(y)dσ(y), (3)

which exists as an implication of (A1) (Smola et al., 2007). The name is justified by the fact that
for all f ∈ H we have:

Π[f ] =

∫
X
f(x)π(x)dσ(x) =

∫
X

〈
f, k(·,x)

〉
H π(x)dσ(x)

=
〈
f,

∫
X
k(·,x)π(x)dσ(x)

〉
H

=
〈
f, µπ

〉
H.

The reproducing property permits an elegant theoretical analysis of quadrature rules, with many
quantities of interest tractable analytically in H. In the language of kernel means, quadrature rules
of the form in Eqn. 2 can be written in the form Π̂[f ] = 〈f, µπ̂〉H where µπ̂ is the approximation
to the kernel mean given by

µπ̂(x) =

∫
X
k(x,y)π̂(y)dσ(y) =

n∑
i=1

wik(x,xi). (4)

For fixed f ∈ H, the integration error associated with Π̂ can be then expressed as

Π̂[f ]−Π[f ] =
〈
f, µπ̂

〉
H −

〈
f, µπ

〉
H =

〈
f, µπ̂ − µπ

〉
H.
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An upper bound for the error is obtained by applying the Cauchy-Schwarz inequality:

|Π̂[f ]−Π[f ]| ≤ ‖f‖H‖µπ̂ − µπ‖H. (5)

The expression above decouples the smoothness (in H) of the integrand f from the approximation
accuracy of the kernel mean. Note that the smoothness of f does not depend on the quadrature
rule and one can tailor quadrature rules to the approximation of µπ, which in turn does not depend
on the particular function f being integrated.

The performance of quadrature rules is usually quantified by the worst-case error in the RKHS
(Dick et al., 2013), also called maximum mean discrepancy (MMD; Smola et al., 2007), given by
‖Π̂−Π‖op where

‖B‖op := sup
‖f‖H≤1

B[f ] (6)

is the operator norm for bounded linear functionals B : H → R. As a measure of quadrature
accuracy the MMD is well-studied. Indeed, the above analysis shows that the MMD is characterised
as the error in estimating the kernel mean:

Proposition 1. ‖Π̂−Π‖op = ‖µπ̂ − µπ‖H.

Numerical methods to solve integrals in RKHS thus attempt to minimise the MMD, and we
will call convergence rate the rate at which this quantity tends to 0 as n → ∞. The formulation
of quadrature rules as minimising the MMD is natural and elegant since solving a least-squares
problem in the feature space induced by the kernel gives minimax properties in the original space
(Schölkopf and Smola, 2002). Indeed, the least-squares formulation is tractable in terms of kernel
and kernel mean expressions: Letting w ∈ Rn denote the vector of weights {wi}ni=1, z ∈ Rn be a
vector such that zi = µπ(xi), and K ∈ Rn×n be the matrix with entries Ki,j = k(xi,xj), we have:

Proposition 2. ‖Π̂−Π‖2op = wTKw − 2wTz + Π[µπ].

Proof. Direct calculation gives that

‖µπ̂ − µπ‖2H =

n∑
i,j=1

wiwjk(xi,xj)− 2

n∑
i=1

wi

∫
X
k(x,xi)π(x)dσ(x)

+

∫
X

∫
X
k(x,y)π(x)π(y)dσ(x)dσ(y) = wTKw − 2wTz + Π[µπ]

and the result follows immediately by applying Prop. 1.

Several optimality properties for integration in RKHS were proven by Bakhvalov (1971) and
collated in Sec. 4.2 of Novak and Woźniakowski (2008). Relevant to this work is the following:

Proposition 3. An optimal (i.e. minimax) estimate Π̂ can, without loss of generality, be taken in
the form a quadrature rule (i.e. of the form Π̂ in Eqn. 2).

Remark 1. Prop. 3 motivates restriction to the class of quadrature rules. Indeed, any non-linear
estimator or so-called adaptive estimator, that learn about f “on-the-fly”, can be matched in terms
of accuracy by a quadrature rule as defined above.
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To obtain an optimal quadrature rule, the expression in Prop. 2 must be minimised in terms
of both weights and states. Given states {xi}ni=1, this defines a convex minimisation problem over
w ∈ Rn whose solution is w = K−1z. Optimisation over {xi}ni=1 is, however, challenging (Minka,
2000; Chen et al., 2010). This paper proposes to exploit the well-known sampling efficiency of
advanced MCMC and QMC methodologies to address this challenge, but Firstly, we review the
Bayesian approach to numerical integration.

2.2 Probabilistic Integration

The probabilistic approach to integration was first clearly stated by Diaconis (1988) and later by
O’Hagan (1991), who introduced the BQ nomenclature. Subsequent contributions include Minka
(2000); Rasmussen and Ghahramani (2002); Osborne (2010); Huszar and Duvenaud (2012); Gunter
et al. (2014) and Briol et al. (2015).

2.2.1 Bayesian Quadrature

Probabilistic integration begins by defining both a space F of functions f : X → R along with
a prior probability measure over F . This could in principle take any form, such as a student’s t-
process (Shah et al., 2014), a Mondrian forest (Lakshminarayanan et al., 2015) or a Bayesian neural
network (Snoek et al., 2015). BQ models prior uncertainty over the integrand f with a Gaussian
process (GP). Note that this choice of prior for the integrand affords closed-form inference for the
integral; more on this below. A GP GP(m0, k0) is characterised by a mean function m0 : X → R
and a covariance function k0 : X × X → R. From Loève’s theorem, the set of valid covariance
functions is exactly the set of valid kernel functions. In this paper, prior information takes the form
“f ∈ H(k)” for some RKHS H whose kernel is k. GPs are therefore a natural choice of probability
model since this information can reasonably1 be encoded by a GP with mean m0 and covariance
function k0 = k.

Conditioning on data D = {xi, fi}ni=1 where fi = f(xi), we obtain a posterior, denoted P, of
the form f ∼ GP(m1, k1). Write f ∈ Rn for the vector of fi values, m0 ∈ Rn for the vector of
m0(xi) values, let X = {xi}ni=1 and write k(x, X) = k(X,x)T for the 1× n vector whose ith entry
is k(x,xi). Then, following Rasmussen and Williams (2006),

m1(x) = m0(x) + k(x, X)K−1(f −m0) (7)

k1(x,x′) = k(x,x′)− k(x, X)K−1k(X,x′). (8)

This GP provides a full distribution over functions f ∈ F which are consistent with both prior
knowledge and data. Inversion of the kernel matrix is an expensive O(n3) operation; however we
are motivated by cases where f is expensive to evaluate or states are expensive to select, where the
costs of kernel computation are outweighed by the full probabilistic description offered by the GP,
along with better estimates for the integral. This probabilistic description, further, may make more
efficient state selection possible through the use of decision theory, resulting in the possibility of net

1 Technically the subset H(k0) ⊂ F has measure zero under GP(m0, k0); this is unsatisfactory from a Bayesian
perspective because the information “f ∈ H(k)” is not faithfully encoded by the GP when k0 = k. To properly encode
an RKHS H(k) one can construct a covariance function k0(x,y) =

∫
X k(x,z)k(z,y)π(z)dσ(z) that dominates k, in

the sense of Lukic and Beder (2001). For simplicity of presentation we do not draw a distinction between k0 and k
in the main text.
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computational savings for a desired level of accuracy (see Sec. 2.2.2). A sketch of the procedure is
provided in Figure 1.

Denote by E[·|D], V[·|D] the expectation and variance taken with respect to the posterior
distribution P[·|D] over f given data D. As integration is a linear functional, we obtain a Gaussian
posterior distribution over the value of the integral:

Proposition 4. In the posterior, the integral Π[f ] is Gaussian with

E[Π[f ]|D] = Π[m0] + zTK−1(f −m0) (9)

V[Π[f ]|D] = Π[µπ]− zTK−1z. (10)

where z is a n× 1 vector containing evaluations of the kernel mean zi = µπ(xi).

Proof. An application of Fubini’s theorem produces

E[Π[f ]|D] = E
[∫
X
f(x)π(x)dσ(x)

∣∣∣∣D] =

∫
X
E[f(x)|D]π(x)dσ(x) =

∫
X
m1(x)π(x)dσ(x)

V[Π[f ]|D] =

∫
F

[∫
X
f(x)π(x)dσ(x)−

∫
X
m1(x)π(x)dσ(x)

]2

dP[f |D]

=

∫
X

∫
X

∫
F

[f(x)−m1(x)][f(x′)−m1(x′)]dP[f |D]π(x)π(x′)dσ(x)dσ(x′)

=

∫
X

∫
X
k1(x,x′)π(x)π(x′)dσ(x)dσ(x′).

The proof is completed by substituting m1 and k1 from Eqns. 7 and 8. Π[µπ] exists by (A1).

We now have a probabilistic model for the epistemic uncertainty over the value of the integral
that is due to employing a quadrature rule with a finite number n of function evaluations. By
re-parametrising f 7→ f − m0 we can, without loss of generality, suppose that m0 ≡ 0 for the
remainder of the paper. Then the posterior mean takes the form of a quadrature rule

Π̂BQ[f ] :=
n∑
i=1

wBQ
i f(xi) (11)

where wBQ := K−1z. This BQ rule happens to have strong approximation properties: Huszar and
Duvenaud (2012) point out that Eqn. 10 is identical to the expression in Prop. 2 with optimally
chosen weights w = wBQ, so that the posterior variance is exactly equal to the worst case error
(MMD) squared. Π̂BQ is therefore minimax over all quadrature rules based on the (fixed) states
{xi}ni=1. The posterior variance V[Π[f ]|D] does not depend on function values {fi}ni=1, but only on
the location of the states {xi}ni=1 and the kernel of H. This is useful as it allows us to pre-compute
state locations that can be used to integrate multiple integrals within the same RKHS H.

For BQ, weights are automatically constrained to be wBQ = K−1z but there is flexibility in
the selection of states {xi}ni=1 and several proposals appear in the literature. For example O’Hagan
(1991) used classical Gauss-Hermite states, Rasmussen and Ghahramani (2002) generated states
using MC and Osborne (2010); Briol et al. (2015) selected states by targeting posterior variance,
both directly and indirectly. As noted in Huszar and Duvenaud (2012), the selection of states
involves an exploration-exploitation trade-off. First, as states concentrate around regions of high
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Figure 1: Sketch of Bayesian Quadrature. The top row shows the approximation of the integrand f
(in red) by the GP posterior mean m1 (in blue) as the number n of function evaluations is increased.
The dashed lines represent 95% credible intervals. The bottom row shows the Gaussian distribution
with mean E[Π[f ]|D] and variance V[Π[f ]|D] that models our uncertainty over the solution of the
integral as n increases (the dashed black line gives the true value of the integral). When n = 0,
the approximation of the integral is fully specified by the GP prior. As the number of states n
increases, the approximation of f becomes more precise and the Gaussian posterior distribution
contracts onto the true value of the integral.

probability mass under Π, the values of the kernel mean vector z will increase and the posterior
variance (Eqn. 10) will decrease accordingly. This therefore encourages exploitation of the density.
However, as design points get closer to each other, the eigenvalues of K will increase and therefore
the eigenvalues of K−1 will decrease, leading to an increase of the posterior variance. This therefore
encourages exploration of the density. The following sections discuss different schemes for selection
of states that aim to address this trade-off.

2.2.2 Optimisation-Based Quadrature Rules

An Optimal BQ (OBQ) rule selects states {xi}ni=1 to globally minimise the posterior variance
(equivalent to globally minimising the MMD). It is known that OBQ corresponds to classical
quadrature rules (e.g. Gauss-Hermite) for specific choices of RKHS H (Diaconis, 1988; O’Hagan,
1991; Särkka et al., 2015). Nevertheless, optimal set points can rarely be found analytically. In
most cases, OBQ is unfortunately intractable in practice as the corresponding optimization problem
is usually NP-hard (Schölkopf and Smola, 2002, Sec. 10.2.3).

A pragmatic approach to select states is the greedy algorithm, sequentially minimising the
posterior variance at each iteration. This rule, called Sequential BQ (SBQ), is straightforward to
implement, e.g. using general-purpose numerical optimisation, and is a probabilistic integration
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method that is often used in practice (Osborne et al., 2012; Gunter et al., 2014). Recently, more
sophisticated optimization algorithms have been used to select states. For example, Briol et al.
(2015) used conditional gradient algorithms (also called Frank-Wolfe algorithm (Lacoste-Julien
et al., 2015) or kernel herding (Chen et al., 2010)) that, in effect, produce a linear approximation
to the posterior variance based on its derivative. This method, called Frank-Wolfe BQ (FWBQ)
notably provided the first results for convergence of a general-purpose BQ method (which was
shown to be up to exponential) and posterior contraction (up to super-exponential).

