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Abstract Motivated by methods used to evaluate the quality of data, we create a

novel firm-year measure to estimate the level of error in financial statements. The

measure, which has several conceptual and statistical advantages over available

alternatives, assesses the extent to which features of the distribution of a firm’s

financial statement numbers diverge from a theoretical distribution posited by

Benford’s Law. After providing intuition for the theory underlying the measure, we

use numerical methods to demonstrate that certain error types in financial statement

numbers increase the deviation from the theoretical distribution. We corroborate the

numerical analysis with simulation analysis that reveals that the introduction of

errors to reported revenue also increases the deviation. We then provide empirical

evidence that the measure captures financial statement data quality. We first show

the measure’s association with commonly used measures of accruals-based earnings

management and earnings manipulation. Next, we demonstrate that (1) restated

financial statements more closely conform to Benford’s Law than the misstated

versions in the same firm-year and (2) as divergence from Benford’s Law increases,

earnings persistence decreases. Finally, we show that our measure predicts material

misstatements as identified by SEC Accounting and Auditing Enforcement Releases

and can be used as a leading indicator to identify misstatements.
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1 Introduction

Financial statement data that are free of error—whether in the form of misestima-

tions, mistakes, biases, or manipulation—are crucial for well-functioning capital

markets. Accurate financial reports enable efficient resource allocation and efficient

contracting (Bushman and Smith 2003). Therefore, assessing the errors in financial

statements is an important task for investors, analysts, auditors, regulators, and

researchers. Prior literature has taken important steps in creating and validating

methods to assess different constructs of errors in firm-level financial statement

information, such as accruals quality or earnings quality. However, despite

substantial progress in this area, available methods have deficiencies that limit

their usefulness. Prior accounting literature outlines the limitations of current

measures of financial statement errors, such as their correlation with underlying firm

characteristics and their reliance on time-series, cross-sectional, or forward-looking

data, to name a few (Dechow et al. 2010; Owens et al. 2013). We build on a

statistical method developed by researchers in a variety of disciplines to assess the

level of error in data. We construct a parsimonious, firm-year measure to assess the

level of error in financial statements that overcomes some of the concerns

surrounding existing measures.

Literature in mathematics, statistics, and economics suggests that examining the

distribution of the first or leading digits (e.g., the leading digit of the number 217.95

is 2) of the numbers contained in a dataset allows users to assess the level of error

within the underlying data. The theoretical foundation of prior research using this

method is based, implicitly or explicitly, on the theorem proved by Hill (1995),

which states that if distributions are selected at random and random samples of

varying magnitudes are then taken from each of these distributions, the leading

digits of the combined mixture distribution will converge to the logarithmic or

Benford distribution, otherwise known as Benford’s Law.1 Specifically, Benford’s

Law states that the first digits of all numbers in an empirical dataset will appear with

decreasing frequency (that is, 1 will appear as the first digit 30.1 % of the time, 2

will appear 17.6 % of the time, and so forth).2 Methods based on the law have been

used to detect errors in published scientific studies, questionable election data in

Iran, suspicious macroeconomic data, internal accounts receivables data, and

misreported tax returns. However, we are unaware of any attempt to apply it to the

entire population of numbers contained in a firm’s annual financial statements in

1 Distributions need to be nontruncated or uncensored to conform to Benford’s Law. For example, a petty

cash account with a reimbursement limit of $25 would not be expected to follow Benford’s Law.
2 Please see Appendix 1 for the full theoretical distribution specified by Benford’s Law.
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order to ascertain whether it can be used as a firm-year measure of the degree of

errors in financial reporting.

The intuition behind why empirical data follow Benford’s Law can be distilled

into two mathematical facts.3 The first fact relies on using a mathematical approach

to determine the first digit of any number N, which is to take its base 10 log and find

the fraction behind the integer (i.e., the remainder or mantissa). If the fraction is

between 0 and 0.301, the original number N will start with one, if the fraction is

between 0.301 and 0.477 (interval of 0.176), the number N will start with 2, and so

forth. Hence, the intervals between the fractions after the decimal point of the log

number that determine its first digit are the same as the probabilities defined by

Benford’s Law. The second fact is that, if the probability distribution function of the

log of the original number N is smooth and symmetric, the probability that a number

will be in the interval between n and n ? 0.301, where n is any integer in this

logarithmic distribution, is 30.1 %. Similarly, the probability that a number will be

in the intervals between n ? 0.301 and n ? 0.477 is 17.6 %, and so forth. Because

distributions in nature tend to be smooth and symmetric due to the Central Limit

Theorem, datasets tend to follow Benford’s Law (Pimbley 2014). For a distribution

that generally follows Benford’s Law to diverge from it, certain types of errors have

to be introduced to the data in a way that makes the distribution of the base 10 log

less smooth or less symmetric.

The intuition outlined above likely applies to financial statement data. The true

(unobservable) realizations of all cash flows, both present and future, which the

items in the financial statements are intended to represent, are determined by many

interactions during and after a given period. Therefore, the financial statements’ line

items are estimates of the realizations of cash flows from unknown random

distributions. Since the true realization of every item in the financial statement is

likely to be created by a different distribution (for example, the distribution of cash

flows from sales that occurred during the year is likely to be different than that of

administrative costs), the mixture distribution of the cash flows realization of these

data may follow the criteria in Hill’s (1995) theorem and therefore will be

distributed according to Benford’s Law. Specifically, the cash flows realization of

revenue of a certain year, together with the cash flows realization of the payments to

suppliers, employees, tax authorities, etc., may follow Benford’s Law. However,

since these realizations are unobservable in the reporting year, the preparers of the

financial statements have to estimate them, a process that introduces error, whether

in the form of mistakes, biases, or manipulation.4

3 An intuitive but mathematically inaccurate way to briefly describe the intuition for Benford’s Law is as

follows. When cumulating numbers from 0, we will reach 100 before we reach 200 and 200 before we

reach 300 and so forth. In the same way, the concept is scale independent, i.e., we are also going to reach

1,000,000 before we get to 9,000,000 and so forth. Given that we will stop at a random point each time we

cumulate, the process will reach lower first digits (e.g., 1’s and 2’s) more often than higher leading or first

digits (e.g., 8’s and 9’s).
4 For example, the preparer needs to estimate what the returns and rebates on sales will be, as well as

sales bonuses, tax payments, and so forth. If there is no error (intentional or otherwise) in the reported

numbers, these items should follow Benford’s Law. However, if these estimates contain certain type of

errors, as the error increases, the estimates will likely diverge further from Benford’s Law.
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We construct a measure, the Financial Statement Divergence Score (FSD Score

for short) based on the mean absolute deviation statistic as applied to the

distribution of the leading digits of the numbers in annual financial statement data.

The FSD Score allows us to compare the empirical distribution of the leading digits

of the numbers in a firm’s annual financial statements to that of the theoretical or

expected distribution defined by Benford’s Law. As alluded to above and detailed in

the next section, the FSD Score overcomes many of the disadvantages of existing

measures of accounting or earnings quality. For example, it does not require time-

series or cross-sectional data to estimate, does not require forward-looking

information, does not require returns or price information, and, by construction,

is not likely to be correlated with firm-level characteristics or firms’ business models

ex ante.5

To provide intuition on the mathematical and statistical foundations behind the

measure, we first use numerical methods to demonstrate that introducing errors to

line items in financial statements will increase the divergence of the financial

statements from Benford’s Law. This divergence occurs because introducing errors

of different size to different items in the financial statements makes the distribution

less smooth and less symmetric, which, as noted above, is a condition for a

distribution to follow Benford’s Law.6 We then perform a simple simulation to

show that introducing errors into actual financial statement data creates deviations

from Benford’s Law. Since our numerical analysis suggests that deviations from the

law should increase when errors are introduced to accounting numbers, we

introduce errors for a typical firm in our sample by randomly manipulating its

revenue. In this simple simulation, we demonstrate that the manipulation induces an

increase in the FSD Score 95 % of the time.

We next assess whether the realized empirical distribution of the first digits of

firms’ financial statement numbers follows Benford’s Law. This is a critical step in

our empirical inquiry, as no study has examined whether annual financial statements

are distributed according to Benford’s Law. We show that, whether in aggregate, by

year, by industry, or by firm-year, firms’ financial statements generally conform to

Benford’s Law. We also demonstrate that the income statement is the most

susceptible to errors while the cash flow statement is the least.

Once initial conformity is established, we continue by examining the relation

between Benford’s Law and commonly used measures of accruals-based earnings

management and earnings manipulation. We show that the FSD Score is

significantly positively related with the Dechow–Dichev measure, discretionary

accruals measures, and Beneish’s M-Score, which is consistent with the FSD Score

capturing some of the underlying forces measured by those tools. We also

corroborate this analysis by investigating the FSD Scores of firms reporting annual

5 Our claim that there is not likely to be an ex ante relation with underlying firm characteristics or

business models does not imply the absence of a spurious correlation ex post. For example, because firms

with lower profitability may be more likely to manipulate their financial statements, our measure may be

spuriously correlated with profitability, despite our claim that it is not theoretically related to a firm’s

profitability ex ante. Unfortunately, like any other measure that bears resemblance to an exogenous

instrumental variable, this lack of correlation cannot be tested (Wooldridge 2010).
6 Please refer to Sect. 3.4 and Appendix 2 for further detail.
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income near zero in the spirit of Burgstahler and Dichev (1997). We find that firms

just below zero have significantly lower FSD Scores than those just above zero,

where the latter set of firms are more likely to be managing their earnings.

We expand our validation of the FSD Score’s ability to reflect financial statement

errors by conducting an experiment. Specifically, we identify a sample of firms that

restated their financial statements and compare the FSD Score for the restated and

unrestated numbers. This test provides a novel empirical setting to examine the

usefulness of the FSD Score, since we compare the same firm-year to itself, thus

keeping all else equal (e.g., economic conditions, firm performance, etc.) except for

the reported numbers. We show that the restated numbers have significantly lower

divergence (lower FSD Score) from Benford’s Law than the same firm-year’s

unrestated numbers. These results provide strong evidence that divergence from

Benford’s Law is a useful tool for detecting errors.

Next, we explore the informational implications of divergence from Benford’s

Law by examining the relation between the level of conformity to the law and

earnings persistence. If a higher FSD Score captures a higher degree of financial

statement error, it is likely that current earnings are less likely to explain future

earnings for such firms (Richardson et al. 2005). Li (2008) provides support from a

qualitative disclosure perspective for this argument by showing a negative relation

between financial report readability and earnings persistence. Consistent with those

studies, we find that the FSD Score is negatively related to earnings persistence.

Given that our findings suggest that divergence from Benford’s Law may be a

useful tool for assessing financial statement errors, a natural question that arises is

whether Benford’s Law is predictive of material misstatements.7 We show that,

while the contemporaneous FSD Score negatively predicts material misstatements,

lagged versions positively predict material misstatements, which suggests that the

FSD Score can be used as a leading indicator of material misstatements. The

rationale is that, compared to firms that did not receive AAERs, firms receiving

AAERs have higher FSD Scores one and two years before the period in which these

firms were identified by the Securities and Exchange Commission as having

materially misstated their financial statements.8 The decrease in the FSD Score

leading up to the AAER period is consistent with the argument that the SEC only

pursues firms that engage in the most egregious misstatements and only once those

firms run out of room to manipulate their accounting numbers (Dechow et al. 2010,

2011). Taken together, our results suggest that some firms engage in activities that

allow their financial statement errors to remain undetected by the SEC, yet such

activities leave a trace of the errors in features of the distributional properties of

financial statement numbers.

The remainder of the paper proceeds as follows. Section 2 discusses the paper’s

motivation and contribution. Section 3 describes the foundations of Benford’s Law

and provides intuition for its use in accounting. Section 4 discusses our sample and

7 We follow Dechow et al. (2011) and use the term ‘‘material misstatement’’ to refer to SEC AAERs,

which the SEC itself refers to as ‘‘alleged fraud.’’
8 This pattern is consistent with Dechow et al. (2011), who show an increase in abnormal accruals and a

higher probability of manipulation in the years leading up to a material misstatement.
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presents descriptive statistics. Section 5 establishes financial statement conformity

and provides descriptive evidence on the relation between Benford’s Law and

commonly used measures of accounting quality. Section 6 examines the relation

between Benford’s Law and ex post measures of accounting errors, and Sect. 7

concludes.

2 Motivation and contribution

The level of errors in financial statement data has a first-order impact in capital

markets (Bushman and Smith 2003). Literature in accounting, finance, and

economics has highlighted the importance of financial statements for efficient

resource allocation, financial development, employment contracts, debt contracts,

cost of capital, and efficiency of equity and debt market prices (e.g., Rajan and

Zingales 1998; Rajan and Zingales 2003a, b; La Porta et al. 2000; Duffie and Lando

2001; Francis et al. 2004; Francis et al. 2005). Consequently, prior research in

accounting and finance has spent significant effort constructing and evaluating

measures of accounting quality (e.g., Jones 1991; Beneish 1999; Dechow and

Dichev 2002).

However, prior literature also outlines the limitations of existing measures (e.g.,

Dechow et al. 2010). We contribute to this literature by implementing a measure

that overcomes many of these limitations. First, the FSD Score does not require

time-series or cross-sectional data to estimate and does not model the error as a

residual from a prediction model. Estimating residuals in time-series or cross-

sectional models (e.g., the Jones model or Dechow and Dichev 2002) assumes that

the estimated coefficients are identical over time or in the cross-section. Therefore,

any unobserved change in those coefficients caused by underlying firm changes will

also change the estimated financial statement error. As such, these estimation

techniques may bias inferences since the measures will inherently be correlated with

the underlying economic reasons that caused the estimated model to deviate in the

time series or cross section.

Second, based on its theoretical derivation, the measure is unlikely to have an ex

ante relation with underlying firm characteristics or business models since those

characteristics or models do not theoretically cause firms to have financial statement

items that start with 1, 2, or any other digit. For example, theoretically, a loss firm is

as likely as a profitable firm to have a revenue realization that starts with 1. It may,

however, be the case that loss firms are more likely to have errors—which is exactly

what the measure aims to capture. If, on the other hand, a loss firm does not have

errors, there will not be a deviation. This aspect of the measure is a significant

advantage in that, unlike accruals measures, a deviation is not caused by firm

characteristics or business models. That is, the levels or changes in operating

performance are not expected to change the distribution of the first digits as long as

financial statements reflect these changes or levels accurately. Correlations with

firm characteristics or business models are a major limitation of the accruals-based

models in that that they inherently depend on firm performance (Dechow et al.

2010; Owens et al. 2013).

Benford’s Law and Financial Statement Errors 1545

123



Third, the measure does not require forward-looking information. Using forward-

looking information, such as future realizations of cash flows (e.g., Dechow and

Dichev 2002), reduces the usefulness of certain measures in settings where relying

on such information is infeasible. For example, it is not possible to use these

measures, as originally developed, for trading strategies that rely on timely

identification of errors. While using lagged values of these measures can give

significant insights into certain questions (such as identifying risk factors), they

cannot answer questions related to the information content of disclosures. Using

these measures with perfect foresight is also a challenge because, in addition to

facing look-ahead bias, if the realization of forward-looking information is

correlated with current information, then their use may create bias in inferences.

Fourth, the measure does not require returns or price information. This requirement

limits the usefulness of other measures and creates selection bias that may be acute in

certain settings. Fifth, it does not require identifying managerial incentives to

manipulate earnings like other measures (Beneish 1999; Dechow and Skinner 2000).

Identifyingmanagerial incentives ex ante tomodel errors limits the usefulness of these

measures as they assume knowledge of the incentives. Sixth, certainmeasures, such as

Beneish’s M-Score, are constructed as a linear combination of firm-level performance

variables, such as grossmargin and sales growth.While thesemeasures are very useful

in many settings, they are, by construction, correlated with firm performance, making

it difficult to draw conclusions about errors that are separate from firm performance.

Seventh, the measure is scale independent and thus fits to every currency or size.

Eighth, it is available to essentially every firm with accounting information, even

private companies where such information exists.

We are not the first researchers to use Benford’s Law as an error detection tool.

The idea that Benford’s Law could be used to detect errors in economic data was

first suggested by Varian (1972) with relation to economic forecasts. More recently,

Michalski and Stoltz (2013) showed that this method can be used to detect errors in

macroeconomic data. Carslaw (1988) used a variant of Benford’s Law to argue that

firms in New Zealand whose earnings did not conform to the law were rounding up

their earnings numbers. While Thomas (1989) showed similar results for US firms,

he further found that the relation inverts for loss firms by demonstrating a greater

(lower) than expected frequency of 9’s (0’s) for such firms. Since Carslaw (1988)

and Thomas (1989) are interested in showing that pooled earnings numbers are

rounded to a reference point, they focus strictly on the distribution of the second

digit of the distribution of earnings and do not make firm-year inferences.9 The

advancement in the use and development of Benford’s Law in accounting, and

particularly in tax settings, can be found in inquiries by Mark Nigrini and his

coauthors. His work has largely focused on internal transactional data from

individual financial accounts and personal income tax return data. For example,

Nigrini (1996) uses Benford’s Law to examine items such as the interest received

and interest paid on individual tax returns and finds a higher (lower) than expected

frequency of 1’s (9’s) on interest received (paid). Nigrini and Miller (2009) provide

a guide to auditors for how to use Benford’s Law to detect errors in transactional

9 Strategic rounding has also been documented by Grundfest and Malenko (2009).
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data, and Nigrini (2012) demonstrates how Benford’s Law can be used to assess

errors within the accounts receivables of a firm when one has access to invoice-level

data. Relatedly, Durtschi et al. (2004) provide a practitioner’s guide for auditors on

potential uses of Benford’s Law to uncover fraud in transactions from individual,

internal financial accounts.10

Considering the extant literature on Benford’s Law, we are unaware of any large-

scale application of it to detect errors in the firm-year data found in external corporate

financial reports. The literature has largely restricted itself to the auditing of internal

transactional data from individual accounts, tax returns, or deviations of one account

across several firms (such as earnings per share). Distinct from prior literature, we

employ a measure of annual financial statement conformity to Benford’s Law on a

firm-year basis for the composite distribution of the leading digits from all numbers

contained in a firm’s annual financial statements. Our measure can be created solely

using publicly available information, making it available to anyone interested in

analyzing the level of errors in firm-year financial data.

3 Foundations of Benford’s Law

3.1 Background

Benford’s Law is a mathematical property discovered in 1881 by astronomer Simon

Newcomb, who noticed that the earlier pages in books of logarithms were more

worn than the latter pages. He inferred from this observation that scientists looked

up smaller digits more often than larger digits and determined that the probability

that a number has a first digit, d, is:

P the first digit is dð Þ ¼ Log10 dþ 1ð Þ � Log10 dð Þ; where d ¼ 1; 2; . . .; 9:

This equation gives us the theoretical distribution of what is now commonly

referred to as Benford’s Law, or the expected frequency of the first digits 1 through

9. And the distribution resulting from this equation is:

1 2 3 4 5 6 7 8 9

0.301 0.1761 0.1249 0.0969 0.0792 0.0669 0.058 0.0512 0.0458

In 1938, physicist Frank Benford tested Newcomb’s discovery on a variety of

datasets, including the surface areas of rivers, molecular weights, death rates, and the

numbers contained in an issue of Reader’s Digest and found that the law held in each

10 Benford’s Law has also been employed in auditing software, such as ACL. However, similar to prior

research, its use has been limited to internal transactional data on a digit-by-digit (not distributional)

basis. To our knowledge, prior to this paper, no commercial auditing software computes the conformity of

the entire distribution of first digits, nor assesses firm-year conformity from external corporate financial

reports.
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dataset (Benford 1938). Some years later, Hill (1995) provided a formal derivation of

Benford’s Law. Hill’s theorem states that, if distributions are selected at random and

random samples are then taken from each of these distributions, the first digits of the

combined mixture distribution will converge to the logarithmic or Benford distribution.

For a distribution to deviate from Benford’s Law, certain types of errors must be

introduced. For example, evidence suggests that stock indices’ returns conform to

Benford’s Law (Ley 1996), which allows us to compare the law with the empirical

distribution of the first digits from the monthly returns of the Fairfield Sentry Fund,

a fund-of-funds that invested solely with Bernie Madoff, during the 215 months in

which it reported returns (Blodget 2008):

1 2 3 4 5 6 7 8 9

0.396 0.142 0.104 0.071 0.075 0.066 0.061 0.066 0.019

One would expect unaltered returns to conform to Benford’s Law, but this

distribution differs significantly from the theoretical distribution above, indicating

that non-zero mean errors were added to the returns data.

3.2 Measuring conformity and deviation from Benford’s Law

Measuring whether a dataset conforms to Benford’s Law has been the subject of some

debate in the field of mathematics (Pike 2008; Morrow 2010). Test statistics can be

strongly influenced by the pool of digits used, with some statistics requiring near-perfect

adherence to the distribution as the pool becomes large (Nigrini 2012). We employ two

statistics when measuring conformity to Benford’s Law—the Kolmogorov–Smirnov

(KS) statistic and theMeanAbsolute Deviation (MAD) statistic. The KS statistic uses the

maximum deviation from Benford’s distribution, determined by the cumulative

difference between the empirical distribution of the digits from 1 to 9 and the theoretical

distribution. (SeeAppendix1 for the distribution andcalculationmethods.) This statistic is

useful for firm-level examinations of conformity to Benford’s distribution since there

exists a critical value against which to test, that is, the critical value at the 5 %

level = 1.36/
ffiffiffi

P
p

, where P is the total number, or pool, of digits used.11

The KS statistic becomes less useful as P increases, however. To establish (fail to

reject) the null hypothesis of distributional conformity at the 5 % level, the statistic

requires near perfect conformity of the underlying empirical distribution to

Benford’s Law for large pools of digits (Nigrini 2012). As a result, the KS statistic

tends toward over-rejection as the pool of digits increases. The MAD statistic, on

the other hand, does not take P into account. The MAD statistic is calculated as the

11 Another method to examine conformity relies on the expected distribution of the first two digits (from

10 to 99) of a number (Nigrini 2012). We cannot employ the first two digits in our setting because the

number of buckets required to generate the distribution is 90 (i.e., leading two digits, 10–99) instead of 9

(i.e., leading first digits 1–9).
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sum of the absolute difference between the empirical frequency of each digit, from 1

to 9, and the theoretical frequency found in Benford’s Law, divided by the number

of leading digits used. The scale invariance of the MAD statistic makes it useful

when examining large pools of digits, as well as when comparing financial

statements across firms and through time, since the number of line items in an

annual report can vary across industries and through time. Consequently, we use the

FSD Score based on the KS statistic only in our descriptive tests when we examine

the number of individual firm-years that conform to Benford’s distribution, that is,

where we require a critical value to assess conformity. In all other tests throughout

the paper, we rely exclusively on the FSD Score based on the MAD statistic to

assess the shift in the empirical distribution.12

3.3 Theoretical underpinnings of the FSD score

Appendix 2 details the theoretical underpinnings of the FSD Score. In summary, the

intuition behind why empirical data follow Benford’s Law can be distilled into two

mathematical facts. The first fact relies on using a mathematical approach to determine

the first digit of any number N, which is to take its base 10 log and find the fraction

behind the integer (i.e., the remainder or mantissa). If the fraction is between 0 and

0.301, the original number N will start with one, if the fraction is between 0.301 and

0.477 (interval of 0.176), the number N will start with 2, and so forth. Hence, the

intervals between the fractions after the decimal point of the log number that determine

its first digit are the same as the probabilities defined byBenford’s Law. The second fact

is that, if the probability distribution function of the log of the original number N is

smooth and symmetric, the probability that a number will be in the interval between

n and n ? 0.301, where n is any integer in this logarithmic distribution, is 30.1 %.

Similarly, the probability that a number will be in the intervals between n ? 0.301 and

n ? 0.477 is 17.6 %, and so forth. Because distributions in nature tend to be smooth and

symmetric due to the Central Limit Theorem, datasets tend to follow Benford’s Law

(Pimbley 2014). For a distribution that generally followsBenford’s Law to diverge from

the law, certain types of errors have to be introduced to the data in a way that makes the

distribution of the base 10 log less smooth or less symmetric.

3.4 Numerical and simulation analyses

3.4.1 Numerical analysis

Since accounting data are a series of estimations of the true cash flow realizations of

the underlying items (for example, cash flows from sales, cash flows from payments

12 While two other statistics, the Z-statistic and the Chi square statistic, were widely used in the early

stages of the forensic accounting literature, in this area researchers have progressed to using the MAD

statistic (Cleary and Thibodeau 2005; Nigrini 2012). The main deficiency of using the Z-statistic to

examine Benford’s Law is that it examines conformity of only a single digit at a time, rather than the

composite distribution of digits. The main deficiencies of using the Chi-square statistic is that, unlike the

MAD statistic, it assumes observational independence and, similar to the KS statistic, is sensitive to the

pool of digits used.
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to employees, etc.), the resulting distribution of the mixture of these cash flow

realizations may fulfill the conditions of Hill’s theorem and hence follow Benford’s

Law. In Appendix 3, we show under certain assumptions that this is the case with

accounting data using a stylized numerical model. We also show that, if the

accounting estimates of the true cash flow realizations are without error, the

distribution of the accounting estimates (the financial statements) will follow

Benford’s Law exactly. While we cannot prove or empirically demonstrate that the

actual cash flow realizations of accounting data will follow Benford’s Law (as they

are unobservable), Fig. 1 (Appendix 3) reveals that the actual estimates of these

realizations (the accounting line items), which include errors and manipulations,

follow Benford’s Law for the whole sample and for the typical firm, and these

distributions in the log scale are symmetric and smooth (and near normal).