However there are a number of weaknesses with SBQ and FWBQ that motivate the present
work. Firstly, they do not scale well to high-dimensional settings due to the need to repeatedly
solve high-dimensional optimisation problems. For selection of states, (MC)MC and QMC methods
offer considerable potential and this is our focus below. Secondly, theoretical guarantees for FWBQ
only hold in finite dimensional RKHS, while nothing at all is known for SBQ. The results in this
paper apply to infinite-dimensional RKHS.

2.2.3 Monte Carlo and Quasi Monte Carlo Methods

A Monte Carlo (MC) method is defined as a quadrature rule based on uniform weights wMC
i :=

1/n and states {xi}ni=1 that are formally considered as random variables. The simplest of those
methods consists of independently sampling states independently from Π (Fig. 2, left). For un-
normalised densities π, MCMC methods proceed similarly but induce a dependence structure among
the {xi}ni=1. In either case we denote the (random) estimators by Π̂MC (when xi = xMC

i ) and
Π̂MCMC (when xi = xMCMC

i ) respectively. Uniformly weighted estimators are well-suited to many
challenging integration problems since they provide a dimension-independent convergence rate for
the MMD of OP (n−1/2) (Thm. 5 below). They are also widely applicable and straight-forward to
analyse; for instance the central limit theorem (CLT) gives that

√
n(Π̂MC[f ]− Π[f ]) → N (0, τ−1

f )

where τ−1
f = Π[f2] − Π[f ]2 and the convergence is in distribution. However, the CLT is not well-

suited as a measure of epistemic uncertainty (i.e. as an explicit model for numerical error) since (i)
it is only valid asymptotically, and (ii) τf is unknown, depending on the integral Π[f ] that we are
trying to compute. This motivates instead probabilistic integration for the class of MC estimators
(i.e. BMC; Rasmussen and Ghahramani, 2002).

A related class of methods is QMC. These methods exploit knowledge of the RKHS H to spread
the states in an efficient, deterministic way over the domain X (Figure 2, middle). QMC also
approximates integrals using a quadrature rule Π̂QMC[f ] that has uniform weights wQMC

i := 1/n.
These methods benefit from an extensive theoretical literature (Dick and Pillichshammer, 2010).
The (in some cases) optimal convergence rates as well as sound statistical properties of QMC have
led to interest in the machine learning and statistics communities (e.g. Rahimi and Recht, 2007;
Yang et al., 2014; Gerber and Chopin, 2015; Oates and Girolami, 2015).

Remark 2. The restriction of MC methods to uniform weights can be motivated by the fact that
the class of uniform-weighted estimators is rich enough to find estimators that achieve optimal
convergence rates (Novak and Woźniakowski, 2010). However this is a “fixed d” result and, even for
QMC methods, optimal convergence rates as n→∞ usually come at the cost of a rate constant Cd
that diverges as d→∞. Non-uniformity of weights has been suggested as one possible solution to the
dimensionality problem (Novak and Woźniakowski, 2010, p109). There have been several attempts
at constructing rigorous methods based on non-uniform weights. Examples include the universal
algorithm of Krieg and Novak (2015), which gives non-uniform but positive weights, and Smolyak
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Figure 2: Illustration of states used for quadrature, based on a Gaussian mixture Π. (a) Monte
Carlo (MC) sampling from Π. (b) A Sobol sequence - a specific type of Quasi MC (QMC) point
sequence - mapped to Π. (c) States obtained using the Frank-Wolfe (FW) algorithm. QMC and
FW usually far outperfom MC due to their better coverage of Π.

algorithms (Novak and Woźniakowski, 2010, Chapter 15) that also allow for negative weights. Both
algorithms provide better rates than uniform-weight rules for high-dimensional integration. The
methods that we propose below are based on non-uniform weights and in Sec. 5.2.3 we present
results in a high-dimensional setting.

Our goal is to establish probabilistic integrators based on both (MC)MC and QMC.

3 Methods

In this section we outline our theoretical framework for establishing consistency and contraction of
BQ estimators based on (MC)MC and QMC states.

3.1 Bayesian QMC and Bayesian (MC)MC

(MC)MC and QMC methods have been extensively studied in the literature. Relative to exist-
ing optimisation-based approaches, like SBQ and FWBQ, they are computationally inexpensive,
more widely applicable and well-suited to many challenging integration problems, such as in high-
dimensions where optimisation algorithms are known to struggle. This makes them well placed to
generate states for use in BQ. We pursue these ideas in detail below.

This paper studies the two-step procedure that first uses (MC)MC or QMC in order to select
states and then assigns BQ (minimax) weights to those states. Thus we define

Π̂BMC[f ] :=
n∑
i=1

wBQ
i f(xMC

i ) (12)

Π̂BQMC[f ] :=
n∑
i=1

wBQ
i f(xQMC

i ) (13)

Π̂BMCMC[f ] :=
n∑
i=1

wBQ
i f(xMCMC

i ) (14)
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This two-step procedure means that no modification to existing (MC)MC or QMC sampling schemes
is necessary. Moreover each estimator is associated with a full posterior probability distribution
described in Sec. 2.2.

BMC was first described by Rasmussen and Ghahramani (2002) while BQMC has been described
by Hickernell et al. (2005); Marques et al. (2013); Särkka et al. (2015). To date we are not aware of
any theoretical analysis of the BQ posterior distributions that are associated with these methods.
The goal of the next section is to establish theoretical guarantees for consistency of these point
estimators and contraction of their associated posterior distributions.

3.2 Proof Techniques for Consistency and Contraction

We begin by establishing consistency of probabilistic integrators and discuss how the rate of con-
vergence depends on (i) the RKHS H, (ii) the selection of states {xi}ni=1 and (iii) the domain of
integration X . Following this, we then turn to posterior contraction.

We describe three proof techniques to obtain convergence and contraction rates for all proba-
bilistic integration methods that feature in this paper. The first, below, is a generalization of Briol
et al. (2015, Thm. 1):

Lemma 1 (Bayesian re-weighting). Consider the quadrature rule Π̂[f ] =
∑n

i=1wif(xi) and the

corresponding re-weighted rule Π̂BQ[f ] =
∑n

i=1w
BQ
i f(xi). Suppose we have a convergence rate δn

for Π̂ (i.e. ‖Π̂−Π‖op ≤ δn). Then ‖Π̂BQ −Π‖op ≤ δn.

Proof. From Prop. 2 we have

‖Π̂−Π‖2op = wTKw − 2wTz + Π[µπ].

The right hand side is minimised by w = wBQ = K−1z and the value at the minimum is ‖Π̂BQ −
Π‖2op.

Thus probabilistic integrators obtained by re-weighting existing quadrature rules will be at least
as good as their non-probabilistic versions. Probabilistic integrators can in practice be several or-
ders of magnitude more accurate than their non-probabilistic counterparts (Huszar and Duvenaud,
2012).

A second approach to obtain convergence rates is to look at probabilistic integration as a
functional approximation problem. The convergence rate of quadrature rules can be shown to be
at least as good as the corresponding functional approximation rates in L2(Π). (The converse also
holds; see Bach (2015, Sec. 3.4).) This is summarised as follows:

Lemma 2 (Regression bound). Fix states X = {xi}ni=1. Then we have |Π̂BQ[f ] − Π[f ]| ≤ ‖f −
E[f |D]‖2, where Π̂BQ is the BQ rule based on X.

Proof. From linearity and Gaussianity we have

Π̂BQ[f ] =

∫
X
E[f(x)|D]π(x)dσ(x)

For the BQ estimate Jensen’s inequality leads us to see that

|Π̂BQ[f ]−Π[f ]|2 =

(∫
X
f(x)π(x)dσ(x)−

∫
X
E[f(x)|D]π(x)dσ(x)

)2

≤
∫
X

(f − E[f |D])2(x)π(x)dσ(x) = ‖f − E[f |D]‖22,
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as required.

Lemmas 1 and 2 refer to the point estimators provided by BQ rules. However, our primary
focus is to quantify the change in probability mass as the number of samples increases. In the case
of probabilistic integrators, the posterior probability mass concentrates around the true value of the
integral as n increases; this is called posterior contraction. Theorem 3 below formalises this result
and shows that, for BQ, point estimator consistency implies posterior contraction. For measurable
A we write P[A|D] = E[1A|D] where 1A is the indicator function of the event A.

Lemma 3 (BQ contraction). Assume f ∈ H. Suppose that ‖Π̂BQ−Π‖op ≤ δn where δn ↓ 0. Define
ID = (Π[f ]−D,Π[f ]+D) to be an open interval of diameter 2D centred on the true integral. Then
P[IcD|D], the posterior mass on IcD = R \ ID, vanishes at the rate

P[IcD|D] = o(exp(−Cδ−2
n )) (15)

where C = D2/2.

The proofs of Lemma 3 and subsequent results are reserved for Appendix A.

This result demonstrates that the posterior distribution is well-behaved; probability mass tends
to zero outside of any open neighbourhood of the true solution as n increases. Hence, if our prior
is well calibrated (see Sec. 4.1), the posterior distribution provides an appropriate description of
epistemic uncertainty over the solution of the integral as a result of performing a finite number n
of computations.

As a self-contained introduction of the proof techniques established above, in Appendix B we
obtain a convergence rate for OBQ as originally formulated in the seminal paper of O’Hagan (1991).
These techniques will be used below to establish theoretical properties for BQMC and B(MC)MC.

3.3 Theoretical Results

We have now established that to prove posterior mean convergence and posterior contraction,
it is sufficient to prove convergence of the MMD (Lemma 3). In this section we explore some
immediate consequences of this result for Sobolev-like spaces by leveraging established theory on
MMD convergence. This will allow us in Sec. 5 to provide theoretical guarantees on several
problems of practical importance in machine learning and computer vision.

3.3.1 Bayesian (MC)MC

Analysis of MCMC methods deals with the rate constant, while rates themselves scale as the MC
rates. In this section we therefore focus on BMC (Rasmussen and Ghahramani, 2002), leaving the
analysis of rate constants for BMCMC as future work. We begin by providing a general result for
MC estimation. This requires a slight strengthening of (A1):

(A2) kmax := supx∈X k(x,x)1/2 <∞.

This implies that f is bounded on X .

Recall that in MC, states
{
xMC
i

}n
i=1

are sampled independently from Π and weighted uniformly.
For MC estimators the MMD converges at the classical (dimension-independent) MC rate (e.g.
Altun and Smola, 2006, Thm. 15):

12



Proposition 5 (MC Methods). Under (A2) we have ‖Π̂MC −Π‖op = OP (n−1/2).

Prop. 5 exemplifies a powerful framework in which to study the convergence properties of
(MC)MC methods in an RKHS that has become popular in machine learning (Smola et al., 2007).
In the case of B(MC)MC, the regression bound (Lemma 2) enables us to obtain rates for the MMD
that improve on the MC rate in certain cases.

When the states are random variables, it is possible to discuss the average-case scenario. Let
X = [0, 1]d, Π be uniform and σ be the Lebesgue measure. Write F for the Fourier transform
operator. Define the Sobolev space

Hα := {f ∈ L2(Π) such that ‖f‖S,α <∞}, (16)

equipped with the norm

‖f‖S,α := ‖F−1[(1 + ‖ξ‖22)α/2F[f ]]‖2. (17)

Here α is the order of the space. It can be shown that Hα is the set of functions f whose weak
derivatives (∂x1)u1 . . . (∂xd)

udf exist in L2(Π) for u1+· · ·+ud ≤ α. Any radial kernel whose Fourier
transform decays at a rate α (e.g. Matérn kernel) induces an RKHS that is norm-equivalent to Hα.

Theorem 1 (BMC in Hα). Let H be an RKHS that is norm-equivalent to Hα, where α ∈ N and
α > d/2. Then

‖Π̂BMC −Π‖op = OP (n−α/d+ε) (18)

P[IcD|D] = oP (exp(−Cn2α/d−ε)) (19)

where ε > 0 can be arbitrarily small.

Remark 3. OP (n−α/d−1/2) is an information-theoretic lower bound on the performance of any
random quadrature rule in Hα (Novak and Woźniakowski, 2010). Thus BMC converges at a near-
optimal rate. During the completion of this work, Bach (2015) obtained a similar result but for
fixed n. The focus of that work is different and the analysis does not imply the asymptotic results
that we have described.

3.3.2 Bayesian QMC

In the previous section we showed that BMC is nearly rate-optimal in Hα, so that there is little
need to develop BQMC methods in this space (those will in fact also attain this optimal rate).
We therefore consider spaces of functions whose mixed partial derivatives exist, for which much
faster convergence rates can be obtained using QMC methods. To formulate BQMC we consider
collections of states {xi}ni=1 that constitute QMC point sequences. Specifically, we consider higher-
order digital nets. For the benefit of readers who may not be familiar with QMC, we briefly recall
essential definitions in Appendix C, but the reader is referred to Dick and Pillichshammer (2010)
for further details.