We then numerically characterize the types of errors in accounting data that are

likely to create deviations from Benford’s Law. For brevity, we summarize the

results from the numerical analysis here. In sum, we show that, under certain

parameters, the FSD Score is increasing with the size of the error. However, not

all errors create deviations from Benford’s Law; the error needs to be applied in

different rates to different items in the distribution. That is, mean-zero errors will

not create deviations from Benford’s Law, and neither will an error that is

constant across all items. Empirically, it is unlikely that the errors will be identical

in all line items in the financial statements. If we introduce non-zero mean errors

to some of the underlying distributions in the mixture distribution (i.e., errors to

some of the line items in the financial statements) or errors of different size to

different items, then the larger the error, the larger is the deviation from Benford’s

Law. For example, overestimating revenue, underestimating expenses, meet-or-

beat behavior, or a combination of these are likely to introduce deviation from the

law. More specifically, the analysis indicates that overestimating revenue by itself

(Case 3A) or together with the associated cost of goods sold (Case 3B) will create

deviations from Benford’s Law. Furthermore, an error that is correlated with the

size of the item (Case 3C) will create deviations in the financial statements. The

reason is that introducing an error to the underlying distributions in the mixture

creates asymmetries and lack of smoothness in the mixture distribution. This, in

turn, creates measurable deviations from Benford’s Law. To provide intuition

using real-world data, we show in Appendix 4 that when we introduce errors into

observable realizations of equity prices, the distribution of market values of equity

begin to deviate from Benford’s Law as the errors increase. The advantage of this

simulation is that, unlike cash flows realizations, stock price realizations are

observable, so we can compare the realized distribution to the distribution with

error.

3.4.2 Simulation analysis

To further demonstrate how errors could alter conformity to Benford’s Law, we run

a simple simulation that involves changing the value of a single line item in a firm’s

income statement and calculate how that change affected the financial statements

overall. Because we need a firm that is unlikely to have a manipulated financial
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statement, we choose to manipulate sales for Alcoa’s 2011 financial statements,

which is a firm that generally, but not perfectly, conforms to Benford’s Law. We

manipulate revenues since revenue is an item that managers may be tempted to

change to mask poor performance and is interconnected with many other financial

statement items. As a result of the sales manipulation, a firm likely needs to adjust

cost of goods sold and tax expense accordingly. Therefore, we add three journal

entries to the original numbers:

These three journal entries affect more than 30 line items in Alcoa’s financial

reports (see Appendix 5). We then re-measure the FSD Score based on the

manipulation and the changes the manipulation induced in the financial statements.

The results of this simulation, when run 1,000 times, show that the random revenue

manipulation increased the FSD Score 95 % of the time. The evidence from the

simple simulation suggests that revenue manipulation in firms that conform to

Benford’s Law is likely to result in an increase in the deviation from Benford’s Law.

These results support the implications of our numerical example in the prior section.

4 Sample selection, variable measurement, and descriptive statistics

4.1 Sample selection and variable measurement

Our sample consists of all annual financial statement data from Compustat for the

period 2001–2011. For simplicity and objectivity, we use all Compustat variables

that appear in the balance sheet, income statement, and statement of cash flow to

calculate the FSD Score.13 For variables reported with an absolute value of less than

1, we take the first non-zero digit. Variables with missing values are ignored. We

remove any firm-years from the sample where the total number of line items used to

calculate the FSD Score for a given firm-year is less than 100.14 We also remove

firms with negative total assets. All non-indicator control variables in the total

sample of 43,332 firm-years are then winsorized at the 1 and 99 % levels to

eliminate the influence of outliers. (See Appendix 6 for further details, as well as for

the definitions of the control variables.)

1. Increase accounts receivables Increase revenue

2. Increase cost of goods sold Decrease inventory

3. Increase tax expense Increase tax payable

13 We do, however, exclude data items provided by Compustat that do not appear on firms’ financial

statements, e.g., price data. Furthermore, while we would prefer to use the Edgar 10-K filing itself to

overcome possible Compustat shortcomings (e.g., missing variables, modified definitions, etc.), extracting

the current year’s financial statements from a given 10-K presents technological obstacles that make

automated extraction infeasible as well as susceptible to its own biases.
14 The rationale for doing so is to ensure we do not mechanically create measurement error. Including

firm-years with fewer than 100 line items does not alter our results.
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As previously discussed, the primary measure we use throughout the paper to

assess the conformity of the empirical distribution of annual financial statements to

Benford’s theoretical distribution is the FSD Score based on the MAD statistic, as it

is insensitive to the size of the pool of first digits used (i.e., the number of financial

statement line items). While the FSD Score based on the KS statistic also tests

conformity to the law and, unlike the FSD Score based on the MAD statistic, has

established critical values against which to test, it becomes unreliable as the pool of

digits increases. We therefore only rely on the FSD Score based on the KS statistic

when gauging the conformity of individual firm-years.

We use several proxies for accruals-based earnings management and earnings

manipulation. For accruals-based earnings management, we calculate the 5-year

moving standard deviation of the Dechow-Dichev residual (STD_DD_RESID) from

Dechow and Dichev (2002), as suggested by Francis et al. (2005); the absolute value

of the accruals quality residual (ABS_JONES_RESID) from the modified Jones

model (Jones 1991), as suggested by Kothari et al. (2005); the absolute value of

working capital accruals (ABS_WCACC); and the absolute value of working capital

accruals (ABS_RSST), as defined by Richardson et al. (2005). For earnings

manipulation, we calculate the M-Score following Beneish (1999) and create an

indicator variable (MANIPULATOR) equal to 1 if the M-Score is greater than

-1.78, indicating that a firm may be manipulating its earnings. We also calculate

the F_SCORE, the scaled probability of earnings management or a misstatement for

a firm-year based on firm financial characteristics, following Dechow et al. (2011).

As for other variables of interest for our tests, RESTATED_NUMS is an

indicator variable assigned to all firms that have both restated and originally

reported numbers in a year available through Compustat and, for the sake of

materiality, at least 10 restated variables available in that year.15 RESTATED_

NUMS is equal to 1 if the reported numbers are restated and zero if the numbers are

what was originally reported. Following Shumway’s (2001) hazard model in a logit

regression setting, AAER is an indicator variable equal to 1 for the first year in

which a firm was identified by the SEC as having materially misstated its financial

statements.

4.2 Descriptive statistics

Table 1 Panel A provides descriptive statistics for the full sample of firms from

2001 to 2011. The FSD Score’s mean is 0.03 with a standard deviation of 0.009.

Table 1 Panel B presents Spearman correlations above the diagonal and Pearson

correlations below the diagonal. In untabulated results, autocorrelations between the

contemporaneous FSD Score and prior year’s FSD Score is 0.26 for the Pearson

correlation and 0.23 for the Spearman correlation. These correlations are significant

but also suggest that the measure is not too sticky over time. Table 1 Panel C groups

firm-years by the number of line items available to calculate the FSD Score and

examines the average FSD Score for firm-years in the top and bottom 1 % of line

items available, as well as the average FSD Score for firm-years by tercile. Panel C

15 Removing the materiality condition does not alter our inferences.
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suggests that the FSD Score is decreasing with the number of line items in the

financial statements. In Table 1 Panel D, we group firm-years by total assets to

calculate FSD Score and examine the average FSD Score for firm-years in the top

and bottom 1 % based on firm size, as well as the average FSD Score for firm-years

by tercile. Panel D suggests that the FSD Score is decreasing in firm size.

5 Establishing conformity

5.1 Aggregate and firm-year conformity to Benford’s Law

Table 2 investigates how the aggregate empirical distribution of numbers reported

in financial statements conforms to Benford’s Law. That is, the FSD Score is

calculated by measuring the frequencies of the first digits from all firm-years in the

sample. We begin with an aggregate analysis of the numbers reported in financial

statements before proceeding to a firm-year analysis to determine whether the

numbers contained in financial statements generally conform to Benford’s Law. In

the aggregate, the FSD Score is 0.0009, well below 0.006, which can be considered

close conformity to the law in very large samples (Nigrini 2012).16 This result can

also be seen graphically in Fig. 2 (Appendix 7). Panels B and C of Table 2 show

similar results when examining aggregate financial results by industry based on the

Fama–French 17-industry classification and by fiscal year. This table supports the

conjecture that the empirical distribution of the frequency of first digits in aggregate

financial results conforms to Benford’s Law.

Table 3 examines individual firm-year conformity to Benford’s Law. Here, the

FSD Score based on the KS statistic is used because it enables us to assess whether

the financial statements for a given firm-year adhere to the law. Of the 43,332 firm-

years in our sample, 37,104, or 86 %, conform to the law at the 5 % level or better,

as shown in Panel A.17 Figure 3 (Appendix 7) provides examples of the empirical

distributions for two firm-years, one that conforms to Benford’s distribution at the

5 % level (Verizon Communications 2001) and one that does not conform (Sprint

Nextel 2001). While there are some kinks in Verizon’s distribution, the overall

divergence from Benford’s distribution is visually apparent for Sprint Nextel, which

experienced a restatement. We examine the firm-year FSD Scores for individual

financial statements in Panel B of Table 3, which shows that 91, 79, and 98 % of

firm-year balance sheets, income statements, and cash flow statements conform,

respectively. Panel C sorts firms by industry and shows a minimum conformity of

82 % for all firms in a given industry and a maximum conformity of 91 %. Panel D

16 As noted previously, unlike the FSD Score based on the KS statistic, the FSD Score based on the MAD

statistic has no critical value against which to test. However, based on simulation analysis, Nigrini (2012)

suggests, when using the MAD statistic, a value of 0.006 or lower can be considered as close conformity

to Benford’s Law.
17 While we do not claim that all 16 % of the firms that deviate from Benford’s Law engage in material

misreporting, this estimate is consistent with Dyck, Morse, and Zingales (2013), who report that the

probability of a firm committing fraud is 14.5 % a year.
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sorts firms by fiscal year and shows all years exhibit between 85 and 87 %

conformity. Overall, Table 3 supports our conjecture that a significant majority of

firm-year empirical distributions conform to Benford’s Law.18

5.2 Conformity to Benford’s Law: financial statement partitions and firm
characteristics

We next examine the relation between Benford’s Law and partitions of firms’

financial statements. Table 4, Panel A individually measures the aggregate FSD

Score for the balance sheet, income statement, and statement of cash flows for all

firm-years in our sample. To measure the aggregate FSD Score, we calculate the

FSD Score using all available variables that make up each financial statement for all

firm-years. We find that, on average, the aggregate FSD Score for the income

statement diverges the most from Benford’s Law, which suggests that the income

statement contains more errors as compared to the balance sheet and statement of

cash flows.

Panel B of Table 4 provides an additional financial statement partition by

financial statement subcategories, that is, assets versus liabilities, income versus

expenses. As in Panel A, we compute the aggregate FSD Score; however, we now

categorize line items based on where they fall in the appropriate subsections of the

financial statements. The evidence reveals that, on average, equity and liability

accounts have higher FSD Scores than asset accounts, suggesting that equity and

liability accounts contain a relatively higher level of errors. Furthermore, income

accounts, on average, have higher FSD Scores than the expense accounts,

suggesting that income accounts contain a relatively higher level of errors.

Having established the types of financial statements and financial statement

accounts that exhibit greater conformity, we enhance our understanding of the types

of firms that are more likely to conform to Benford’s Law in Table 5. To do so, we

divide firm-years into terciles based on their FSD Scores and calculate the means of

several firm characteristics based on this segmentation. We find that firms with high

FSD Scores tend to be smaller, younger, more volatile, and growing.