Let X = [0, 1]d and σ be the Lebesgue measure. Write F for the Fourier transform operator.
Define the Sobolev space of dominating mixed smoothness as

Sα := {f ∈ L2(Π) such that ‖f‖S,α <∞}, (20)
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equipped with the norm

‖f‖S,α :=

∥∥∥∥∥F−1

[
d∏
i=1

(1 + ξ2
i )α/2F[f ]

]∥∥∥∥∥
2

. (21)

Here α is the order of the space. It can be shown that Sα is the set of functions f whose weak
derivatives (∂x1)u1 . . . (∂xd)

udf exist in L2(Π) for ui ≤ α, i = 1, . . . , d. Moreover Sα is an RKHS
that is norm-equivalent to the RKHS generated by a tensor product of Matérn kernels (Sickel and
Ullrich, 2009), or indeed a tensor product of any other univariate Sobolev space -generating kernel.

Theorem 2 (BQMC in Sα). Let X = [0, 1]d, σ be the Lebesgue measure and take Π to be uniform
on X . Let H be an RKHS that is norm-equivalent to Sα. Consider the BQMC estimator Π̂BQMC

whose states {xQMC
i }ni=1 are a higher-order digital (t, α, 1, αm×m, d) net over Zb for some prime

b where n = bm (defined in Appendix C). Then we have

‖Π̂BQMC −Π‖op = O(n−α+ε), (22)

P[IcD|D] = o(exp(−Cn2α−ε)), (23)

where ε > 0 can be arbitrarily small.

Remark 4. This result is optimal for any deterministic quadrature rule in Sα (Dick, 2011). These
results should be understood to hold on the sub-sequence n = bm; indeed QMC methods cannot give
guarantees for all n ∈ N (Owen, 2014).

Remark 5. In Sec. 5.2.3 we discuss the possibility of constructing BQMC rules in high-dimensional
spaces by considering weighted versions of Sobolev spaces of dominating mixed smoothness.

In practice many of the integration problems that we face actually involve integrands f that are
infinitely differentiable, but are expensive to evaluate. We therefore provide additional results, in
Appendix D, that cover spaces of infinitely differentiable functions. The strong prior assumption
of infinite differentiability leads to exponential convergence of the MMD as the number of states n
goes to infinity.

This concludes our theoretical analysis. We have established optimal and near-optimal rates of
convergence (and hence contraction) for both BMC and BQMC in a general function space setting.
This directly addresses the criticism that BQ lacks theoretical foundations. In the following section
we turn to methodological considerations that are relevant to implementation of these methods.

4 Implementation

Below we discuss a number of practical considerations that are important in applications of BQMC
and B(MC)MC, as well as some methodological extensions. Additionally we have described an
extension that can produce unbiased estimates (Appendix E) and provided a discussion of scalability
for BQ (Appendix H).

4.1 Calibration

The theoretical results above deal with asymptotic scaling, but a question remains on whether the
posterior uncertainty is well-calibrated for finite values of n. i.e. whether the scale of the posterior
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uncertainty matches the scale of the actual numerical error. A particular distinction of B(MC)MC
from BQMC and optimisation-based schemes (see Sec. 2.2.2) is that the choice of states {xi}ni=1

does not depend on the kernel. This is on one hand a weakness, since we do not leverage the kernel
to cleverly select states, but on the other hand a strength, since this permits fully off-line learning
of the kernel (known in statistics as calibration) after evaluation of the integrand.

Calibration of B(MC)MC amounts to eliciting appropriate values for kernel hyper-parameters
conditional upon the sampled states. In this paper we take an empirical Bayes approach, choosing
hyper-parameters that maximise the log-marginal likelihood:

logP(f |{xi}ni=1) = −1

2
fTK−1f − 1

2
log |K| − n

2
log(2π). (24)

This is guided by the recent analysis of Szabó et al. (2015) who show that empirical Bayes credible
sets in the function space H give correct uncertainty quantification (i.e. correct coverage rates)
for sufficiently regular elements f in H (specifically, for f ∈ H that satisfy an additional technical
condition known as a polished tail condition). The regression bound (Lemma 2) implies that the
posterior credible sets for Π[f ] also provide correct coverage rates when calibrated using empirical
Bayes, under the polished tail condition. Although no analytical solution is available for the
empirical Bayes hyper-parameters, an approximate solution can easily be obtained numerically.
Alternative approaches such as marginalisation of hyper-parameters (e.g. Osborne, 2010; Nickl and
Söhl, 2015) or “learning the kernel” (Ong et al., 2005; Duvenaud et al., 2013) could be used but
were not considered here.

4.2 Tractable and Intractable Kernel Means

BQ requires that the kernel mean µπ(x) = Π[k(·,x)] is available in closed-form. This is the case for
several kernel-density pairs (k, π) and a subset of these pairs are recorded in Table 1. These pairs
are fairly widely applicable; for example the control functional kernel (Oates et al., 2015) provides
a closed-form expression for the kernel mean whenever the gradient ∂ log π(x) is available; this
includes the important setting of Bayesian posterior inference, where the p.d.f. π is only available
up to proportionality (see Sec. 4.3).

In the event that the kernel-density pair (k, π) of interest does not lead to a closed-form kernel
mean, it is sometimes possible to determine another kernel-density pair (k′, π′) for which Π′[k′(·,x)]
is available and such that (i) fπ/π′ ∈ H(k′), (ii) supp(π) ⊆ supp(π′). Then one can construct an
importance sampling estimator

Π[f ] =

∫
X
f(x)π(x)dσ(x) =

∫
X

f(x)π(x)

π′(x)
π′(x)dσ(x) = Π′[fπ/π′]. (25)

and proceed as above (O’Hagan, 1991). Bach (2015) derives an optimal importance sampling dis-
tribution for BMC and provides an approximation algorithm when the distribution is not tractable,
which greatly widens the applicability of BQ.

However, since H should represent prior information, such strategies may be seen as lacking
statistical justification. We therefore provide a discussion of methods to approximate intractable
kernel means in Appendix I. In summary, a MC estimate of the kernel mean based on m samples can
be used in place of the exact kernel mean with no loss in efficiency, provided that m = O(n1/2δ−2

n )
where δn is the rate of the exact BQ estimator. The use of approximate kernel means is not
considered further in the present paper because, from a probabilistic numerics point of view, the
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X Π k Reference

[0, 1]d Unif(X ) Wendland TP Oates and Girolami (2015)
[0, 1]d Unif(X ) Matérn Weighted TP Sec. 5.2.3
[0, 1]d Unif(X ) Korobov TP Appendix D
[0, 1]d Unif(X ) Exponentiated quadratic Appendix J
Rd Mixt. of Gaussians Exponentiated quadratic O’Hagan (1991)
Sd Unif(X ) Gegenbauer Sec. 5.2.1

Arbitrary Unif(X ) / Mixt. of Gauss. trigonometric Integration by parts
Arbitrary Unif(X ) Splines Minka (2000)
Arbitrary Known moments Polynomial TP Briol et al. (2015)
Arbitrary Known ∂ log π(x) Control functional Sec. 4.3

Table 1: A non-exhaustive list of distribution (Π) and kernel (k) pairs that provide a closed-form
expression for the kernel mean (µπ(x) = Π[k(·,x)]) and the initial error Π[µπ]. Here TP refers to
the tensor product of one-dimensional kernels.

additional source of uncertainty that is due to numerical error in the kernel mean must also be
reflected in the posterior variance (to avoid a philosophical “infinite regress”).

4.3 Intractable Densities

Often integration problems involve distributions Π whose densities π are only known up to propor-
tionality (e.g. posterior probability distributions). This would appear to preclude the possibility of
obtaining a closed-form kernel mean, but Oates et al. (2015) showed this is not the case. Suppose
that we have access to η(x) ∝ π(x) such that η is differentiable on X . Then we can proceed as
follows: Firstly, we define u : X → Rn componentwise as ui(x) := (∂/∂xi) log η(x). Secondly we
specify an RKHS H0 whose elements are differentiable functions φ : X → R. Thirdly, we construct
the set H whose elements are of the form

f(x) = c+

d∑
i=1

(∂/∂xi)φi(x) +

d∑
i=1

φi(x)ui(x)︸ ︷︷ ︸
ψ(x)

(26)

where c ∈ R, φi ∈ H0 for i = 1, . . . , d. The function ψ is called a control functional from the fact
that (under suitable the boundary conditions) we have Π[ψ] = 0. It can be shown that H can
be endowed with the structure of an RKHS such that the reproducing kernel k associated with H
gives rise to a closed-form (in fact constant) kernel mean. Exact BQ can therefore be performed in
H. The RKHS H0 can typically be selected, for a given integration problem, so that the integrand
can be written in the form of Eqn. 26. Full details can be found in Oates et al. (2015).

Excellent performance has been reported for the posterior mean point estimate obtained using
control functionals. We note that the interpretation of the posterior variance requires care since
the assumption f ∈ H is somewhat delicate. In applications below involving control functionals,
we only focus on the point estimate.
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4.4 Noisy Function Evaluations

To counteract spectral decay in the kernel matrix and improve numerical stability, the kernel matrix
K is often replaced in practice by the matrix K + λI for some small λ > 0. Such regularisation
can be interpreted in several ways. If added solely to improve numerical stability, λI is sometimes
referred to as jitter or a nugget term. Of particular interest here is the interpretation that the
observed function values fi are corrupted by noise. Such situations could arise when f is com-
putationally intensive to evaluate and an inexact or noisy surrogate function is used instead for
this purpose (Bastos and O’Hagan, 2009). In either case the posterior variance is naturally and
appropriately inflated. Below we explore the impact of noisy data in more detail.

We consider a homoscedastic Gaussian noise model in which y = f + e is observed, where
e ∼ N (0, τ−1I). In this case, using the conjugacy of Gaussian variables, it is possible to get a
closed-form expression for the induced quadrature rule Π̂eBQ and other quantities of interest by

replacing f by y and adding a constant term to the diagonal of the kernel matrix of size λ = τ−1

(Rasmussen and Williams, 2006). This leads to a probabilistic integrator with

‖Π̂eBQ −Π‖2op = ‖Π̂BQ −Π‖2op + τ−1‖wBQ‖22. (27)

Since the term ‖wBQ‖2 can in general decay more slowly (as n→∞) compared to the MMD term
‖Π̂BQ − Π‖op, it comes as no surprise that asymptotic convergence rates are much slower in the
noisy data regime, as demonstrated by the following:

Proposition 6 (BMC with noisy data). In the setting of Sec. 3.3.1 and under the homosecdastic
Gaussian noise model, we achieve

‖Π̂eBMC −Π‖op = OP (n−α/(2α+d)), (28)

while for a Gaussian kernel k(x,y) = exp(−‖x− y‖22), we have

‖Π̂eBMC −Π‖op = OP (n−1/2+ε) (29)

where ε > 0 can be arbitrarily small.

Clearly the effect of measurement noise is to destroy the asymptotic efficiency of BMC over a
simple MC estimator; in fact the BMC estimator becomes worse than the MC estimator in these
instances. A similar observation is made in Bach (2015).

5 Results

The aims of this section are two-fold; (i) to validate the preceding theoretical analysis and (ii) to
demonstrate the applicability and effectiveness of probabilistic integrators in a range of challenging
integration problems arising in contemporary machine learning and statistical applications.

5.1 Empirical Validation

Initially we examine whether the theoretical convergence rates obtained above are actually observed
in examples with finite n. Then, in a controlled setting, we probe the impact of calibration on the
quality of the estimator performance.
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Figure 3: BMC on X = [0, 1] with Matérn kernels of smoothness β ∈ {3/2, 5/2, 7/2} and length-
scale σ = 0.05. Each of the lines represents an average of 100 runs of BMC. The BMC methods
appear to attain their theoretical convergence rates (dotted black lines).

BMC Beginning with BMC, we examined whether theoretical convergence rates are realised in
practice. Our initial investigation focuses on X = [0, 1]d and RKHS that are characterised by
tensor products of Matérn kernels. States xi were generated independently and uniformly over X .
Results in Fig. 3 demonstrate that theoretical convergence rates are indeed observed in practice.
Clearly the BMC estimators far outperform MC estimators, with the extent of the performance
gain depending on how much smoothness on the integrand can be assumed a priori.

In foreseen applications of BMC, kernel parameters may not be available a priori and calibration
of these parameters will be required. Within the setting considered above, we investigated the
performance of the empirical Bayes approach to elicit kernel parameters, as described in Sec. 4.1.
Results, reserved for Appendix F, were consistent with the recent analysis of Szabó et al. (2015)
that guarantees conservative posterior coverage when the integrand f is sufficiently smooth.

BQMC Our initial investigation of BQMC focuses on X = [0, 1]d and Π uniform over X . For
integration in the space Sα(X ) we employed higher-order digital nets2 of order β based on Sobol
point sequences (b = 2) for increasing values of m ∈ N, so that the total number of states was
n = 2m (see Appendix C).

The Sobolev embedding theorem implies that such higher-order digital nets provide optimal
O(n−α+ε) rates whenever α ≤ β, since Sβ ⊆ Sα. Here we consider tensor products of Matérn
kernels and show in Appendix J that closed-form kernel means exist for β = α + 1/2 whenever
α ∈ N. (Alternatively we could consider Wendland kernels, which provide integer smoothness.)
Results in Figure 4 present values of the MMD for increasing numbers of states n and for orders
α ∈ {1, 2, 3}. The BQMC methods are clearly seen to achieve the theoretical lower rate bounds
provided in Theorem 2. Indeed, there is a suggestion that convergence may be faster, which may
be explained by the “extra” smoothness of the kernel (β−α = 1/2). Relative to QMC (not shown),
the BQMC method always produces a smaller MMD, in line with Bayesian re-weighting (Lemma
1). At large values of n the convergence rate sometimes appears to change - this is due to numerical
instability. An empirical investigation of numerical stability is provided in Appendix G.

2Higher-order digital (t, β, 1, βm×m, d) nets over Z2 were generated in MATLAB R2015a using code provided by J.
Dick at https://quasirandomideas.wordpress.com/2010/06/17/[Accessed 24 Nov. 2015].
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Figure 4: BQMC on X = [0, 1] with higher-order digital nets of order α when using a Matérn kernel
of smoothness β = α + 1/2 ∈ {3/2, 5/2, 7/2} and length-scale σ = 0.01. The BQMC methods are
seen to outperform their theoretical convergence rates proved in Thm. 2. In particular, they obtain
the optimal convergence rate for Sβ (dotted black lines) which is optimal for the space considered
whereas the theorem only shows they can achieve the rate of Sα.

In practice it is common to employ sub-optimal QMC point sequences (e.g. Halton or Sobol) for
problems that exhibit additional smoothness. In such cases BQMC can provide faster convergence
rates than QMC because the latter does not exploit this additional smoothness. Empirical evidence,
provided in Fig. 5, supports this claim.

5.2 Applications

The remainder of the paper applies BMCMC and BQMC to three different and challenging problems
arising in contemporary machine learning and statistical applications.

5.2.1 Probabilistic Integration on the sphere

Probabilistic integration methods can be defined on arbitrary nonlinear manifolds. The possibility
of probabilistic integration in non-Euclidean spaces was suggested as far back as Diaconis (1988)
but has only recently been implemented, in the context of computer vision (Brouillat et al., 2009;
Marques et al., 2015). Below we formulate and analyse BQMC on the sphere. The method is
applied to compute illumination integrals used in the rendering of surfaces.

Spherical Integration In this section we provide the first theoretical study of spherical BQMC
and describe a particular class of kernel for which the kernel mean is available in closed-form. We
work on the d-sphere

Sd = {x = (x1, . . . , xd+1) ∈ Rd+1 : ‖x‖2 =
√
x2

1 + · · ·+ x2
d+1 = 1} (30)

in order to estimate integrals of the form

Π[f ] =

∫
Sd
f(x)π(x)dσ(x), (31)
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Figure 5: BQMC on X = [0, 1] with a Sobol sequence when using a Matérn kernel of smoothness β
and length-scale σ = 0.01. The use of a Halton sequence was also explored but resulted in similar
results (omitted here for clarity). The Sobol sequence is known to provide at least O(n−1+ε) rates
for integrands with one derivative, but BQMC manages to obtain the optimal rate in Sobolev spaces
for each of the Matérn kernel with β ∈ {3/2, 5/2, 7/2} (dotted lines). Results show that BQMC
converges more quickly than QMC.

where σ is the spherical measure (i.e. uniform over Sd with
∫
Sd dσ = 1). For simplicity we focus on

the case where the measure Π is uniform over Sd. We specifically focus on the case d = 2 that will
be used in the computer vision application below.

The function spaces that we consider are Sobolev-like spaces Hα(Sd) for α > d/2, defined to be
the RKHS with reproducing kernel

k(x,x′) =
∞∑
l=0

λlP
(d)
l (x · x′) x,x′ ∈ Sd. (32)

where λl � (1 + l)−2α (here al � bl is taken to mean that there exists c1, c2 ∈ R such that

c1al ≤ bl ≤ c2al) and P
(d)
l are normalised Gegenbauer polynomials (for d = 2 these are also

known as Legendre polynomials) (Brauchart et al., 2014). A particularly simple expression for the
kernel in d = 2 and Sobolev-like space α = 3/2 can be obtained by taking λ0 = 4/3 along with
λl = −λ0× (−1/2)l/(3/2)l where (a)l = a(a+ 1) . . . (x+ l− 1) = Γ(a+ l)/Γ(a) is the Pochhammer
symbol. Specifically, these choices produce

k(x,x′) =
8

3
− ‖x− x′‖2, x,x′ ∈ S2. (33)

This kernel is associated with a tractable kernel mean µπ(x) =
∫
S2 k(x,x′)dσ(x′) = 4

3 and hence
the initial error is also available Π[µπ] =

∫
S2 µπ(x)dσ(x′) = 4/3.

The states {xi}ni=1 could be generated as MC samples. In that case, analogous results to those
obtained in Sec. 3.3.1 can be obtained using our proof techniques from Sec. 3.2. Specifically, from
Thm. 7 of Brauchart et al. (2014) and Bayesian re-weighting (Lemma 1), classical MC leads to
slow convergence ‖Π̂MC−Π‖op = OP (n−1/2). The regression bound argument (Lemma 2) together
with a functional approximation result in Le Gia et al. (2012, Thm. 3.2), gives a faster rate for
BMC of ‖Π̂BMC −Π‖op = OP (n−3/4). (For brevity the details are omitted.)

Rather than focus on MC methods, we present stronger results based on spherical QMC point
sets. We briefly introduce the concept of a spherical t-design (Delsarte et al., 1977) which is define
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Figure 6: Application to illumination integrals in computer vision. The cartoon features the Cali-
fornia lake environment map that was used in our experiments.

as a set {xi}ni=1 ⊂ Sd satisfying: ∫
Sd
f(x)dσ(x) =

1

n

n∑
i=1

f(xi) (34)

for all polynomials f : Sd → R of degree at most t. (i.e. f is the restriction to Sd of a polynomial
in the usual Euclidean sense Rd+1 → R.).

The following properties of spherical t-designs follow from Hesse and Sloan (2005); Bondarenko
et al. (2013) and Bayesian re-weighting (Lemma 1):

Theorem 3. For all d ≥ 2 there exists Cd such that for all n ≥ Cdt
d there exists a spherical

t-design on Sd with n points. Moreover, for α = 3/2 and d = 2, the use of a spherical t-designs
leads to a rate ‖Π̂BQMC −Π‖op = O(n−3/4) and P[IcD|D] = o(exp(−Cn3/2)).

The rate in Thm. 3 is best-possible in the space H3/2(S2) (Brauchart et al., 2014) and, unlike
the result for BMC, is fully deterministic3. Although explicit spherical t-designs are not currently
known in closed-form, approximately optimal point sets have been computed numerically to high
accuracy4.

Global Illumination integrals We applied spherical integration in the context of global illu-
mination (Pharr and Humphreys, 2004). This problem occurs when one wants to render virtual
objects based on a realistic model of a given environment (e.g. a view of a lake; see Fig. 6). In
those cases, the models are based on four main factors: a geometric model for the object being

3Empirical evidence in Marques et al. (2015) suggests that BQMC attains faster rates than BMC in RKHS that
are smoother than H3/2(S2).

4Our experiments were based on such point sets provided by R. Womersley on his website http://web.maths.

unsw.edu.au/~rsw/Sphere/EffSphDes/sf.html[Accessed 24 Nov. 2015].
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Figure 7: Application to illumination integrals in computer vision. (a) A spherical t-design over
S2. (b) The MMD, or worst-case-error, for Monte Carlo (MC), Bayesian MC (BMC), Quasi MC
(QMC) and Bayesian QMC (BQMC). (c) Probabilistic integration over the sphere was employed
to estimate the RGB colour intensities for the California lake environment. [Error bars for BMC
and BQMC represent two posterior standard deviations (i.e. 95% credible intervals). Red circles
are used to highlight QMC estimates, which are closely aligned with the BQMC estimates.]

rendered, a model for the reflectivity of the surface of the object, the angle at which we observe the
object and a description of the light sources (provided by an environment map). The light emitted
from the environment will interact with the object in multiple ways and our goal is to estimate the
total amount of light arriving at the camera. This can be formulated as an illumination integral5

Lo(ωo) = Le(ωo) +

∫
S2
Li(ωi)ρ(ωi,ωo)[ωi · n]+dσ(ωi), (35)

expressed with respect to the spherical measure σ. Here Lo(ωo) is the outgoing radiance, i.e. the
outgoing light in the direction ωo. Le(ωo) represents the amount of light emitted by the object
itself (which we will assume to be known) and Li(ωi) is the light hitting the object from direction

5It is noted by Marques et al. (2015) that slightly improved empirical performance can be obtained by replacing
the [ωi ·n]+ term with the smoother ωi ·n term and restricting the domain of integration to the hemisphere ωi ·n ≥ 0.
For simplicity we present the problem as an integral over S2.
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ωi. The term ρ(ωi,ωo) is the bidirectional reflectance distribution function (BRDF), which models
the fraction of light entering the pixel through direction ωi and being reflected towards direction
ωo. Here n is a unit vector normal to the surface of the object. Our investigation is motivated by
strong empirical results for BQMC in this context obtained by Marques et al. (2015)6.

In order to assess the performance of BQMC we consider a typical illumination integration
problem based on the California lake environment map shown in Fig. 67. The goal here is to
compute intensities for each of the three RGB colour channels corresponding to observing a virtual
object from a fixed direction ωo. We consider the case of an object directly facing the camera
(wo = n). For the BRDF we took ρ(ωi,ωo) = (2π)−1 exp(ωi · ωo − 1). The integral in Eqn. 35
was viewed here as an integral with respect to a uniform measure Π and the integrand f(ωi) =
Li(ωi)ρ(ωi,ωo)[ωi · ωo]+ was modeled using the kernel in Eqn. 33. In contrast, Marques et al.
(2015) viewed Eqn. 35 as an integral with respect to π(ωi) ∝ ρ(ωi,ωo) and coupled this with a
Gaussian kernel restricted to the hemisphere. The approach that we propose has two advantages;
(i) it provides a closed-form expression for the kernel mean, (ii) a rougher kernel may be more
appropriate in the context of illumination integrals, as pointed out by Brouillat et al. (2009).

Results in Fig. 7 demonstrate a reduction in MMD for the BMC and BQMC methodologies
over their MC and QMC counterparts. Moreover we observe similar rates of convergence for BMC
and BQMC, in line with the theoretical results presented above. Translating this performance into
the RGB-space, we see that BMC and BQMC provide an appropriate quantification of uncertainty
in the value of the integral at all values of n that were considered. For this particular test function
the BQMC point estimate was almost identical to the QMC estimate at all values of n. Empirical
results reported by Marques et al. (2015), based on Gaussian kernels, showed a RMSE rate of
O(n−0.72), which is similar to the theoretical O(n−3/4) rate that we provide here. A more detailed
comparison of the methods is reserved for future research.

5.2.2 Integration with Intractable Densities

Here we consider Bayesian parameter estimation for a non-linear differential equation model. This
problem involves an intractable probability density, which means that the kernel mean is likely to
be intractable for most common kernels. We will therefore follow the methodology proposed in
Sec. 4.3 and make use of the control functional kernel for which a tractable kernel mean can be
obtained. The particular probabilistic integration method that we will consider is BMCMC, where
the underlying Markov chain used to obtain states is provided by a Riemann manifold Hamiltonian
Monte Carlo (RMHMC) method (Girolami and Calderhead, 2011).