5.3 The relation between Benford’s Law and existing measures of reporting
quality

To shed light on the types of firm behavior associated with the FSD Score, we

examine the relation between the FSD Score and proxies for accruals-based

earnings management and earnings manipulation in Table 6. Panel A presents

univariate analysis by dividing firm-years into terciles based on the FSD Score and

calculating the means of these proxies for each tercile. In examining the accrual

quality measures, firms with higher FSD Scores tend to have more working capital

accruals, more discretionary accruals and higher values of the Dechow–Dichev

18 These results further imply that the pre-errors financial statements follow Benford’s Law because, if

most financial statements follow Benford’s Law after-errors, it is likely that firms follow Benford’s Law

before errors were introduced.
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measure, and are more likely to be a manipulator according to Beneish’s M-Score.

The result pertaining to the F_Score suggests that firms with higher FSD Scores are

less likely to be accused by the SEC of making material misstatements, which we

explore in detail in Sect. 6. Finally, inspecting the earnings quality measures, firms

with higher FSD Scores tend to have less persistent earnings and are more likely to

have a loss. Panel B presents multivariate analysis on the relation between the FSD

Score and proxies for accruals-based earnings management and earnings manip-

ulation. The results of the multivariate regression generally mirror the evidence

provided in Panel A.19

6 Benford’s Law and ex post measures of accounting errors

6.1 Univariate evidence

In our final set of analyses, to understand whether Benford’s Law captures firms

with a higher propensity for errors in their accounting results ex post, we examine

the relation between the FSD Score and several ex post measures of earning

management. In Table 7, we conduct univariate analyses on restated data, loss

firms, firms that just beat the zero earnings threshold, and SEC Accounting and

Auditing Enforcement Releases (AAERs). We find that the FSD Score is lower after

firms restate their misstated data, higher for loss firms, higher for firms that just beat

the zero-earnings benchmark, and lower for firms that receive an AAER. As alluded

to previously, we explore the latter finding regarding AAERs in further detail in

Sect. 6.2.3.

6.2 Multivariate evidence

6.2.1 Restated data

Firms that misstate their financial results by manipulating select accounts may

report numbers with first digits that are not, in expectation, driven from the same

interactions of random distributions that create conformity to Benford’s Law. Given

the nature of double-entry bookkeeping, this lack of consistency should trickle

through several of the financial statement line items. For example, a firm that is

trying to increase earnings for the current period may underreport depreciation. This

manipulation will affect net property, plant, and equipment, accumulated depreci-

ation, depreciation expense, operating income, taxable income, and net income.

After a restatement, however, financial reports should more closely represent the

‘‘true’’ nature of the distribution of leading digits found within the financial

statements. As such, we conjecture that the empirical distribution of restated

19 The modified Jones model becomes statistically insignificant in explaining FSD only after including

ABS_WCACC and ABS_RSST as they capture similar constructs.

Benford’s Law and Financial Statement Errors 1555

123



financial statements will more closely follow Benford’s distribution than the

empirical distribution of misstated financial reports.

To examine our conjecture, we investigate all firm-years in Compustat from 2001

to 2011 where both misstated and restated financial results are available (in

Compustat, datafmt = STD for original and datafmt = SUMM_STD for restated).

We then create an indicator variable, RESTATED_NUMS, which is equal to 1 for

results that have been restated and 0 for the originally reported results and regress it

on the FSD Score. Since the regression compares the firm to itself, we do not

include additional firm control variables in this specification.

Table 8 presents the results of our test. The coefficient on RESTATED_NUMS

in Column (1) is -0.0009 and is statistically significant at the 1 % level. To ensure

that our measure of conformity isn’t merely a proxy for existing measures of

accounting discretion, in Column (2) we control for accruals levels, accruals-based

earnings management, and earnings manipulation. When adding these additional

measures, we find similar results. Consequently, we find that the FSD Score is lower

for restated financial results, which implies that the empirical distribution of restated

financials more closely conforms to Benford’s Law. In terms of economic

significance, a 0.001 decrease in the FSD Score represents a 3.5 % reduction in the

mean value of the FSD Score.

6.2.2 Earnings persistence

If deviations from Benford’s Law reflect a decrease in the quality of reported

financial results, greater divergence from the law may signal lower earnings

persistence. The idea is based on the notion that it is less likely that current earnings

will be as informative about future earnings in firms with lower accounting quality

(Richardson et al. 2005). Li (2008) provides support for this argument from a

qualitative disclosure perspective by showing a negative relation between low

financial report readability and earnings persistence. As such, we conjecture that

current earnings will exhibit less persistence for firms with greater divergence from

Benford’s Law.

To test our conjecture, we regress the interaction between net income and the

FSD Score in year t on net income in year t ? 1. In addition to the controls used in

prior tests, following Li (2008), we control for sales growth (SALES_GROWTH),

whether the firm pays a dividend (DIV), the log of the market value of equity

(SIZE), growth (MTB), special items (SI), survivorship (AGE), return volatility

(RET_VOL), and the volatility of net earnings (NI_VOL). The results of this test are

presented in Table 9. The coefficient of -2.6277 on the interaction between the

FSD Score and net income in year t is significant at the 1 % level, which suggests

that divergence from Benford’s Law reflects the informational quality of financial

disclosures.20

20 The addition of an interaction term to the regression between the FSD score, size, and net income does

not alter our results.
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6.2.3 Accounting and Auditing Enforcement Releases

Lastly, in response to the recent debate and renewed efforts by the SEC surrounding

accounting fraud and detection, we examine whether the FSD Score predicts

material misstatements. Based on the criticism leveled at the SEC after disbanding

the accounting fraud group, and the severe underfunding of the SEC’s unit to pursue

detection and enforcement (Gallu 2013; McKenna 2012, 2013; Whalen et al. 2013),

our expectations regarding the FSD Score’s predictive ability of material

misstatements depend on two key factors: the SEC’s own ability to detect material

misstatements and the types of firms that make these misstatements.21 If the SEC

does indeed detect and prosecute all firms that make material misstatements, then a

positive coefficient is expected. However, prior research suggests that SEC AAERs

reflect only firms that experience significant declines in their ability to hide the

misstatements (Dechow et al. 2011), which may result in a nonpositive relation as

FSD Scores decrease.

In our last set of analyses, we follow Shumway (2001) and use the logit

regression equivalent to a hazard model to examine whether the FSD Score predicts

material misstatements. Material misstatements are proxied for by the variable

AAER, which is an indicator variable equal to 1 for the initial year in which a firm

was identified by the SEC as having materially misstated its financial statements

through an Accounting and Auditing Enforcement Release. As before, the

regressions control for accruals levels, accruals-based earnings management,

earnings manipulation, and firm characteristics. In addition to the firm-characteristic

control variables used in prior tables, we also control for change in cash sales

(CH_CS), change in ROA (CH_ROA), soft assets (SOFT_ASSETS), and whether

the firm issued debt or equity (ISSUE).

There are four groups of firms to consider in our analysis: (a) those that do not

manipulate, (b) those that manipulate but do not get caught, (c) those that

manipulate, are caught, but are not prosecuted, and (d) those that manipulate, are

caught, and are prosecuted. The latter three groups will have higher FSD Scores

than the first because they manipulate. Prior literature suggests that only the most

egregious manipulators are prosecuted and only after those firms can no longer

sustain the manipulation (Dechow et al. 2010, 2011). Contingent on having the

ability to manipulate, the FSD Scores of AAER firms should be positively

associated with material misstatements. Inconsistent with our conjectures, Column

(1) of Table 10 shows that the coefficient on the contemporaneous FSD Score is

negative, which may imply that, as AAER firms run out of room to manipulate, their

FSD Scores decrease.

To shed light on this result, Fig. 4 (Appendix 7) shows that, compared to firms

that did not receive an AAER, firms that received an AAER have higher FSD Scores

in the years before the misstatement period. However, there is a striking difference

in the trends of these two types of firms. While firms that were not prosecuted by the

21 According to Dechow et al. (2010): ‘‘… the SEC has limited resources that constrain its ability to

detect and prosecute misstatements. Thus, the SEC may not pursue cases that involve ambiguity and that

it does not expect to win. As a result, the AAER sample is likely to contain the most egregious

misstatements and exclude firms that are aggressive but manage earnings within GAAP.’’
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SEC can maintain their FSD Scores at fairly constant levels, firms that were

prosecuted appear to have a significant decline in their FSD Scores in the years

before the misstatement period. This evidence is consistent with the assertion that

AAER firms are precisely those firms that are unable to sustain the financial

statement manipulation and suggests that FSD Scores in the years leading up to the

SEC recognizing material misstatements may predict material misstatements.

Consistent with our conjectures, Columns (2) and (3) reveal that the FSD Score

from both 1 and 2 years before the misstatement period positively predict material

misstatements. Our prediction results collectively suggest that AAER firms are

prosecuted for making material misstatements only once they run out of room to

manipulate their numbers, forcing them to report numbers that more accurately

reflect their underlying business activities and more closely reflect the theoretical

distribution posited by Benford’s Law. In addition, consistent with critics’ views

that the SEC should ramp up its efforts to detect accounting fraud, these results

provide evidence that firms may be able to evade detection of financial statements

errors, but their manipulations will still leave traces in the distributional properties

of their financial statements in the form of deviations from Benford’s Law.

7 Summary and conclusion

Building on a method used in a variety of disciplines, we propose that firm

stakeholders may find a firm-year measure of financial reporting errors to be a useful

tool to augment existing techniques to assess accounting data quality. Our measure,

the FSD Score, relies on the divergence from Benford’s Law, which states that the

first digits of all numbers in a dataset containing numbers of varying magnitude will

follow a particular theoretical and mathematically derived distribution where the

leading digits 1 through 9 appear with decreasing frequency. This measure has

significant advantages over alternative measures of accounting quality currently

used in the literature. For example, it does not require time-series, cross-sectional, or

forward-looking information, is available for essentially every firm with accounting

information, and is uncorrelated ex ante with firms’ operating performance and

business models.

After providing intuition for the theory behind the measure, we use numerical

methods to demonstrate that financial statements without error are distributed

according to Benford’s Law. We then provide several scenarios to demonstrate the

types of financial statement errors that are likely to create divergence from the law.

For example, overestimating revenue, underestimating expenses, meet-or-beat

behavior, or a combination of these are likely to introduce deviation from the law.

To corroborate the results from the numerical analysis, we provide a simple

simulation to demonstrate that when accounting numbers are manipulated, there is a

high likelihood of an increase in the divergence from the law.

Next, to establish whether the law applies to actual financial statement data, we

show that at the aggregate level, financial statement numbers conform to Benford’s

Law in all industries and years. When assessing the conformity of individual firm-

years, we find that roughly 86 % of firm-years conform to the law as well. In
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examining the financial statements individually, we find that the income statement

has the greatest divergence from Benford’s Law. In examining the financial

statements by account types, we find that equity and liability (in contrast to asset)

accounts, as well as income (in contrast to expense) accounts, have the greatest

divergence from the law.

Turning to firm characteristics, we find that firms that diverge from Benford’s

Law tend to be smaller, younger, more volatile, and growing. To shed light on the

types of firm behavior associated with the FSD Score, we find that proxies for

accruals-based earnings management and earnings manipulation are related to

divergence from Benford’s Law. However, multivariate empirical analysis indicates

that the FSD Score is incremental to these proxies. In addition, firms reporting

losses have weaker conformity to the law, and firms that report just above the zero

earnings threshold have weaker conformity than firms reporting just below zero.

We conclude by examining the relation between divergence from Benford’s Law

and several ex post measures of earning management. Our findings suggest that

when restatements occur, the restated numbers are significantly closer to Benford’s

Law relative to the misstated numbers. Furthermore, as firms’ financial statements

diverge from the law, their earnings persistence decreases. The negative relations

between the FSD Score and these ex post measures of earning management support

our claim that there exists a relation between the level of divergence from Benford’s

Law and the informational quality of reported financial results. Finally, we provide

evidence that the FSD Score may serve investors, auditors, regulators, and

researchers by providing a leading indicator of material misstatements as identified

by SEC AAERs.

To our knowledge, this paper is the first to document whether firms’ annual

financial reports conform to Benford’s Law, how firms’ reports are likely to exhibit

divergence, and the implications for those firms that diverge. In today’s

environment of increasingly electronic, machine-readable disclosures, where

information overload has become the norm, we provide the investment and

regulatory communities with an easily implementable, parsimonious approach for

assessing errors in financial reports.
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Appendix 1

Above is a sample balance sheet. To test its conformity to Benford’s Law, take

the first digit of each number (in bold) and calculate the frequency of the occurrence

of each digit. In this case, there are 28 total numbers and eight appearances of the

number 1, so its frequency is 8/28 = 0.2857.