We consider nonlinear dynamical systems of the form

du

ds
= f(u, s;θ), u(0) = u0. (36)

where the state variables are assumed to be observed under noise at discrete times s1 < s2 < · · · <
sn, denoting the observations by y(sj). We consider a Gaussian observation process with likelihood

p(y|θ,u0, σ) =
n∏
j=1

N (y(sj)|u(sj ;θ,u0), τ−1I) (37)

6The authors call their method BMC, but states arose from a deterministic (spiral point) algorithm.
7This environment map is freely available at: http://www.hdrlabs.com/sibl/archive.html.
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Figure 8: Integration with intractable densities; results. Light blue = standard Monte Carlo. Dark
blue = Bayesian MCMC. The boxplots show the distribution of the posterior mean estimate under
subsampling from the empirical distribution produced by MCMC.

where u(sj ;θ,u0) denotes the solution of the system in Eqn. 36. Each evaluation of the likelihood
requires the numerical solution of a system of differential equations, so that the cost of the prob-
abilistic integration scheme was far out-weighed by the computational cost of obtaining MCMC
samples. An important challenge is therefore to obtain accurate estimates in the low n regime.

The particular non-linear ODE model that we consider in our numerical experiments is the
Fitzhugh–Nagumo model

U̇1 = θ3

(
U1 −

U3
1

3
+ U2

)
, U̇2 = −

(
U1 − θ1 + θ2U2

θ3

)
(38)

with data-generating parameters and data identical to those used in Girolami and Calderhead
(2011). The parameter prior p(θ) and RMHMC sampling scheme were identical to the implemen-
tation provided by Girolami and Calderhead (2011). We consider here the problem of estimating
the first and second posterior moments of the ODE parameters θ. The control functional kernel
described in Sec. 4.3 was used with kernel parameters selected manually, informed by performance
at cross-validation. Results in Fig. 8 show that the BMCMC estimates are more accurate compared
to the standard MCMC estimates when n ≥ 20. These results suggest that BQ is a useful addition
to the computational Bayesian’s toolbox.

5.2.3 High-Dimensional Probabilistic Integration

Our aim in this final section is to demonstrate how recent theoretical advances in high-dimensional
QMC theory enable tractable high-dimensional probabilistic integration. We will concentrate on
BQMC, but the methodology proposed below could be applied to other probabilistic integrators.
The presentation culminates in an application to semi-parametric regression with random effects,
where marginalisation of random effects requires solution of a challenging d = 50 dimensional
integral. We emphasise that while d = 50 may not seem very large, it is much higher than available
in previous applications of probabilistic integration; the largest values of d we found in the literature
is d = 19 in Hennig et al. (2015) and d = 20 in Osborne et al. (2012).
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Weighted Spaces The formulation of high (and infinite) -dimensional QMC results requires a
construction known as a weighted Hilbert space. These spaces, defined below, are motivated by
the observation that many integrands encountered in applications seem to vary more in lower di-
mensional projections compared to higher dimensional projections. Our presentation below follows
Sec. 2.5.4 of Dick and Pillichshammer (2010).

As usual with QMC, we work in X = [0, 1]d, σ is the Lebesgue measure and with Π uniform
over X . Let I = {1, 2, . . . , d}. For each subset u ⊆ I, define a weight γu ∈ (0,∞) and denote the
collection of all weights by γ = {γu}u⊆I . Consider the space Hγ of functions of the form

f(x) =
∑
u⊆I

fu(xu) (39)

where fu belongs to an RKHS Hu with reproducing kernel ku and xu denotes the components of
x that are indexed by u. We point out that this construction is not restrictive, since any function
can be written in this form by considering only u = I. We turn Hγ into a Hilbert space by defining
an inner product

〈f, g〉γ :=
∑
u⊆I

γ−1
u 〈fu, gu〉u (40)

where γ = {γu : u ⊆ I}. Constructed in this way, Hγ is an RKHS with reproducing kernel

kγ(x,x′) =
∑
u⊆I

γuku(x,x′). (41)

Intuitively, the weights γu can be taken to be small whenever the function f does not depend
heavily on the |u|-way interaction of the states xu. Thus most of the γu will be small for a function
f that is effectively low-dimensional. A measure of the dimensionality of the function is given by∑

u⊆I γu.
The (canonical) weighted Sobolev space Sα,γ is defined by taking each of the component spaces

Hu to be Sobolev spaces of dominating mixed smoothness Sα. i.e. the space Hu is norm-equivalent
to a tensor product of |u| one-dimensional Sobolev spaces, each with smoothness parameter α.
Constructed in this way, Sα,γ is an RKHS with kernel

kα,γ(x,x′) =
∑
u⊆I

γu
∏
i∈u

(
α∑
k=1

Bk(xi)Bk(x
′
i)

(k!)2
− (−1)α

B2α(|xi − x′i|)
(2α)!

)
(42)

where the Bk are Bernoulli polynomials. For example, taking α = 1 we have the kernel

k1,γ(x,x′) =
∑
u⊆I

γu
∏
i∈u

(
x2
i

2
+

(x′i)
2

2
− xi

2
− x′i

2
− |xi − x

′
i|

2
+

1

3

)
(43)

and tractable kernel mean µπ(x) =
∫
X k1,γ(x,x′)dx′ = γ∅. In finite dimensions d < ∞, we can

construct a higher-order digital net that attains optimal QMC rates for weighted Sobolev spaces:

Theorem 4. Let H be an RKHS that is norm-equivalent to Sα,γ . Then BQMC based on a digital
(t, α, 1, αm×m, d)-net over Zb attains the optimal rate

‖Π̂BQMC −Π‖op = O(n−α+ε) (44)

for any ε > 0, where n = bm. Hence P[IcD|D] = o(exp(−Cn2α−ε)).
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Remark 6. The QMC rules in Theorem 4 do not explicitly take into account the values of the
weights γ. An algorithm that tailors QMC points to specific weights γ is known as the “component
by component” (CBC) algorithm; further details can be found in (Kuo, 2003). In principle the
CBC algorithm can lead to improved rate constants in high dimensions, because effort is not wasted
in directions where f varies little, but the computational overheads are also greater. We did not
consider CBC algorithms for BQMC in this paper.

Remark 7. The weighted Hilbert space framework allows us to bound the MMD independently of
dimension providing that ∑

u∈I
γu <∞ (45)

(Sloan and Woźniakowski, 1998). This justifies the “high-dimensional” terminology; the posterior
variance can bounded independently of dimension for these RKHSs. Analogous results were provided
by Fasshauer et al. (2012) for the Gaussian kernel. Further details are provided in Sec. 4.1 of (Dick
et al., 2013).

Semi-Parametric Random Effects Regression For illustration we observe that weighted
Sobolev spaces provide an RKHS that appropriately models features of integrals that appear in
semi-parametric random effects regression. Below we consider a problem posed and studied by Kuo
et al. (2008). The context is inference for the parameters β of a Poisson semi-parametric random
effects regression model

Yj |λj ∼ Po(λj)

log(λj) = β0 + β1z1,j + β2z2,j + u1φ1(z2,j) + · · ·+ udφd(z2,j) (46)

uj ∼ N(0, τ−1) independently.

Here z1,j ∈ {0, 1}, z2,j ∈ (0, 1) and φj(z) = [z − κj ]+ where κj ∈ (0, 1) are pre-determined knots
(wlog κj < κj+1). We took d = 50 equally spaced knots in [min z2,max z2]. Inference for β requires
multiple evaluations of the observed data likelihood

p(y|β) =

∫
Rd
p(y|β,u)p(u)du (47)

and therefore is a natural candidate for probabilistic integration methods, in order to propagate
the cumulative uncertainty of estimating multiple numerical integrals into the posterior distribution
p(β|y).

In order to transform this integration problem to the unit cube we perform the change of
variables xj = Φ−1(uj) so that we wish to evaluate

p(y|β) =

∫
[0,1]d

p(y|β,Φ−1(x))dx. (48)

Here Φ−1(x) denotes the standard Gaussian inverse CDF applied to each component of the vector
x.

Probabilistic integration proceeds under the hypothesis that the integrand of interest f(x) =
p(y|β,Φ−1(x)) belongs to (or at least can be well approximated by functions in) Sα,γ for some
smoothness parameter α and some weights γ. Intuitively, the integrand f(x) is such that an
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Figure 9: Application to semi-parametric random effects regression in d = 50 dimensions, based
on n = 2m samples from a higher-order digital net. [Here error bars show two posterior standard
deviations from the posterior mean. To improve visibility results are shown on the log-scale; error
bars are symmetric on the linear scale. A brute-force QMC estimate was used to approximate the
true value of the integral.]

increase in the value of xj at the knot κj can be compensated for by a decrease in the value of xj+1

at a neighbouring knot κj+1, but not by changing values of x at more remote knots. Therefore we
expect f(x) to exhibit strong individual and pairwise dependence on the xj , but expect higher-order
dependency to be much weaker. This motivates the weighted space assumption. We chose weights
γ, in the terminology of Kuo et al. (2008), to be the “order two” weights γu = 1 for |u| ≤ dmax,
dmax = 2, γu = 0 otherwise, which corresponds to an assumption of low order interaction terms
(though f can still depend on all of its arguments). This choice of weights was shown by Kuo
et al. (2008) to achieve the same performance as the popular “product” weights γu = 2−|u|, so
we therefore used the order two weights to reduce the computational burden. We briefly mention
recent work by Sinescu et al. (2012) that provides more detailed theoretical analysis for the choice
of weights γ.

In terms of frequentist point accuracy, results in Fig. 9 (with α = 1) demonstrate that the
BQMC posterior distribution provides accuracy comparable to the standard QMC estimate, with
BQMC more accurate than QMC at smaller sample sizes (n ≤ 25). To understand the effect
of the weighted space construction here, we compared against BQMC with d-way interactions
(u ∈ {∅, I}). We found that the d-way BQMC closely resembled standard QMC and thus integral
estimates based on 2-way interactions were more accurate at smaller sample sizes, although in
general the performance of all methods was comparable to standard QMC on this problem. In
terms of uncertainty quantification, the 90% posterior credible regions more-or-less cover the truth
for this problem, suggesting that the uncertainty estimates are sensible.

Although we did not consider it here, Kuo et al. (2008) demonstrated how centring and scaling
transformations of the integrand f(x) can further boost empirical performance in this example.
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6 Conclusion

The increasing sophistication of complex computational models, of which numerical integration
is one component, demands an improved understanding of how numerical error accumulates and
propagates through sequential computation. In (now common) settings where integrands are com-
putationally intensive, or very many numerical integrals are required, then an attractive and statis-
tically principled solution is to model the numerical error explicitly. This paper lays firm theoretical
foundations for the probabilistic approach to integration.

The general methodology that we describe above provides a unified framework in which existing
MC and QMC methods can be adapted to produce high-performance probabilistic integrators. It
was shown that these probabilistic integrators can achieve super-exponential rates for posterior con-
traction and several empirical experiments demonstrated correct posterior coverage. These rates,
obtained in Sobolev-type spaces, are important, fundamental and novel contributions. However,
there remain many important open questions for probabilistic integration that we did not address
here:

Theory

• Our results concerned the asymptotic frequentist coverage of posterior credible intervals. An
important area of future research, that is perhaps more important in foreseen applications,
will be to obtain corresponding non-asymptotic results for frequentist coverage. In addition,
the robustness of the posterior coverage to mis-specified RKHS deserves to be explored in
greater detail.

• Our theoretical analysis focused on BMC rather than BMCMC, justified by the fact that our
results were “only” asymptotic scaling relationships and therefore will be identical for both
methods. For the future non-asymptotic analysis it will be important to extend these results
to the case of correlated samples, such as arise in MCMC and other sampling schemes, such
as sequential MC.

• From a perspective of convenience, we restricted attention to simple domains of integration,
such as the (hyper)cube and the (hyper)sphere. The extension of these results to general
integration domains, and to more general stochastic and path integrals, should be developed.

Methodology

• The requirement of a tractable kernel mean must be overcome to enable BQ for arbitrary
RKHS and arbitrary probability distributions. While we have sketched details for how this
can be achieved (Appendix I), it remains an open problem to reconcile such an approach with
a formal probabilistic interpretation.

• On the other hand, it can be argued that the RKHS framework is rather restrictive. One
important property that is not easily encoded in an RKHS is non-negativity of the integrand
(e.g. as encountered in Sec. 5.2.3). Recent work addresses this issue using approximations
(Osborne et al., 2012; Gunter et al., 2014), but there does not yet exist an exact solution.

• Advances in computational approaches for kernel methods should be investigated to mitigate
the headline O(n3) computational complexity of BQ methods.
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Application

• This paper did not present results in which BQ is employed within a larger computational
pipeline, even though this is the primary application area for probabilistic integration. Our
focus was instead the theoretical foundations of BQ. With foundations now established, it
will be important to explore the practical challenges and of probabilistic integration within a
larger computational framework.