Next, compare the empirical distribution to Benford’s theoretical distribution:

Digit 1 2 3 4 5 6 7 8 9

Total occurrences 8 5 3 3 2 2 1 2 2

Empirical

distribution

0.2857 0.1786 0.1071 0.1071 0.0714 0.0714 0.0357 0.0714 0.0714

Theoretical

distribution

0.3010 0.1761 0.1249 0.0969 0.0792 0.0669 0.0580 0.0512 0.0458

The Mean Absolute Deviation (MAD) statistic and the Kolmogorov–Smirnov

(KS) statistic can be computed to test the conformity of the empirical distribution to

Benford’s distribution.

How to calculate conformity to Benford’s Law, an empirical example

Assets Liabilities

Cash 1364 Accounts payable 1005

Accounts receivable 931 Short-term loans 780

Inventory 2054 Income taxes payable 31

Prepaid expenses 1200 Accrued salaries and wages 37

Short-term investments 38 Unearned revenue 405

Total short-term assets 5587 Current portion of long-term debt 297

Total short-term liabilities 2555

Long-term investments 1674

Property, plant, and equipment 4355 Long-term debt 6507

(Less accumulated depreciation) 2215 Deferred income tax 189

Intangible assets 608 Other 587

Other 84

Total liabilities 9838

Total assets 14,523

Equity

Owner’s investment 1118

Retained earnings 2732

Other 835

Total equity 4685

Total liabilities and equity 14,523
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1. The KS statistic is calculated as follows:

KS ¼ Maxð AD1 � ED1j j; AD1 þ AD2ð Þ � ED1 þ ED2ð Þj j; . . .; AD1 þ AD2ðj
þ � � � þ AD9Þ � ED1 þ ED2 þ � � � þ ED9ð Þj

where AD (actual distribution) is the empirical frequency of the number and ED

(expected distribution) is the theoretical frequency expected by Benford’s

distribution.

In this example,

Maxð 0:2857� 0:3010j j; 0:2857þ 0:1786ð Þ � 0:3010þ 0:1761ð Þj j; . . .;
ðj 0:2857þ 0:1786þ 0:1071þ 0:1071þ 0:0714þ 0:0714þ 0:0357þ 0:0714þ 0:0714ð Þ
� 0:3010þ 0:1761þ 0:1249þ 0:0969þ 0:0792þ 0:0669þ 0:0580þ 0:0512þ 0:0458ð ÞjÞ ¼ 0:0459

To test conformity to Benford’s distribution at the 5 % level based on the KS

statistic, the test value is calculated as 1.36/HP, where P is the total number, or pool,

of first digits used. The test value for the sample balance sheet is 1.36/

H28 = 0.2570. Since the calculated KS statistic of 0.0459 is less than the test value,

we cannot reject the null hypothesis that the empirical distribution follows Ben-

ford’s theoretical distribution.

2. The MAD statistic is calculated as follows:

MAD = (
P

i=1
K |AD-ED|)/K, where K is the number of leading digits being

analyzed.

In this example,

(|0.2857 - 0.3010| ? |0.1786 - 0.1761| ? |0.1071 - 0.1249| ? |0.1071

- 0.0969| ? |0.0714 - 0.0792| ? |0.0714 - 0.0669| ? |0.0357 - 0.0580|

? |0.0714 - 0.0580| ? |0.0714 - 0.0458|)/9 = 0.0140.

Since the denominator in MAD is K, this statistic is insensitive to scale (the pool

of digits used, or P). This statistic becomes more useful as the total pool of first

digits increases, while the KS statistic become more sensitive as P increases.

Note that there are no determined critical values to test the distribution using

MAD.

Appendix 2: Theoretical underpinnings of the FSD Score

There are two mathematical facts that explain the prevalence of Benford’s Law in

empirical data. First, it can be shown that the mantissa (the fraction behind the

decimal point of an integer) of the log 10 of a number is what determines the first

digit of that number. If the mantissa is between log(d ? 1) and log(d), where d is an

integer between 1 and 9, then the original number will start with d. Second, since

many distributions observed in nature and all of those that are characterized by

Hill’s (1995) theorem, are smooth and symmetric in the log scale (because of

variations of the Central Limit Theorem), the probability of being in a region
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between n ? log(d ? 1) and n ? log(d), where n is any integer in the logarithmic

distribution, is exactly log(d ? 1) - log(d). This is precisely the probability given

by Benford’s Law. We detail this intuition in the following subsections.

Determining the first digit of a number

The first fact that mathematically explains the prevalence of Benford’s Law is that

we can obtain the leftmost (or first) digit of a positive number by using the

following algorithm (Smith 1997; Pimbley 2014). First, calculate the base 10 log of

the number. For example, the base 10 log of 7823.22 is 3.893. Second, isolate the

mantissa, that is, the part of the number to the right of the decimal point; in our

example, it will be 0.893. Third, raise 10 to the power of the mantissa found in the

prior step; in our example, 100.893 is 7.81. Fourth, the integer of the number found in

the prior step is the first digit of the original number. In our case, the integer of 7.81

is 7, which is indeed the first digit of our original number 7823.22.

This algorithm shows that the first digit of a number can be recovered from the

remainder (or mantissa) of its base 10 log. More formally, any number N will start

with the digit d (where d is between 1 and 9) if and only if the mantissa of log(N) is

between log(d ? 1) and log(d). This means that N will start with 1 if the mantissa of

the log of N is between log(2) = 0.301 and log(1) = 0. The number N will start

with 2 if the mantissa of the log of N is between log(3) = 0.477 and log(2) = 0.301,

and so forth. The advantage of this algorithm is that it takes numbers with any

length and isolates them to a length of only one digit. Furthermore, as this example

shows, the differences of log(d ? 1) - log(d) for digits 1 through 9, which

determine the intervals between the first digits, are exactly the probabilities that a

first digit will be d as defined by Benford’s Law, which leads us to the second

mathematical fact.

Probability distribution functions and the area under the curve: uniform
distributions

The second mathematical fact that empirically determines the prevalence of the first

digit 1 and the rarity of the first digit 9 is that the area under the curve of a probability

density function (PDF) is the probability that a number drawn from this distribution

will be in this range. To demonstrate the mechanics of this fact, it is convenient to

examine the first digits on the log 10 scale rather than the linear scale. Therefore, we

initially consider a uniform distribution between 0 and 6 on the log scale (which

implies that the distribution ranges from 1 to 1 million on a linear scale). The PDF of

this distribution is PDF(log(N)) = 1/6, and the graphical representation is:
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The solid black bars in above figure are the areas under the curve between every

integer n in the distribution and n ? log(2) = n ? 0.301. If N is a random number

drawn from this distribution and falls in any of these areas, it will begin with the

number 1 in the linear scale. The reason is that, according to the algorithm discussed in

the previous section, any number that is between an integer n and n ? 0.301 in the log

scale will start with 1 in the linear scale because its mantissa is between 0 and 0.301.

To obtain the probability that a number from this distribution (uniform in the log

scale) will start with the digit 1 in the linear scale, we must find the area under the

curve between n and n ? log(2). We can obtain this by taking the integral of the

PDF between n and n ? log(2). Thus, the probability that a first digit, d, is 1 can be

expressed as:

X

5

n¼0

r
nþlog 2ð Þ

n

1

6
dN ¼ 1=6 � 0:301� 0ð Þ þ 1=6 � 1:301� 1ð Þ þ 1=6 � 2:301� 2ð Þ

þ 1=6 � 3:301� 3ð Þ þ 1=6 � 4:301� 4ð Þ þ 1=6 � 5:301� 5ð Þ
¼ 0:301 ¼ log 2ð Þ�logð1Þ

The same rationale applies for every first digit d where d can equal 1 to 9. That is,

if N is distributed uniformly in the log scale, it will follow Benford’s Law because t

probability of obtaining the first digit d is exactly log(d ? 1) – log(d), which is

Benford’s Law. More formally, in the case of our uniform distribution:

X

5

n¼0

r
nþlog dþ1ð Þ

nþlog dð Þ

1

6
dN

¼ log dþ 1ð Þ�log dð Þ

Probability distribution functions and the area under the curve: normal
distributions

While the uniform distribution is useful in explaining the intuition, it is not as useful

when applying the intuition to empirical data. Two types of distributions arise

naturally in many processes because of variations of the Central Limit Theorem, the
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normal and log-normal distributions. The intuition above applies in these cases as

well. As long as these distributions are spread across a few orders of magnitudes in

the log scale (e.g., range between 2 and 4 in the log-scale, which translates to

100–10,000 in the linear scale), they will follow Benford’s Law.

To see this clearly, we need to examine a distribution that is distributed normally on

the log scale, which means it is log normal in the linear scale. (The distinction between

natural log or base 10 log is not crucial here for the shape of the distribution.) Consider

a normal distribution with a mean of 5 and standard deviation of 1 in the log scale.

PDF Log Nð Þ; l ¼ 5; r ¼ 1ð Þ ¼ 1
ffiffiffiffiffiffi

2p
p e�

ðx�5Þ2
2

The shaded area in above figure represents all the areas between any integer n

and n ? 0.301. While it is not clear to the naked eye as it was in the case of the

uniform distribution above, the area under the curve in all sections between n and

n ? 0.301 is the probability of a number in a linear scale starting with 1. Here, the

probability that a first digit is 1 is:

X

1

n¼�1

Z

nþlogð2Þ

nþlogð1Þ

1
ffiffiffiffiffiffi

2p
p e�

ðx�5Þ2
2 dN ffi 0:301 ¼ log 2ð Þ � log 1ð Þ

Similarly, we can find the probability of any digit for this normal distribution in the

following way:

X

1

n¼�1

Z

nþlogðdþ1Þ

nþlogðdÞ

1
ffiffiffiffiffiffi

2p
p e�

ðx�5Þ2
2 dN ffi log dþ 1ð Þ � log dð Þ:

Probability distribution functions and the area under the curve: generic
distributions

More generally, for any given probability distribution function, the probability that a

first digit begins with d can be found by obtaining the area under the curve for the

function specified:

PD
F 

of
  L

og
(N

)

Log(N)

1564 D. Amiram et al.

123



X

1

n¼�1

Z

nþlogðdþ1Þ

nþlogðdÞ

PDFðlogðNÞÞdN

For a given digit d, if the area under the curve is equal to log(d ? 1) - log(d),

then the probability that the first digit for the numbers drawn from this distribution is

d will follow Benford’s Law. Stated differently, if a distribution is smooth and

symmetric in the log scale over several orders of magnitude, it will follow Benford’s

Law (Smith 1997; Pimbley 2014). This happens because the area under the curve

from n ? log(d) to n ? log(d ? 1) is equal to log(d ? 1) - log(d), which is equal

to the probability that a first digit is d under Benford’s Law. Since many empirical

distributions tend to be smooth and symmetric in the log scale, it is not surprising

that first digits are empirically distributed following Benford’s Law.

Mean absolute deviation and financial statement deviation

It is not sufficient to examine only a single digit in isolation to detect deviation from

Benford’s Law (Smith 1997). A natural measure to examine the distance of all

leading digits from Benford’s Law is the Mean Absolute Deviation (MAD), which

takes the mean of the absolute value of the difference between the empirical

frequency of each leading digit that appears in the distribution and the theoretical

frequency specified by Benford’s Law. We can now construct the Financial

Statement Deviation (FSD) Score based on the Mean Absolute Deviation (MAD)

statistic:

The FSD Scores of the uniform and log-normal scale PDFs above are equal to

zero. This occurs because, as shown above, since these distributions are smooth and

symmetric, the probability that a number drawn from any of these distributions

begins with a digit d is log(d ? 1) - log (d), which is exactly the probabilities

given by Benford’s Law. Therefore, for each first digit d, there is no deviation from

Benford’s Law, which implies that the mean of the absolute deviation, as captured

by the FSD Score, is equal to zero.
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Appendix 3: A stylized numerical model

To strengthen the intuition regarding the way Benford’s Law can be used to detect

errors in accounting data, consider the following setting. A manager starts a project

at year 1 that has a vector X with K {1,2,…K} different random cash flow streams

Xk {X1, X2… XK}. All cash flow streams will be realized in year 2 and are

constructed to be positive (i.e., we take the absolute value of the cash flow streams).

X1 is the random flow of cash from activity 1 (say, cash flow from revenue from

activity 1), X2 is the random flow of cash from activity 2 (say, cash outflow for

payment to suppliers), and Xk is the random inflow of cash from activity k. XK is the

last cash flow stream.22 Assume that the K cash flows are all log normal (base 10)

distributed with mean lk and standard deviation of rk (in the log scale), which

implies that log(Xk) is distributed normal (lk, rk). For simplicity, we will assume

all cash flows and error terms are uncorrelated with each other and we will modify

this assumption later in our illustration.