• An important and untouched feature of the probabilistic formulation is the possibility to
perform transfer learning when several related integrals require evaluation. This is a direction
that we will explore in future work.
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A Proof of Theoretical Results

Proof of Lemma 3. Assume without loss of generality that D <∞. The posterior distribution over
Π[f ] is Gaussian with mean mn := Π̂[f ] and variance vn. Since vn = ‖Π̂BQ−Π‖2op we have vn ≤ δ2

n.
Now the posterior probability mass on IcD is given by

P[IcD|D] =

∫
IcD

φ(r|mn, vn)dr, (49)

where φ(r|mn, vn) is the p.d.f. of the N (mn, vn) distribution. From the definition of D we get the
upper bound

P[IcD|D] ≤
∫ Π[f ]−D

−∞
φ(r|mn, vn)dr +

∫ ∞
Π[f ]+D

φ(r|mn, vn)dr (50)

= 1 + Φ
( Π[f ]−mn√

vn︸ ︷︷ ︸
(∗)

− D
√
vn

)
− Φ

( Π[f ]−mn√
vn︸ ︷︷ ︸

(∗)

+
D
√
vn

)
. (51)

From the definition of the MMD we have that the terms (∗) are bounded by ‖f‖H < ∞, so that
asymptotically as vn ↓ 0 we have

P[IcD|D] . 1 + Φ
(
−D/

√
vn
)
− Φ

(
D/
√
vn
)

. 1 + Φ
(
−D/δn

)
− Φ

(
D/δn

)
. erfc

(
D/
√

2δn
)

= o(exp(−Cδ−2
n ))

(52)

where C = D2/2 and we have used the fact that erfc(x) . x−1 exp(−x2/2).

The following technical lemma is elementary but we could not find a proof in the existing
literature. We therefore provide one below:

Lemma 4. An expectation EX over MC samples X = {xi}ni=1 obeys a scaling relationship

EXhγX = O(n−γ/d+ε) (53)

for ε > 0 arbitrarily small, where hX = supx∈X mini=1,...,n ‖x− xi‖ is the fill distance of X in X .

Proof. Define a uniform grid of reference points {gi}Gi=1 ⊂ X consisting of all G = md (m > 1)
states of the form g = (g1, . . . , gd) where gi ∈ {0, 1

m−1 , . . . ,
m−2
m−1 , 1}. Consider the event E = [∀i∃j :

‖gi−xj‖ ≤ 1
m−1 ] where for each grid point gi there is a state xj within a distance 1

m−1 of it. From

the triangle inequality it follows that E implies the event [hX ≤ 3
m−1 ]. i.e. there cannot be “large

holes” in X. Now, writing PX [A] = EX [A], we have

PX [Ec] = PX
[
∃i : ∀j, ‖gi − xj‖ >

1

m− 1

]
≤

G∑
i=1

PX
[
∀j, ‖gi − xj‖ >

1

m− 1

]
︸ ︷︷ ︸

(∗)

. (54)
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The probability of the event (∗) is largest when gi lies on one of the corners of X ; e.g. gi = (0, . . . , 0).
In that case PX [(∗)] = (1 − V )n where V = 2−dπd/2/Γ(d/2 + 1)(m − 1)d is the volume of the
intersection of X with the ball of radius 1

m−1 centred on gi. Thus

P
[
hX ≤

3

m− 1

]
≥ PX [E] ≥ 1−G

[
1− 2−dπd/2

Γ(d/2 + 1)(m− 1)d

]n
(55)

Letting ζ = 3
m−1 implies that m = 1 + 3

ζ and G = (1 + 3
ζ )d. In this reparametrisation we have

PX [hX ≤ ζ] ≥ 1−
(

1 +
3

ζ

)d [
1− 6−dπd/2

Γ(d/2 + 1)
ζd

]n
(56)

≥ 1−
(

4

ζ

)d
(1− Cdζd)n, (57)

where we have written Cd = 6−dπd/2/Γ(d/2 + 1). While Eqn. 57 holds only for ζ of the form 3
m−1 ,

it can be made to hold for all 0 < ζ < 1 by replacing Cd with C̃d = 2−dCd. This is because for
any 0 < ζ < 1 there exists m > 1 such that ζ̃ = 3

m−1 satisfies ζ
2 ≤ ζ̃ < ζ, along with the fact that

PX [hX ≤ ζ] ≤ PX [hX ≤ ζ̃].

From the reverse Markov inequality, since hγX ≤ 1 with probability one, we have that for all
ζ < E[hγX ],

PX [hγX > ζ] ≥
EX [hγX ]− ζ

1− ζ
(58)

and upon rearranging

EX [hγX ] ≤ 1− (1− ζ)PX [hX ≤ ζ1/γ ]. (59)

Combining Eqns. 57 and 59 leads to

EX [hγX ] ≤ ζ + (1− ζ)

(
4

ζ1/γ

)d
(1− Cdζd/γ)n

≤ ζ +

(
4

ζ1/γ

)d
(1− Cdζd/γ)n.

(60)

Now, letting ζ = n−δ for some fixed δ > 0 and varying n, we have that

EX [hγX ] ≤ 1

nδ
+ 4d ndδ/γ(1− C̃dn−dδ/γ)n︸ ︷︷ ︸

(∗∗)

(61)

where (∗∗) ∼ exp(−C̃dn1−dδ/γ). The right hand side of Eqn. 61 is asymptotically minimised by
taking δ = γ

d − ε for ε > 0 arbitrarily small. We therefore conclude that for δ < γ/d and ε > 0

arbitrarily small, EX [hγX ] = O(n−γ/d+ε), as required.

36



Proof of Thm. 1. Initially consider fixed states X = {xi}ni=1 (i.e. fixing the random seed) and
H = Hα. Define hX as in Lemma 4. From standard results in functional approximation (Narcowich
et al., 2005, Thm. 1.1) there exists C > 0 such that

‖f − E[f |D]‖2 ≤ ChαX‖f‖H. (62)

From the regression bound (Lemma 2),

|Π̂BMC[f ]−Π[f ]| ≤ ‖f − E[f |D]‖2. (63)

Combining Eqns. 62 and 63 produces ‖Π̂BMC − Π‖op,Hα ≤ ChαX , where we have made the Hα-
dependence of the MMD explicit in the notation. Now, taking an expectation EX over the states
X = {xi}ni=1, viewed as independent draws from Π, we have

EX‖Π̂BMC −Π‖op,Hα ≤ CEXhαX . (64)

From Lemma 4 we have a scaling relationship

EXhαX = O(n−α/d+ε) (65)

for ε > 0 arbitrarily small. From Markov’s inequality, convergence in mean implies convergence in
probability and thus, combining Eqns. 64 and 65, we have

‖Π̂BMC −Π‖op,Hα = OP (n−α/d+ε). (66)

This completes the proof for H = Hα. More generally, if H is norm-equivalent to Hα then the
result follows from the fact that ‖Π̂BMC −Π‖op,H ≤ λ‖Π̂BMC −Π‖op,Hα for some λ > 0.

Proof of Thm. 2. From Theorem 15.21 of Dick and Pillichshammer (2010), the QMC rule Π̂QMC

based on a higher-order digital (t, α, 1, αm×m, d) net over Zb for some prime b satisfies

‖Π̂QMC −Π‖op ≤ Cd,α
(log n)dα

nα
= OP (n−α+ε) (67)

for Sα the Sobolev space of dominating mixed smoothness order α, where Cd,α > 0 is a constant
that depends only on d and α (but not on n). The result follows immediately from Bayesian re-
weighting (Lemma 1) and norm equivalence. The contraction rate is obtained by applying Lemma
3.

Proof of Prop. 6. Initially consider fixed states {xi}ni=1 (i.e. fixing the random seed). Fix a partic-
ular integration problem whose true integrand is f0 ∈ H. Since the MMD (squared) coincides with
the posterior variance, we have from Jensen’s inequality

‖Π̂eBMC −Π‖2op = E[Π[f ]− E[Π[f ]]]2 = E[Π[f − E[f ]]]2 ≤ E‖f − E[f ]‖22. (68)

Here E = E[·|{xMC
i , yi}ni=1] denotes an expectation with respect to the posterior GP that includes

a model for the observation noise. Noting that E[f ] is the variational minimiser of the posterior
least squares loss, we have E‖f − E[f ]‖22 ≤ E‖f − f0‖22. Now, taking an expectation EX over the
states {xi}ni=1, viewed as independent draws from Π, we have

EX‖Π̂eBMC −Π‖2op ≤ EXE‖f − f0‖22. (69)
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Since the left hand side of Eqn. 64 is independent of f0, it suffices to exhibit a particular regression
problem f0 for which the right hand side converges at a known rate. Following van Der Vaart
and van Zanten (2011), suppose in addition that f0 ∈ Cα ∩ Hα for α > d/2. Here Cα is the
Hölder space on [0, 1]d and Hα is the Sobolev space on [0, 1]d, which each contain, for example, the
function f0 ≡ 0. Then from Theorem 5 of van Der Vaart and van Zanten (2011) we have a scaling
relationship

EXE‖f − f0‖22 ∼ n−2α/(2α+d). (70)

Tsybakov (2008) proves that this rate is minimax for the noisy regression problem. From Markov’s
inequality, convergence in mean implies convergence in probability and thus, combining Eqns. 69
and 70, we have

‖Π̂eBMC −Π‖op = OP (n−α/(2α+d)). (71)

On the other hand, if we have a Gaussian kernel then we suppose in addition that f0 is a
restriction to [0, 1]d of an element of Aγ,r(Rd), for r ≥ 1 and γ > 0, defined to be the set of
functions whose Fourier transform Ff0 satisfies∫

exp(γ‖ξ‖r)|Ff0|2(ξ)dξ < ∞. (72)

Again, the function f0 ≡ 0 belongs to Aγ,r(Rd). This time, from Theorem 10 of van Der Vaart and
van Zanten (2011) we have a scaling relationship

EXE‖f − f0‖22 ∼ (log n)2/r/n. (73)

Since the function f0 ≡ 0 belongs to Aγ,r(Rd) for all r ≥ 1 we conclude, via Markov’s inequality as
before, that

‖Π̂eBMC −Π‖op = OP (n−1/2+ε) (74)

where ε > 0 can be arbitrarily small. This completes the proof.

Proof of Thm. 3. Bondarenko et al. (2013) showed that for all d ≥ 2 there exists Cd such that for
all n ≥ Cdt

d there exists a spherical t-design on Sd with n points. On the other hand, Hesse and
Sloan (2005) showed that such a design would achieve ‖Π̂QMC−Π‖op = O(n−3/4) in the case where
α = 3/2 and d = 2. (A recent survey of these results is provided by Brauchart et al. (2014).) The
result follows from Bayesian re-weighting (Lemma 1).

Proof of Thm. 4. The QMC rate

‖Π̂QMC −Π‖op = O(b−αmmdα) (75)

is proven in Theorem 15.21 of Dick and Pillichshammer (2010). The number of quadrature points in
such a net is n = bm, so that this rate is just the familiar O(n−α+ε). The result follows immediately
from Bayesian re-weighting (Lemma 1).

Appendices B to J are provided as supplementary text.
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Supplemental Text

B Illustration of Proof Techniques

In this Appendix we obtain a convergence rate for OBQ as originally formulated in the seminal paper
of O’Hagan (1991). As a stepping stone, we initially consider an ad-hoc rule for one-dimensional
integration that could reasonably be called Bayesian Gauss-Hermite quadrature (BGHQ). Indeed,
suppose X = R, σ is Lebesgue measure and Π is the N(0, ν2

π) distribution. Then the BGHQ
estimator, denoted by Π̂BGHQ[f ], corresponds to BQ with a Gaussian kernel k(x, y) = exp(−(x −
y)2/2ν2

k) and to states {xi}ni=1 that are chosen at the zeros of the generalised Hermite polynomials

H
[ν2π ]
n of degree n, defined by the rescaling

H [ν2π ]
n (x) := (2ν2

π)−n/2Hn(x/
√

2νπ) (76)

where Hn are the standard Hermite polynomials. A simple re-weighting argument, based on Lemma
1, produces the following:

Theorem 5 (BGHQ convergence rate). Let νπ/νk < 1. The BGHQ rule satisfies

‖Π̂BGHQ −Π‖op = O((νπ/νk)
2n) (77)

and hence the posterior mean converges exponentially. Furthermore, the posterior contracts super-
exponentially:

P[IcD|D] = o(exp(−C(νk/νπ)4n)), (78)

where ID and C were defined in Lemma 3.

Proof. BGHQ is a re-weighted version of Gauss-Hermite quadrature (GHQ), a quadrature rule with

states {xGHQ
i }ni=1 chosen at the zeros of the generalized Hermite polynomials H

[νπ ]
n of degree n and

weights wGHQ
i chosen such that Π̂GHQ is exact for all polynomials of degree 2n− 1 or less:

wGHQ
i :=

n!

νn−1
π n2H

[νπ ]
n−1(xGHQ

i )2
. (79)

Theorem 4.1 in Kuo and Woźniakowski (2012) establishes a rate for the worst case error of

‖Π̂GHQ −Π‖op = 2−1/4
(νπ
νk

)n
(1 + o(1)) = O

((νπ
νk

)n)
. (80)

The result for BGHQ immediately follows from Bayesian re-weighting (Lemma 1). Furthermore
the contraction rate can be obtained by applying Lemma 3.

Remark 8. Särkka et al. (2015) showed that, in fact, the classical GHQ weights are exactly the
BGHQ weights when the latter is performed in an RKHS with kernel

k(x, x′) =

2n−1∑
i=1

2n−1∑
j=1

1

i!j!
λi,jHi(x)Hj(x

′) (81)

for a particular choice of the λi,j.
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Now we turn to the OBQ method proposed in O’Hagan (1991) and documented further in
O’Hagan (1992)8. (Recall that OBQ selects states {xi}ni=1 to globally minimise the worst-case
integration error.) An immediate corollary of Theorem 5 provides convergence rates for OBQ in
one dimension:

Corollary 1 (OBQ convergence rate). Take X = R, σ be the Lebesgue measure and Π
be the N(0, ν2

π) distribution. Suppose that νπ/νk < 1. Consider OBQ based on the Gaussian
kernel k(x, y) = exp(−(x − y)2/2ν2

k). Then ‖Π̂OBQ − Π‖op = O((νπ/νk)
2n) and P[IcD|D] =

o(exp(−C(νk/νπ)4n)).

Proof. From the definition of OBQ we have

Π̂OBQ := arg min
Π̂

‖Π̂−Π‖op (82)

where the minimum is taken over the set of all valid quadrature rules Π̂; i.e. over the location of
states {xi}ni=1 ⊂ X and weights {wi}ni=1 ∈ R. Consider a specific quadrature rule Π̂ = Π̂BGHQ:
From Theorem 5, we have that

‖Π̂OBQ −Π‖op ≤ ‖Π̂BGHQ −Π‖op = 2−1/4
(νπ
νk

)n
(1 + o(1)) (83)

as required. Furthermore the contraction rate can be obtained by applying Lemma 3.

To the best of our knowledge this is the first formal proof that OBQ converges at an ex-
ponential rate in an infinite dimensional RKHS setting (Briol et al., 2015, proves this only for
finite-dimensional RKHS).

C Digital Nets for BQMC

This appendix provides a concise definition of higher-order digital nets.

Definition 1 (Digital net). Let b be a prime and let m,m′ ≥ 1 be integers, where m′ ≥ m. Let
C1, . . . ,Cd be m′ × m matrices over the finite field Fb = {0, 1, . . . , b − 1} of order b. Below we
construct n = bm states on X = [0, 1)d: For 0 ≤ i ≤ bm− 1, let i = i0 + i1b+ · · ·+ im−1b

m−1 be the
b-adic expansion of i (i.e. the ij are the unique ij ∈ Fb for which the equality is satisfied). Identify
i with the vector i = (i0, . . . , im−1)T ∈ Fmb . For 1 ≤ j ≤ d multiply the matrix Cj by i, i.e.,

Cji := (yj,1(i), . . . , yj,m′(i))T ∈ Fm
′

b (84)

and set

[xi+1]j :=
yj,1(i)

b
+ · · ·+

yj,m′(i)

bm′ . (85)

The point set {xi}ni=1 is called a digital net over Fb, with generating matrices C1, . . . ,Cd.

8Somewhat confusingly, this approach was originally named Bayes-Hermite quadrature, but Hermite polynomials
do not feature in its construction.
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Definition 2 (Higher-order digital net). In the setting of Defn. 1, additionally let α ≥ 1 and
0 < β ≤ min(1, αm/m′) be real numbers and let 0 ≤ t ≤ βm′ be a natural number. Write
Cj = (cj,1, . . . , cj,m′)T . If for all 1 ≤ ij,vj < · · · < ij,1, where 0 ≤ vj for all j = 1, . . . , d, with

d∑
j=1

min(vj ,α)∑
l=1

ij,l ≤ βm′ − t, (86)

the vectors c1,i1,v1
, . . . , c1,i1,1 , . . . , cd,id,vd , . . . , cd,id,1 ∈ Fmb are linearly independent over Fb, then the

digital net with generating matrices C1, . . . ,Cd is called a higher-order digital (t, α, β,m′ ×m, d)
net over Fb.

The definition of a digital net is constructive, in the sense that it specifies a unique collection
of states {xi}ni=1 where n = bm. In contrast, the definition of a higher-order digital net is non-
constructive and it is not immediately clear whether any digital nets are also higher-order digital
nets. However, explicit constructions of higher-order digital (t, α, 1, αm×m, d) nets over Zb for all
prime numbers b and α, d,m ∈ N are known and are given in Dick and Pillichshammer (2010, Sec.
15.2). (The natural number t is a deterministic function of the generating matrices and α and is
not important for this paper.)

D Extending BQMC to Infinitely Smooth Functions

In this appendix we provide additional results for BQMC that cover spaces of infinitely differentiable
functions; so-called Korobov spaces (Dick, 2011). For simplicity we present only the case where the
integrand f is a periodic function on X = [0, 1]d, with σ the Lebesgue measure and Π is uniform,
but we allow for the possibility that f : X → C produces complex values. Periodicity allows us to
leverage the Fourier series representation

f(x) =
∑
ω∈Zd

f̂(ω) exp(2πiω · x), (87)

where the Fourier coefficients

f̂(ω) =

∫
X
f(x) exp(−2πiω · x)dx (88)

are assumed to decay exponentially fast; f̂(ω) = O(h|ω|) where ω = (ω1, . . . , ωd), |ω| = |ω1|+ · · ·+
|ωd| and 0 < h < 1, implying that f is infinitely differentiable. Following recent work by Dick et al.
(2011) we focus on the particular Korobov space that is the RKHS generated by the kernel

k(x,y) =
∑
ω∈Zd

Wω exp(2πiω · (x− y)), (89)

where coefficients Wω ≥ 0 satisfy W0 = 1 and∑
ω∈Zd

Wω <∞. (90)
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Smoothness of the functions f ∈ H(k) depends on how rapidly this sum converges as |ω| → ∞.
Further details can be found in Dick et al. (2011). We note that the kernel mean Π[k(·,y)] is
available in closed form.

The additional prior information that is provided by a Korobov space is enough to provide
exponential convergence rates for BQMC:

Proposition 7 (BQMC in Korobov spaces). Let X = [0, 1]d and let Π be uniform on X . Consider
a Korobov space H(k) as defined above. Then, for n prime, there exists a choice of states {xi}ni=1

such that the corresponding BQMC rule satisfies

‖Π̂BQMC −Π‖op = O(h1/4(d!n)1/dn1/2) (91)

for some d-dependent constant cd > 0 that does not depend on n.

Proof. The proof is analogous to the Sobolev case: We leverage an established QMC worst case
error bound for Korobov spaces; in this case Theorem 2 in Dick et al. (2011). Bayesian re-weighting
(Lemma 1) completes the proof.

To limit scope we do not discuss the explicit construction of the states whose existence is
guaranteed by Theorem 7. Sec. 6 of Dick et al. (2011) provides further details.

E De-biasing the Probabilistic Integrals

A consequence of incorporating prior information is that the point estimate provided by the pos-
terior mean E[Π[f ]|D] is no longer unbiased, in the frequentist sense, as an estimator for Π[f ].
While this is a non-issue from the probabilistic numerics perspective, the availability of unbiased
estimators could help to broaden the applicability of probabilistic integrators. Here we present
a simple modification that leads to unbiased estimation, as described in recent work in the MC
(Oates et al., 2015) and QMC (Oates and Girolami, 2015) literature.

Consider splitting the states {xi}mi=1 ∪ {xi}ni=m+1. The first m states are used to train a GP
f ∼ GP(m1, k1). The remaining n−m states are used to evaluate a uniformly weighted quadrature
rule

Π̂UB[f ] :=
1

n−m

n∑
i=m+1

f(xi)−m1(xi) + Π[m1]. (92)

When m < n and the {xi}ni=m+1 are marginally distributed as Π, Π̂UB[f ] is an unbiased estimator
of Π[f ]. (In a loose sense, the case m = n corresponds to the BMC estimator.) Based on the
data {xi, fi}mi=1, this produces a probability model for Π[f ] that is Gaussian with mean Π̂UB[f ] and
variance 1

n−mV[Π[f ]|{xi, fi}mi=1], where V[Π[f ]|{xi, fi}mi=1] is the BQ variance after observing only
the first m samples.

F Calibration via Empirical Bayes

We consider calibration for BMC in X = [0, 1] with Π uniform over X . The Matérn kernel with
β = 5/2 was employed and the length scale τ was considered to be unknown. For each value of n
we estimates an appropriate value τ̂n for τ using empirical Bayes, as described in Sec. 4.1. BMC
then proceeded on the basis of these estimated hyper-parameters. Results in Fig. 10, based on the

42



Number of States (n)

0 10 20 30 40 50 60 70 80 90 100

In
te

g
ra

l 
E

s
ti
m

a
te

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

BMC + Emp. Bay.

True

Figure 10: Calibration of kernel hyper-parameters using empirical Bayes. Results are shown for
calibration of BMC on X = [0, 1] with Π uniform over X . The Matérn kernel with β = 5/2 was
employed and the length scale τ was considered to be unknown. Error bars show 90% posterior
credible intervals.

integrand f(x) = sin(4πx), show that the posterior uncertainty is well-calibrated, with the truth
typically covered by the posterior credible interval.

These results are in line with the recent work of Szabó et al. (2015), which guarantees appropriate
posterior coverage when the integrand f is sufficiently smooth. A more extensive study of calibration
for BQ was outside the scope of the present paper.

G Numerical Stability

As discussed in Sec. 4.4, computation of BQ weights can require numerical regularisation and this
has the potential to negatively impact on the performance of the BQ estimator. Poorly conditioned
kernel matrices K occur when two (or more) states xi, xj are not well distinguished by the kernel
k, as can occur when xi and xj are close together. As n increases, so does the potential for poor
conditioning.

Figure 11 describes the impact of numerical regularization in a challenging case where the value
of the length-scale parameter σ = 1.5 in the Matérn kernel is high for a function on X = [0, 1],
suggesting that functions can be well-approximated using a small number of points. This kernel
therefore fails to clearly distinguish between nearby states. Results show that the BQMC methods
with Matérn kernel with β = 3/2, β = 5/2 and β = 7/2 initially (small n) obey the theoretical
convergence rates provided in Sec. 3.3.2, however after a few hundred observations the rate of
convergence ceases to hold due to the numerical regularisation. This is consistent with the analysis
of noisy data performed in Sec. 4.4.

Arguably, this issue is insignificant since BQMC dramatically outperforms QMC for n ≤ 100
which is sufficient for precise estimation (MMD< 10−5). Indeed, this example was chosen in
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Figure 11: Numerical stability in Bayesian re-weighting. We consider the MMD for BQMC in
X = [0, 1] using higher-order digital nets. We use the Matérn kernel with β ∈ {1/2, 5/2, 7/2} with
τ = 1.5, so that only a few function evaluations are required for accurate integration. For this
values of β, the kernel matrix becomes poorly conditioned when n > 25 and regularisation puts us
into the “noisy function evaluation” regime, for which performance is known to be poor (see Sec.
4.4). Note however that a small error of 10−4 is already obtained for values of n > 10.

order to stretch the limits of the method. Furthermore, the issue will only occur in low-dimensional
problems, since the curse of dimensionality will prevent states from being “too close”. However these
numerical issues are not present in the deterministic QMC method, so that QMC may be preferred
to BQMC if the aim is to obtain extremely precise approximations (in which case modelling the
numerical error is probably unnecessary).

H Scalability of B(MC)MC and BQMC

H.1 Scalability in the Number of States

In situations where f is cheap to evaluate, the naive O(n3) computational cost associated with
kernel matrix inversion renders BQ unsuitable relative to the O(n) cost of MC and QMC methods
However, when f is expensive to evaluate, BQ methods can prove considerably more effective than
their standard counterparts.

Exact inversion can be achieved at low cost through exploiting structure in the kernel matrix.
Examples include: the use of kernels with compact support (e.g. Wendland, 1995) to induce sparsity
in the kernel matrix; tensor product kernels (e.g. O’Hagan, 1991) in the context of inverting kernel
matrices defined by tensor products of point sets in multivariate problems; using Toeplitz solvers
for a stationary kernel evaluated on an evenly-spaced point set; and making use of low-rank kernels
(e.g. polynomial kernels).