At the end of year 1, the manager needs to report financial statements that include

his estimate of the cash flow stream X. This report could be the manager’s best

estimate, could be strategically manipulated, or could be constrained by correct

application of accounting methods; we do not distinguish between these possibil-

ities. The report is a vector Y with K different estimates for each of the K cash

flows. To make the calculation tractable, assume that Yk = Xk*Zk, where Z is a

vector of the estimation errors for each of the Xk. If Zk = 1, there is no error in the

estimation. If Z k[ 1, there is over-estimation of the true Xk, and if Zk\ 1, there is

under-estimation of Xk. The reason for the multiplicative error structure, rather than

the more common additive error structure, is that we can now easily recast the

example in log scale as log(Yk) = log(Xk) ? log(Zk), that is, there is an additive

error in the log scale, which makes the problem more tractable. Since log(1) is zero,

it is clear that if there is no error, Zk = 1, and log(Yk) = log(Xk).

Since we showed above that normal distributions in the log scale follow

Benford’s Law, adding an error term Zk that is distributed log normal with a mean

lek and standard deviation rek does not create deviation from the law. The reason is

that the convolution in the log scale of Y (i.e., the distribution of log(Xk) ? log(Zk))

will be distributed normal (lk ? lek, rk ? rek). This distribution will also follow

Benford’s Law, even if there is a nonzero mean error (lek = 0) or decreased

precision (rek[ 0).

However, the example becomes more interesting when we look at the errors in

the report in a specific year (i.e., when we look at the distribution of the cross

section of all the Xks in 1 year). The reason is that, despite the fact that all Xks in a

given year are distributed normally, the mixture distribution of the vector X for that

year will not be normally distributed unless the means of the underlying

distributions are equal. The distribution of the vector X in the cross section is a

mixture distribution, and its density function is given by the following formula:

22 The example can be constructed to include balance sheet and cash flows statement and include

multiple periods.
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PDF Xð Þ ¼
XK

k¼1
Wk � PDF Xkð Þ;

where Wk is the weight of each of the individual distributions that comprise the

mixture distribution. In our case, since the Xks are distributed normally in the log

scale, the mixture distribution is given by the following expression:

PDF log Xð Þð Þ ¼
X

K

k¼1

1

K

1

rk
ffiffiffiffiffiffi

2p
p e

�ðx�lk Þ2

2r2
k

 !

The theoretical FSD Score of X (in the cross section) in this case is therefore:

FSD Score ¼

P9
d¼1ABS

P1
n¼�1

R

nþlogðdþ1Þ

nþlogðdÞ

PK
k¼1

1
K

1

rk
ffiffiffiffi

2p
p e

�ðx�lkÞ2

2r2
k

 !

dXk

 !

� ðlogðd þ 1Þ � logðdÞÞ
" #

9
:

A mathematically interesting fact about the mixture of normal distributions is that

when the means of the distributions are less than two standard deviations apart,

the resulting distribution has a single peak, and it looks exactly like a normal

distribution (Ray and Lindsay 2005). Therefore, it will follow Benford’s Law.

More importantly, Hill (1995) provides a proof that mixtures of distributions that

do not contain error will follow Benford’s Law under certain conditions. How-

ever, there is no analytical or empirical way to show that these conditions are met

in the context of financial accounting. We do, however, show that the distribution

of Y in the log scale appears to be relatively smooth and symmetric (and looks

similar to a normal distribution). Figure 1a plots the empirical density function of

all numbers from all financial statements from 2001 to 2011 in the log scale,

which suggests that the underlying no-error distribution follows Benford’s Law as

well. Figure 1b shows the distribution in the log scale for a typical firm, Alcoa in

2011.

Solving for a general closed-form solution of how the FSD Score is changing

with the error term Z is beyond the scope of this paper and therefore we leave this

Fr
eq

ue
nc

y

Fr
eq

ue
nc

y

A B

Fig. 1 a Distribution of log of numbers in all financial statements (Log(Y)), b Distribution of log of
numbers for Alcoa’s 2011 financial statements (Log(Y))
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question for future analytical research. However, we now extend the analysis and

use numerical parameters for specific cases to show the intuition of how FSD

changes.

A special numerical solution

Assume there are 10 groups of cash flow streams (i.e., K = 10, so we have X1 to

X10 cash flow streams) and that each of the cash flow streams has a different mean

in the log scale, starting from 4 to 4.9, separated by 0.1 (i.e., l1 = 4, l2 = 4.1..,

l10 = 4.9), which means the numbers range from 10,000 to 100,000 in the linear

scale. Finally, assume that the standard deviation of each of the Xks in log scale is

rk = 1.

The probability density function of X, that is, the mixture distribution in this year,

is therefore the following: PDF (log(X)) =
P

10

k¼1

1
10

1
ffiffiffiffi

2p
p e�

ðx�lk Þ2
2

� �

. As can be seen in

the figure below, this distribution is smooth and symmetric and looks similar to a

normal distribution:

Log(X)

PD
F 

of
  L

og
(X

)

Furthermore, this distribution follows Benford’s Law, and the FSD Score for this

distribution under those parameters is FSD Score = 0.

The problem is that X is unobservable to an outsider (and may also be

unobservable to the manager). The outsider is observing only the Yks where

Yk = Xk*Zk. The conclusions about the errors that outsiders can make must come

from the distribution of the reported vector of numbers Y.23 If Zk is distributed log

normal, which means it is distributed normal in the log scale with lek and rek, then

each Yk is also distributed normal in the log scale with parameters lyk = lk ? lek
and ryk = rk ? rek. This is essentially the distribution of the sum of two normal

variables. Now consider the following three cases.

23 Insider and outsiders do not need to know the means and standard deviations of the original

distributions or the error term. They simply need to know that the distribution follows Benford’s Law.
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Error distributions with equal means and equal standard deviations
(Case 1)

In this case, le1 = le2 = … = le10 = Constant C and re1 = re2 = … =

re10 = Constant S. In this case, lyk = lk ? C and ryk = rk ? S. The resulting

mixture distribution of Y in the log scale will again look like the distribution of X

but shifted to the right by a constant C and flatter because of the increased standard

deviation, that is,

PDF log ðYÞð Þ ¼
X

K

k¼1

1

K

1

ðrk þ sÞ
ffiffiffiffiffiffi

2p
p e

�ðx�lkþCÞ2

2ðrkþSÞ2

 !

;

which will follow Benford’s Law to a similar degree as the distribution of X. This is

because multiplying a distribution that follows Benford’s Law in the linear scale by

a constant creates a distribution that follows Benford’s Law (Hill 1995). With

parameters C = 0.5 and S = 0.01, the FSD Score of the resulting distribution is

zero, and its PDF is shown in the figure below:

PD
F 

of
  L

og
(Y

)

Log(Y)

In conclusion, adding identical error terms to all the Xks does not create

deviations from Benford’s Law.

Error distributions with equal means but different standard deviations
(Case 2)

In this case, le1 = le2 = … = le10 = Constant C and rek varies across the ks.

Therefore, lyk = lk ? C and ryk = rk ? rek. The resulting mixture distribution

of Y in log scale will again look like the distribution of X but wider because of the

increased standard deviation. Still, it will closely follow Benford’s Law. Here again

the FSD Score is zero.
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Error distributions with different means but constant standard deviation
(Case 3)

In this case, lek varies across the ks and re1 = re2 = … = re10 = Constant S.

This is the interesting case as it will create deviations from Benford’s Law. We

consider three different subcases.

Error in the estimation of a single element in the cash flow streams
(Case 3A)

We start with the simple case where we change only the le10 to add error to X10,

which is the highest number in our cash flow streams. We will start increasing le10
by increments of 0.1. Therefore lyk will grow from 4.9 to 5 in the first iteration, to

5.1 in the next iteration, and so on. This situation could be an example of

overestimating revenues. The graphical evidence on the way the mixture

distribution changes and the resulting FSD Scores is striking for the case of

S = 0.01. In the case of le10 = 0.1 and S = 0.01, the FSD Score is 0.008, and the

resulting distribution is shown in the figure below (left) . In the case of le10 = 0.5

and S = 0.01, the FSD Score is 0.017, and the resulting distribution is shown in the

figure below (right).

Log(Y) Log(Y)
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  L
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As we increase the mean of the error, under these parameters, the distribution

monotonically moves further away from Benford’s Law and reaches a limit. This

case is consistent with managing revenue upward (or overestimating revenue

compared to the actual distribution) leading to deviations in Benford’s Law and an

increase in the FSD Score.

The case where the errors are correlated with each other (Case 3B)

The case above represents an error in one element of the report. However, a feature

of the accounting system is that an error in one element leads to errors in other

elements as well. For example, if the manager overestimates revenue, he is also

likely to overestimate cost of goods sold (in an amount less than revenue) to match

the revenue and will overestimate the related tax payment (in an amount less than

revenue). In the terms of our example, there will be a mean error in several of the

Zks. For example, let us assume le10 is increasing by increments of 0.1 as before,

but now le5 = 0.5le10 and le1 = 0.1le10. Again, it is clear from the shape of the
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graph and the change in FSD that this will cause a significant deviation from

Benford’s Law.

In the case of le10 = 0.1, le5 = 0.5le10, le1 = 0.1le10, and S = 0.01, the FSD

Score is 0.009, and the resulting distribution is shown in the figure below (left). In

the case of le10 = 0.5, le5 = 0.5le10, le1 = 0.1le10, and S = 0.01, the FSD Score

is 0.017, and the resulting distribution is shown in the figure below (right).
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Once again, the point to make from this exercise is that deviation from Benford’s

Law, under these parameters, is monotonically increasing with the error and reaches

a limit, even when the errors are correlated with each other.

The case where the errors are correlated with the mean of the cash flow
streams (Case 3C)

It also possible that the estimation errors may be larger for items that are larger. In

terms of our example, lek is a function of lk. For the sake of simplicity, assume

lek = lk * B, where B is a constant multiplier that determines the error size (the

larger is B, the larger is the error). It is clear that, if B is zero, we revert to Case 1,

and the distribution follows Benford’s Law exactly with FSD Score equal to 0.

However, when we start increasing B by increments of 0.1, the distributions start to

change. In the case of lek = lk * B, B = 1.1, and S = 0.01, the FSD Score is 0.004,

and the resulting distribution is shown in the figure below (left). In the case of lek =

lk * B, B = 1.5, and S = 0.01, the FSD Score is 0.016, and the resulting

distribution is shown in the figure below (right).
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In this case, uneven errors across accounts create deviations from Benford’ Law

that, under these parameters, monotonically increase the FSD Score before reaching

a limit.

Appendix 4: Numerical example when realizations are observable

To see the intuition for why deviations from Benford’s Law can be used to assess

data quality using real world data, consider the following example. The market

value of equity at the end of a trading day is one realization of a random

distribution. A sample of different firms in a random day is likely to fit the criteria in

Hill (1995). Indeed, consistent with Hill (1996), when examining a random sample

of the market value of equity of companies traded in the United States, the

distribution follows Benford’s Law. Now assume that instead of measuring the

market value of equity accurately by transaction price (where we can observe true

realizations), the actual realizations are unknown. Therefore, the data provider has

to use estimation techniques (for example, using last year’s prices times the average

return from 2 years ago, or just randomly choosing based on a possible distribution

of prices). Errors in the estimation techniques or fabricated data (random or human)

are likely to create a very different dataset from the true realized distribution and

hence create a deviation from Benford’s Law.24 Therefore, the deviation from

Benford’s Law can be used as a proxy for how divergent a dataset is from the true,

unobservable realizations. If the realization is known and can be measured with

complete accuracy, then there is obviously no need to use Benford’s Law to validate

the data. However, in this case, since the realizations are known, we can observe the

actual deviation from the true distribution. Below, we illustrate this with real data.

We look at the market value of equity (MVE) for all firms with available data in

CRSP’s monthly file (price and shares outstanding) for a random day, August 31,

2011, to build intuition for why Benford’s Law can be used to assess data quality.

MVE (price * shares outstanding) is a random distribution, and as expected, the

FSD Score for MVE for all firms (created using the distribution of the first digits of

all firms with available data) is 0.00295, which can be considered close conformity

to Benford’s Law.

Next, we ask, what if the true market price is unknown, and instead, MVE needs

to be estimated or is fabricated? To answer this question, we introduce a noise term

that changes MVE, where firm-level MVE is equal to MVE * (1 ? a randomly

generated number from a normal distribution) and then re-measure the FSD Score.

We manipulate the mean of the random number (i.e., the estimation error) first, with

the expectation that, as the size of the noise increases, deviation from Benford’s

Law should also increase. We next keep the mean constant and manipulate the

variance, expecting the FSD Score to remain constant since we are no longer

changing the magnitude of the noise.

24 Not all misestimated or fabricated data create deviations from Benford’s Law. For example, if the mis-

estimation simply multiplies all true realizations by a constant, the new erroneous data will still follow

Benford’s Law.
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As can be seen below, holding the variance constant, when we increase the mean

noise term, the FSD Score increases.

In contrast, holding the mean noise term constant, when we increase the variance,

the FSD Score remains stable.

These results provide insights into why Benford’s Law and the FSD Score can be

used to assess the quality of data in financial statements. Financial statement

numbers require significant estimation by management. Investors (and even

possibly managers) do not observe the true realization of these numbers. Much

like changing the mean around the noise term in the MVE example, as estimation

error increases in estimating financial statement numbers, we expect the FSD Score

to increase as well.

Appendix 5: Simulation analysis

To demonstrate how a firm’s potential manipulation of its financial results could

alter its conformity to Benford’s Law, we ran a simulation that involved changing

the value of a single line item in a firm’s income statement and calculated how that

change affected the financial statements overall. We then re-measured the FSD

Score based on the manipulation and the changes the manipulation induced in the

financial statements.

We chose to manipulate sales since it is an item that managers may be tempted to

change to mask poor performance and is interconnected with many other financial

statement items. As a result of the sales manipulation, a firm likely needs to adjust

cost of goods sold and tax expense accordingly. Our simulation randomly (from a

uniform distribution) seeded a journal entry to increase sales by between 5 and 10 %

to make the change material. COGS were increased by between 20 and 90 % as a

percent of the increase of sales manipulation, and taxes payable were increased by

between 0 and 35 % of the difference between the previous two calculations. Put

more simply, we added three journal entries to the original numbers:

Constant variance MVE FSD score

Mean = 1, var = 1 0.00294

Mean = 2, var = 1 0.00304

Mean = 3, var = 1 0.00320

Mean = 4, var = 1 0.00322

Constant mean MVE FSD

Mean = 1, var = 2 0.00292

Mean = 1, var = 3 0.00293

Mean = 1, var = 4 0.00292
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As a result of the journal entries, we list below the line items that changed in our

simulation when sales changed as described above.

Income statement

Sales

Cost of goods sold

Gross profit (Loss)

Operating income after depreciation

Operating income before depreciation

Pretax income

Pretax income–domestic

Income taxes—federal

Income taxes—total

Income before extraordinary items

Income before extraordinary items—adjusted for common stock

equivalents

Income before extraordinary items—available for common

Income before extraordinary items and noncontrolling interests

Net income adjusted for common/ordinary stock (Capital) equivalents

Balance sheet

Receivables—Trade

Receivables—Total

Inventories—finished goods

Inventories—total

Current assets—total

Assets—total

Income taxes payable

Current liabilities—total

Liabilities—total

Retained earnings

Stockholders equity—total

Liabilities and stockholders equity—total

Statement of cash flow

Income before extraordinary items (cash flow)

Accounts receivable—decrease(increase)

Inventory—decrease (increase)

Income taxes—accrued—increase/(decrease)

In our simulation, we chose to manipulate a firm with a set of financial numbers

that generally, but not perfectly, conforms to Benford’s Law. We therefore chose

Alcoa’s 2011 financial results since the results not only conform to Benford’s Law

1. Increase accounts receivables Increase revenue

2. Increase cost of goods sold Decrease inventory

3. Increase tax expense Increase tax Payable
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but also contain a large number of line items, ensuring that a single number does not

have an undue impact on our measurements. In running the simulation 1000 times,

Alcoa’s FSD Score increases 950 times (95 %). We interpret the findings from our

simulation to imply that divergence from Benford’s Law could signal that a firm is

intentionally manipulating its financial numbers.

Appendix 6: Variable definitions

Variable Description Definition

FSD_Score based on

the MAD statistic

Mean absolute deviation statistic for

annual financial statement data

The sum of the absolute difference

between the empirical distribution of

leading digits in annual financial

statements and their theoretical

Benford distribution, divided by the

number of leading digits. See

Appendix 1 for a sample calculation

FSD_Score based on

the KS statistic

Kolmogorov–Smirnov statistic for

annual financial statement data

The maximum deviation of the

cumulative differences between the

empirical distribution of leading

digits in annual financial statements

and their theoretical Benford

distribution. See Appendix 1 for a

sample calculation

AAER Indicator equal to 1 for the year in

which a firm was first identified by

the SEC as having materially

misstated its financial statements

Firms that were included in the annual

SEC Accounting and Auditing

Enforcement Releases (AAER)

database (Dechow et al. 2011)

ABS_JONES_RESID Absolute value of the residual from

the modified Jones model, following

Kothari et al. (2005)

The following regression is estimated

for each industry year:

tca = Dsales ? net PPE ? ROA,

where tca = (Dcurrent
assets - Dcash - Dcurrent
liabilities ? D debt in current

liabilities - depreciation and

amortization), ROA is defined as

below, and all variables are scaled by

beginning-of-period total assets

STD_DD_RESID Five-year moving standard deviation

of the Dechow-Dichev residual,

following Francis et al. (2005)

The following regression is estimated

for each industry year:

tca = cfot-1 ? cfo ? cfot?1, where

tca is defined as above, and

cfo = (income before extraordinary

items - (wc_acc—depreciation and

amortization)). All variables are

scaled by average total assets. The

five-year rolling standard deviations

of the residuals are then calculated

MANIPULATOR Indicator variable equal to 1 if the

M-Score is greater than -1.78

M-Score is calculated following

Beneish (1999)
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Variable Description Definition

F_SCORE The scaled probability of earnings

management or a misstatement for a

firm-year based on firm financial

characteristics

Calculated using the coefficients in

Table 7 Model 2 of Dechow et al.

(2011)

ABS_WCACC The absolute value of working capital

accruals

Calculated as (Dcurrent
assets - Dcash - Dcurrent
liabilities ? Ddebt in current

liabilities ? Dtaxes paid) scaled by

average total assets

ABS_RSST The absolute value of working

capital accruals as defined by

Richardson et al. (2005)

Calculated as (DWC ? DNCO ? DFIN)
scaled by average total assets.

WC = (current assets - cash and

short-term investments) - (current

liabilities - debt in current liabilities).

NCO = (total assets - current

assets - investments and

advances) - (total liabilities - current

liabilities - long-term debt).

FIN = (short-term

investments ? long-term

investments) - (long-term debt ? debt

in current liabilities ? preferred stock)

LOSS Indicator if firm-year had

negative net income

Equal to 1 if net income\ 0, 0 otherwise

CH_CS Change in cash sales Cash salest - cash salest-1/cash salest-1,

where cash sales = total

revenue - Dtotal receivables

ROA Return on assets Income before extraordinary itemst/total

assetst-1

CH_ROA Change in ROA ROAt - ROAt-1

SOFT_ASSETS Soft assets (Total assets—net PPE—cash)/total

assetst-1

ISSUE Indicator variable that equals 1

if the company issued debt

or equity in that year

When long-term debt issuance

(Compustat DLTIS)[ 0 or sale of

common or preferred stock

(SSTK)[ 0, then ISSUE = 1

MKT_VAL Market value of equity Closing price at the end of the fiscal year

* common shares outstanding

MTB Market-to-book ratio MKT_VAL/book value of total

stockholders’ equity.

NI_VOL Earnings volatility Standard deviation of net income for the

last five years.

RET_VOL Return volatility Standard deviation of monthly stock

returns in the last year

PE Price-to-earnings ratio Closing stock price at the end of the fiscal

year/earnings per share

AT Total assets Compustat AT
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Appendix 7

See Figs. 2, 3, 4 and Tables 1, 2, 3, 4, 5, 6, 7, 8, 9, 10.

Variable Description Definition

EARNINGS

PERSISTENCE

Correlation between net income and net income

in the following year

SALES_GROWTH Year-over-year percentage

change in revenue

(Revenuet - Revenuet-1)/Revenuet-1

DIV Dividend indicator Equal to 1 if a firm issued dividends, 0

otherwise.

SIZE Log of market value of equity Log(common shares outstanding * price at the

end of the fiscal year)

SI Special items Total special items/total assets

AGE Age of the firm Number of years the firm appears in the CRSP

monthly stock return file

RESTATED_NUMS Indicator variable that equals

1 if reported numbers are

restated

For all firms from 2001 to 2011 where both

restated and original financial numbers are

available in Compustat (datafmt = STD for

original and datafmt = SUMM_STD for

restated) and at least 10 variables have

changed, we separate the original from the

restated financial numbers and create an

indicator equaling 1 for restated numbers

INDUSTRY Industry classification Groups companies into 17 industry portfolios

based on the Fama–French industry

classification
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Fig. 2 Aggregate Distribution and Benford’s Distribution. Figure 2 shows the similarity between
Benford’s distribution and the aggregate distribution of all financial statement variables available on
Compustat for the period 2001–2011. Not shown are distributions by industry and year, which similarly
conform to Benford’s Law
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Fig. 3 Conformity to Benford’s distribution, firm examples Figure 3 shows the conformity to Benford’s
distribution for two firm years, Sprint Nextel 2001, which does not conform to Benford’s Law (FSD
Scored based on the KS statistic = 0.224, FSD Score based on the MAD statistic = 0.052) and restated
its financial results for that year, and Verizon Communications 2001, which does conform to Benford’s
Law (FSD Score based on the KS statistic = 0.056, FSD Score based on the MAD statistic = 0.017)
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Fig. 4 Trend in FSD_Score for AAER and non-AAER firms. Figure 4 depicts the time trend in
FSD_Score for firms identified by the SEC, through an Accounting and Auditing Enforcement Release, as
having materially misstated their financial statements. Year 0 on the x axis is centered on the year the
misstatement began to demonstrate how FSD_Score changes before and after the misstatement
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Table 2 Aggregate conformity to Benford’s Law

Number of firm-years Aggregate FSD_Score

Panel A: FSD_Score for all firm-years’ financial statement numbers

43,332 0.0009

FF Industry Number of firm-years Aggregate FSD_Score

Panel B: FSD_Score for all financial statement numbers, by industry

1 1410 0.0009

2 689 0.0018

3 1931 0.0009

4 888 0.0013

5 1176 0.0010

6 1046 0.0013

7 1901 0.0012

8 1185 0.0011

9 728 0.0012

10 362 0.0011

11 7056 0.0007

12 725 0.0011

13 1971 0.0020

14 1215 0.0017

15 2819 0.0020

17 18,230 0.0010

Fiscal year Number of firm-years Aggregate FSD_Score

Panel C: FSD_Score for all financial statement numbers, by year

2001 4418 0.0008

2002 4345 0.0011

2003 4177 0.0013

2004 4153 0.0010

2005 4072 0.0012

2006 3955 0.0009

2007 3854 0.0007

2008 3747 0.0008

2009 3643 0.0010

2010 3531 0.0010

2011 3437 0.0009

Table 2 computes the aggregate FSD_Score from all financial statement variables available for all firm-

years in the sample. FSD_Score is the mean absolute deviation between the empirical distribution of

leading digits contained in all firms’ financial statements and Benford’s Law. See Appendix 1 for the

calculation of FSD_Score. Panel A reports the aggregate FSD_Score for all variables for all firm-years.