In addition there are many “approximate” techniques: (i) Reduced rank approximations reduce
the computational cost to O(nm2) where m << n is a parameter controlling the accuracy of the
approximation, essentially an effective degree of freedom (Quinonero-Candela and Rasmussen, 2005;
Bach, 2013; El Alaoui and Mahoney, 2015). (ii) Explicit feature maps designed for additive kernels
(Vedaldi and Zisserman, 2012). (iii) Local approximations (Gramacy and Apley, 2015), training
only on nearest neighbour data. (iv) Multi-scale approximations, whereby the high-level structure is
modelled using a full GP and approximation schemes are applied to lower-level structure (Katzfuss,
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2015). (v) Fast multipole methods (Ambikasaran and Darve, 2014). (vi) Random approximations
of the kernel itself, rather than the kernel matrix, such as random Fourier features (RFF; Rahimi
and Recht, 2007), spectral methods (Lazaro-Gredilla et al., 2010; Bach, 2015) and hash kernels (Shi
et al., 2009). (RFF have previously been successfully applied in BQ by Briol et al. (2015).) (vii)
Parallel programming provides an alternative perspective on complexity reduction, as discussed in
(e.g.) Dai et al. (2014).

This does not represent an exhaustive list of the (growing) literature on GP computation. Note
that the latter do not come with probability models for the additional source of numerical error
introduced by the approximation.

H.2 Scalability in Dimension

High-dimensional integrals that arise in applications are, in many cases, effectively low-dimensional
problems. This can occur either (i) when the distribution Π is effectively concentrated in a low-
dimensional manifold in X (this is responsible for the excellent performance of (MC)MC in certain
high-dimensional settings), or (ii) when the integrand f depends on only a subset of its inputs,
possibly after a transformation (this is responsible for the excellent performance of QMC methods
in certain high-dimensional settings; Dick et al., 2013). The B(MC)MC and BQMC methods that
we study provably deliver performance that is at least equivalent to (MC)MC and QMC in settings
(i) and (ii) respectively (see Sec. 5.2.3 for an empirical example with d = 50). Conversely, when
neither Π nor f are effectively low-dimensional, all approaches to integration necessarily suffer
from a curse of dimension. For example, for Π uniform on X = [0, 1]d and f belonging to a general
Sobolev space of order α, no deterministic integration algorithm can exceed the O(n−α/d) rate.
Clearly this rate becomes arbitrarily slow as d tends to infinity. Nevertheless, we note that BQ
estimators remain coherent, reverting to the prior in this degenerate limit. Having weights that
tend to zero is natural from a Bayesian point of view since our approximation of the integrand f
will become very poor as d grows with n fixed. Note also that de-biased probabilistic integrators
(Sec. E) have weights w tending to wMC when d goes to infinity. Thus the de-biased estimator
collapses onto the MC estimator, rather than the prior estimator.

We briefly note a number of alternative approaches exist for problems in which the effective
dimensionality is low. In particular, low-dimensional random embeddings project the ambient space
into a lower dimensional space using a randomized map, perform computation in that space and
then map back the results to the original space (see e.g. Wang et al., 2013, in the context of Bayesian
optimisation).

I Approximation of Kernel Means

If the kernel mean µπ is not tractable, then it is not possible to compute the quantities zi =
µπ(xi) analytically. To address this issue, we consider approximating this kernel mean and study
the impact of the approximation scheme on the accuracy of the BQ estimator. We focus on
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approximations of the form

z̃i :=
m∑
j=1

γjk(yj ,xi), (93)

π̃γ(x) :=

m∑
j=1

γjδ(x− yj), (94)

that are based on auxiliary states {yj}mj=1 and auxiliary weights {γj}mj=1. Substituting the approx-

imation z̃ = (z̃1, . . . , z̃n)T in place of z produces approximate BQ weights

w̃ := K−1z̃, (95)

π̃(x) :=
m∑
j=1

w̃jδ(x− yj). (96)

Note that the the kernel matrix K has size n, independent of m. The cost of computing the
approximate weights is now O(nm)+O(n3), instead of the usual O(n3), so m can be taken as large
as O(n2) without increasing overall computational complexity.

Denote the approximate BQ estimator Π̃BQ (i.e. the quadrature rule based on states {xi}ni=1

and approximate BQ weights w̃BQ). The effect of this approximation can be understood as follows:

Proposition 8. ‖Π̃BQ −Π‖2op ≤ ‖Π̂BQ −Π‖2op +
√
n‖µπγ − µπ‖2H.

For the error term ‖µπγ −µπ‖H, Prop. 5 shows that an approximation based on MC with states

{yj}mj=1 and uniform weights γj = 1/m provides a convergence rate of OP (m−1/2). To preserve the

overall BQ convergence rate of δn, in this case, we must therefore take m = O(n1/2δ−2
n ). On the

other hand, to avoid increasing computational complexity relative to the exact BQ case, we must
take m = O(n2). Combining these rates shows that (e.g.) if the exact BQ estimator converges at
δn = O(n−3/4), then taking m = O(n2) produces an overall rate ‖Π̃BQ −Π‖op = OP (n−3/4), which
is faster than the rate achieved by MC estimation despite intractability of the kernel mean. This
demonstrates that the efficient estimation of integrals provided by the BQ point estimator may be
applicable beyond the class of kernel-density pairs that lead to closed-form kernel means.

Proof of Prop. 8. Let z̃ = z + ε. Then

‖Π̃BQ −Π‖2op = w̃T
BQKw̃BQ − 2w̃T

BQz + Π[µπ]

= ‖Π̂BQ −Π‖2op + εTK−1ε.

We use ⊗ to denote the tensor product of RKHS. Now, since εi = z̃i − zi = µπγ (xi) − µπ(xi) =
〈µπγ − µπ, k(·,xi)〉H, we have

εTK−1ε =
∑
i,i′

[K−1]i,i′〈µπγ − µπ, k(·,xi)〉H〈µπγ − µπ, k(·,xi′)〉H

=

〈
(µπγ − µπ)⊗ (µπγ − µπ),

∑
i,i′

[K−1]i,i′k(·,xi)⊗ k(·,xi′)

〉
H⊗H

≤ ‖µπγ − µπ‖2H

∥∥∥∥∥∥
∑
i,i′

[K−1]i,i′k(·,xi)⊗ k(·,xi′)

∥∥∥∥∥∥
H⊗H

.
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It remains to show that the second term is equal to
√
n. Indeed,∥∥∥∥∥∥

∑
i,i′

[K−1]i,i′k(·,xi)⊗ k(·,xi′)

∥∥∥∥∥∥
2

H

=
∑
i,i′,l,l′

[K−1]i,i′ [K
−1]l,l′〈k(·,xi)⊗ k(·,xi′), k(·,xl)⊗ k(·,xl′)〉H

=
∑
i,i′,l,l′

[K−1]i,i′ [K
−1]l,l′ [K]il[K]i′,l′ = tr[KK−1KK−1] = n.

This completes the proof.

J Computing the Kernel Mean

Below we provide formulae for the mean element in the case of Gaussian and Matérn kernels and
particular choices of distribution Π.

J.1 Gaussian Kernel

Here we provide computational details for tensor products of the Gaussian kernel k(x, y) :=
λ2 exp(−τ(x − y)2). From the tensor construction we can wlog consider a one-dimensional state
space X = [a, b]. Let Π be uniform over X . We derive below the mean element µπ as well as initial
error Π[µπ] for this particular case:

µπ(x) =

∫ b

a
k(x, y)π(y)dy =

λ2

b− a

∫ b

a
exp(−τ(x− y)2)dy (97)

=

√
πλ2

2
√
τ(b− a)

[
erf (
√
τ(x− a))− erf (

√
τ(x− b))

]
(98)

The initial error is given by:

Π[µπ] =

∫ b

a
µπ(x)π(x)dx (99)

=

√
πλ2

2
√
τ(b− a)2

∫ b

a

[
erf(
√
τ(x− a))− erf(

√
τ(x− b))

]
dx (100)

=
λ2

√
2τ(b− a)2

exp(−τ(b− a))× (101)

[√2√
τ
σ − exp(τ(b− a)2)

(√2√
τ
σ + (b− a)

√
2π erf(

√
τ(a− b))

)]
(102)

These expressions can easily be generalised to multiple dimensions by taking tensor products.

J.2 Matérn Kernel

Here we provide computational details for the Matérn kernel on bounded intervals X = [a, b] ⊂ R.
The Matérn kernels are translation-invariant and so can be written in the form k(x, y) := φ(r),
where r = |x− y|. In general, the Matérn kernel is defined as:

kβ(x, y) = φβ(r) :=
21−β

Γ(β)

(√2βr

τ

)β
Kβ(

√
2βr

τ

)
. (103)
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This expression may be quite complex to compute in general, but simplifies significantly when β is
a half integer (i.e. β = p+ 1/2 and p ∈ N):

φp+1/2(r) := exp
(
−
√

2βr

τ

) Γ(p+ 1)

Γ(2p+ 1)

p∑
i=0

(p+ i)!

i!(p− i)!

(√8βr

τ

)p−i
. (104)

We will consider four cases when β ∈ {1
2 ,

3
2 ,

5
2 ,

7
2}:

φ1/2(r) := λ2 exp
(
− r

τ

)
, (105)

φ3/2(r) := λ2
(

1 +

√
3r

τ

)
exp

(
−
√

3r

τ

)
(106)

φ5/2(r) := λ2
(

1 +

√
5r

τ
+

5r2

3τ2

)
exp

(
−
√

5r

τ

)
, (107)

φ7/2(r) := λ2
(

1 +

√
7r

τ
+

14r2

5τ2
+

73/2r3

15τ3

)
exp

(
−
√

7r

τ

)
. (108)

For Π uniform over X , the kernel mean is given by:

µπ,β(x) =

∫ b

a
φβ(|x− y|)π(y)dy

=
1

b− a

[ ∫ x

a
φβ(x− y)dy +

∫ b

x
φβ(y − x)dy

]
,

(109)

which correspond to the following expressions for the kernel means when β ∈ {1
2 ,

3
2 ,

5
2 ,

7
2}:

µπ,1/2(x) = λ2τ ×

(
2− exp

(
a−x
τ

)
− exp

(
x−b
τ

))
b− a

, (110)

µπ,3/2(x) =
λ2

b− a
×
[ 4τ√

3
− 1

3
exp

(√3(x− b)
τ

)
×
(

3b+ 2
√

3τ − 3x
)

−1

3
exp

(√3(a− x)

τ

)
×
(
− 3a+ 2

√
3τ + 3x

)]
, (111)

µπ,5/2(x) =
λ2

(b− a)
×
[ 16τ

3
√

5
− 1

15τ
exp

(√5(x− b)
τ

)
×
(
8
√

5τ2 + 25τ(b− x) + 5
√

5(b− x)2
)

− 1

15τ
exp

(√5(a− x)

τ

)
×
(
8
√

5τ2 + 25τ(x− a) + 5
√

5(a− x)2
)]
, (112)
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µπ,7/2(x) =
λ2

105τ2(b− a)

[
96
√

7τ3

− exp
(√7(x− b)

τ

)(
48
√

7τ3 − 231τ2(x− b)

+63
√

7τ(x− b)2 − 49(x− b)3
)

− exp
(√7(a− x)

τ

)(
48
√

7τ3 + 231τ2(x− a)

+63
√

7τ(x− a)2 + 49(x− a)3
)]
. (113)

The initial errors Π[µπ,β] are

Π[µπ,1/2] = 2λ2τ ×

(
(b− a) + τ

(
exp

(
a−b
τ

)
− 1
))

(b− a)2
, (114)

Π[µπ,3/2] =
2λ2τ

3(b− a)2

[
2
√

3(b− a)− 3τ

+3 exp
(√3(a− b)

τ

)
×
(√

3(b− a) + 3τ
)]
, (115)

Π[µπ,5/2] =
λ2

15(b− a)2

[
2τ
(
8
√

5(b− a)− 15τ
)

+ 2 exp
(√5(a− b)

τ

)
×
(
5a2 + 10ab+ 5b2 + 7

√
5(b− a)τ + 15τ2

)]
, (116)

Π[µπ,7/2] =
λ2

105τ(b− a)2

[
− 6τ2(16

√
7(a− b) + 35τ) + 2 exp

(√7(a− b)
τ

)
×
(

7
√

7(b3 − a3) + 84b2τ + 57
√

7bτ2 + 105τ3

+21a2(
√

7b+ 4τ)− 3a(7
√

7b2 + 56bτ + 19
√

7τ2)
)]
. (117)

Again, these expressions can easily be generalised to multiple dimensions by taking tensor products.
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