Panel B reports the aggregate FSD_Score by Fama–French industry portfolios. Panel C reports the

aggregate FSD_Score by fiscal years
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Table 3 Firm-year conformity to Benford’s Law

Firm-years conforming Percent conforming

Panel A: Number of firm-years conforming to Benford’s Law

37,104 85.63

Financial statement Firm-years conforming Percent conforming

Panel B: Number of firm-years conforming to Benford’s Law by financial statement

Balance sheet 39,274 90.64

Income statement 34,138 78.78

Cash flow statement 42,259 97.52

FF Industry Firm-years conforming Percent conforming

Panel C: Number of firm-years conforming to Benford’s Law by industry

1 1218 86.38

2 580 84.18

3 1680 87.00

4 765 86.15

5 987 83.93

6 910 87.00

7 1556 81.85

8 1054 88.95

9 642 88.19

10 318 87.85

11 6030 85.46

12 627 86.48

13 1706 86.56

14 1100 90.53

15 2382 84.50

17 15,549 85.29

Fiscal year Firm-years conforming Percent conforming

Panel D: Number of firm-years conforming to Benford’s Law by fiscal year

2001 3795 85.90

2002 3753 86.38

2003 3562 85.28

2004 3538 85.19

2005 3492 85.76

2006 3360 84.96

2007 3301 86.65

2008 3221 85.96

2009 3110 85.37

2010 3017 85.44
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Table 3 continued

Fiscal year Firm-years conforming Percent conforming

2011 2955 85.98

Table 3 computes FSD_Score based on the KS statistic for each individual firm-year in the sample and

reports the percentage of firm-years that conform to Benford’s Law, where conformity is assessed as

having a KS statistic that is not significantly different from zero at the 5 % level. In Panel A, 86 % of all

firm-years are not different from zero at the 5 % level. Panel B computes FSD_Score based on the KS

statistic for the variables in each of the three financial statements for each individual firm-year and reports

the percentage of firm-years that conform to Benford’s Law for each statement. Panel C (Panel D) reports

conformity to Benford’s Law based on the KS statistic across industries (fiscal years). See Appendix 1 for

the calculation of FSD_Score based on the KS statistic

Table 4 Aggregate FSD_Score by financial statement characteristics and line items

Financial statement Number of accounts Aggregate FSD_Score

Panel A: Aggregate FSD_Score by financial statement

Balance sheet 111 0.0005

Income statement 101 0.0020

Cash flow statement 38 0.0005

Panel B: Aggregate FSD_Score by financial statement subcategory

Balance sheet

Assets 37 0.0004

Liabilities 43 0.0007

Equity 28 0.0010

Income statement

Expenses 11 0.0012

Income 32 0.0027

Table 4 computes the aggregate FSD_Score from all financial statement variables available for all firm-

years in the sample by financial statement characteristics and line items. Panel A reports the aggregate

FSD_Score for all variables for all firm-years for each of the financial statements. Panel B reports the

aggregate FSD_Score for subcategories of each of the financial statements. FSD_Score is the mean

absolute deviation between the empirical distribution of leading digits contained in a firm’s financial

statements and Benford’s Law. See Appendix 1 for the calculation of FSD_Score
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Table 5 Firm characteristics based on FSD_Score

Variable Top tercile Middle tercile Bottom tercile

Terciles by FSD_Score

AGE 18.68 20.26 21.61***

CH_CS 0.1688 0.1416 0.1279***

CH_ROA -0.0011 -0.0028 -0.0017

DIV 0.3403 0.4067 0.4612***

ISSUE 0.8924 0.9199 0.9328***

MKT_VAL 2199.64 3633.94 5103.43***

MTB 1.52 1.35 1.22***

PE 11.79 9.80 13.00

RET_VOL 0.1564 0.1444 0.1359***

SALES_GROWTH 0.1838 0.1567 0.1322***

Table 5 segments firm-years into terciles based on FSD_Score, calculates the means of various firm

characteristics based on this segmentation, and reports the significance level of the difference between

terciles 1 and 3. FSD_Score is the mean absolute deviation between the empirical distribution of leading

digits contained in a firm’s financial statements and Benford’s Law. See Appendix 1 for the calculation of

FSD_Score. See Appendix 6 for variable definitions. *, **, and *** indicate significance at the 0.10, 0.05,

and 0.01 levels, respectively

Table 6 FSD_Score and reporting quality

Variable Tercile by FSD_Score

Top tercile Middle tercile Bottom tercile

Panel A: Univariate evidence

Accrual Quality

ABS_JONES_RESID 0.2076 0.1787 0.1644***

STD_DD_RESID 0.1434 0.1195 0.1067***

MANIPULATOR 0.1646 0.1407 0.1223***

F_SCORE 0.3733 0.4071 0.4212***

ABS_WCACC 0.0611 0.0532 0.0479***

ABS_RSST 0.1579 0.1374 0.1198***

Earnings Quality

EARNINGS PERSISTENCE 0.6094 0.6831 0.6921***

LOSS 0.4212 0.3483 0.3097***

Panel B: Multivariate evidence

FSD Scorei;t ¼ aþ b1ABS JONES RESIDi;t þ b2STD DD RESIDi;t þ b3MANIPULATORi;t

þ b4F SCOREi;t þ b5ABS WCACCi;t þ b6ABS RSSTi;t þ b7LOSSi;t þ ei;t

Variable FSD_Score

ABS_JONES_RESID 0.0002

(1.45)

STD_DD_RESID 0.0042***

(12.62)

MANIPULATOR 0.0010***
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Table 6 continued

Panel B: Multivariate evidence

FSD Scorei;t ¼ aþ b1ABS JONES RESIDi;t þ b2STD DD RESIDi;t þ b3MANIPULATORi;t

þ b4F SCOREi;t þ b5ABS WCACCi;t þ b6ABS RSSTi;t þ b7LOSSi;t þ ei;t

Variable FSD_Score
(7.23)

F_SCORE -0.0031***

(-17.06)

ABS_WCACC 0.0051***

(6.72)

ABS_RSST 0.0023***

(7.63)

LOSS 0.0012***

(11.72)

Constant 0.0292***

(291.92)

Observations 34,351

R-squared 0.036

Table 6 examines the relation between Benford’s Law and proxies for accruals-based earnings management

and earnings manipulation. Panel A segments firm-years into terciles based on FSD_Score, calculates the

means of various proxies for reporting quality based on this segmentation, and reports the significance level

of the difference between terciles 1 and 3. Panel B reports an OLS regression on the association between

these variables and the FSD_Score. FSD_Score is the mean absolute deviation between the empirical

distribution of leading digits contained in a firm’s financial statements and Benford’s Law. See Appendix 1

for the calculation of FSD_Score. See Appendix 6 for variable definitions. t statistics are reported in

parentheses in the table. *, **, and *** indicate significance at the 0.10, 0.05, and 0.01 levels, respectively

Table 7 FSD_Score and Ex post measures of earnings manipulation

FSD_Score Number of firm-years t statistic

RESTATED_NUMS = 0 0.0289 4935 5.36***

RESTATED_NUMS = 1 0.0280 4935

LOSS = 0 0.0289 27,743 23.98***

LOSS = 1 0.0310 15,589

-0.005 B NIt/MKT_VALt-1\ 0 0.0283 588 2.32**

0 B NIt/MKT_VALt-1 B 0.005 0.0296 426

AAER = 1 0.0270 82 2.75***

AAER = 0 0.0296 42,963

Table 7 provides univariate evidence on the relation between Benford’s Law and ex post measures of

earnings manipulation. RESTATED_NUMS is an indicator that equals 1 for when the FSD_Score is

calculated based on restated numbers and 0 for unrestated numbers. LOSS is an indicator equal to 1 for

firms reporting negative net income. We follow Burgstahler and Dichev (1997) and examine firms

reporting just below and just above the zero net income mark, scaled by market value of equity (NI/

MKT_VAL). AAER is an indicator equal to 1 for the year in which a firm was first identified by the SEC

as having materially misstated its financial statements. *, **, and *** indicate significance at the 0.10,

0.05, and 0.01 levels, respectively
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Table 8 FSD_Score and restated data

FSDScore i;t ¼ aþ b1RESTATED NUMSi;t þ b2ABS JONES RESIDi;t

þ b3STD DD RESIDi;t þ b4MANIPULATORi;t þ b5F SCOREi;t

þ b6ABS WCACCi;t þ b7ABS RSSTi;t þ ei;t

Variable FSD_Score

(1) (2)

RESTATED_NUMS -0.0009***

(-5.26)

-0.0009***

(-5.33)

ABS_JONES_RESID 0.0000

(0.06)

STD_DD_RESID 0.0049***

(7.88)

MANIPULATOR 0.0005*

(1.89)

F_SCORE -0.0033***

(-10.11)

ABS_WCACC 0.0024*

(1.65)

ABS_RSST 0.0032***

(5.66)

Constant 0.0288***

(244.85)

0.0289***

(149.34)

Observations 10,192 10,192

R-squared 0.003 0.030

Table 8 examines the relation between Benford’s Law and restated data. The OLS regressions use

financial statement data from firms that restated their financial statements for the period 2001–2011. We

require that firms have both restated and original financial data available in Compustat. RESTA-

TED_NUMS is an indicator that equals 1 for restated numbers and 0 for misstated numbers used in the

calculation of FSD_Score. FSD_Score is the mean absolute deviation between the empirical distribution

of leading digits contained in a firm’s financial statements and Benford’s Law. See Appendix 1 for the

calculation of FSD_Score. See Appendix 6 for definitions of the control variables. t-statistics are reported

in parentheses in the table. *, **, and *** indicate significance at the 0.10, 0.05, and 0.01 levels,

respectively
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Table 9 FSD_Score and earnings persistence

NIi;tþ1 ¼ aþ b1NIi;t þ b2FSD Scorei;t þ b3FSD Score� NIi;t þ b4ABS JONES RESIDi;t

þ b5STD DD RESIDi;t þ b6MANIPULATORi;t þ b7F SCOREi;t þ b8ABS WCACCi;t

þ b9ABS RSSTi;t þ b10LOSSi;t þ b11SALES GROWTHi;t þ b12DIVi;t þ b13SIZEi;t

þ b14MTBi;t þ b15SIi;t þ b16AGEi;t þ b17RET VOLi;t þ b18NI VOLi;t þ ei;t

Variable NIt?1

NI 0.3268***

(16.70)

FSD_Score -1.0403***

(-5.58)

FSD 9 NI -2.6277***

(-5.26)

ABS_JONES_RESID 0.0005

(0.11)

STD_DD_RESID -0.1625***

(-12.00)

MANIPULATOR -0.0018

(-0.37)

F_SCORE 0.0071

(1.09)

ABS_WCACC -0.0393

(-1.33)

ABS_RSST -0.1151***

(-9.45)

LOSS -0.0957***

(-23.16)

SALES_GROWTH -0.0105***

(-3.31)

DIV -0.0233***

(-6.59)

SIZE 0.0137***

(13.00)

MTB -0.0032**

(-2.47)

SI -0.1116***

(-4.95)

AGE 0.0002

(1.29)

RET_VOL -0.1388***

(-7.22)

NI_VOL -0.0000

(-0.52)

Constant 0.0362***
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Table 9 continued

NIi;tþ1 ¼ aþ b1NIi;t þ b2FSD Scorei;t þ b3FSD Score� NIi;t þ b4ABS JONES RESIDi;t

þ b5STD DD RESIDi;t þ b6MANIPULATORi;t þ b7F SCOREi;t þ b8ABS WCACCi;t

þ b9ABS RSSTi;t þ b10LOSSi;t þ b11SALES GROWTHi;t þ b12DIVi;t þ b13SIZEi;t

þ b14MTBi;t þ b15SIi;t þ b16AGEi;t þ b17RET VOLi;t þ b18NI VOLi;t þ ei;t

Variable NIt?1

(3.29)

Observations 28,042

R-squared 0.225

Table 9 examines the relation between Benford’s Law and earnings persistence. NI is reported net income

scaled by total assets. FSD_Score is the mean absolute deviation between the empirical distribution of

leading digits contained in a firm’s financial statements and Benford’s Law. See Appendix 1 for the

calculation of FSD_Score. Control variables are based on those used in Li (2008). See Appendix 6 for

definitions of the control variables. t-statistics are reported in parentheses in the table. *, **, and ***

indicate significance at the 0.10, 0.05, and 0.01 levels, respectively. Standard errors are clustered by firm

and year

Table 10 FSD_Score and material misstatements

AAERi;t ¼ aþ b1FSD Scoreþ b2ABS JONES RESIDi;t þ b3STD DD RESIDi;t

þ b4MANIPULATORi;t þ b5F SCOREi;t þ b6ABS WCACCi;t þ b7ABS RSSTi;t

þ b8CH CSi;t þ b9CH ROAi;t þ b10SOFT ASSETSi;t þ b11ISSUEi;t þ b12MTBi;t

þ b13ATi;t þ ei;t

Variable AAER

(1) (2) (3)

FSD_Score -40.691***

(-3.87)

FSD_Scoret-1 21.963*

(1.80)

FSD_Scoret-2 39.222***

(7.34)

ABS_JONES_RESID -1.078

(-1.38)

-1.074

(-1.33)

-1.059

(-1.32)

STD_DD_RESID 0.011

(0.02)

-0.171

(-0.27)

-0.191

(-0.32)

MANIPULATOR 0.122

(0.48)

0.116

(0.45)

0.109

(0.44)

F_SCORE 1.980***

(5.88)

1.978***

(5.80)

1.994***

(5.58)

ABS_WCACC -1.233

(-0.78)

-1.613

(-1.02)

-1.702

(-1.09)

ABS_RSST 0.401

(0.83)

0.356

(0.75)

0.274

(0.57)

CH_CS 0.004 0.001 -0.042
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