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ABSTRACT. The main object of the paper is to give a general 
review of the nature and importance of significance tests. Such 
tests are regarded as procedures for measuring the consistency 
of data with a null hypothesis by the calculation of a p-value 
(tail area). A distinction is drawn between several kinds of null 
hypothesis. The ways of deriving tests, namely via the so-called 
absolute test, via implicit consideration of alternatives and 
via explicit consideration of alternatives are reviewed. Some 
of the difficulties of multidimensional alternatives are outlined 
and the importance of the diagnostic ability of a test is stressed. 
Brief examples include tests of distributional form including 
multivariate normality. The effect of modifying statistical 
analysis in the light of the data is discussed, four main cases 
being distinguished. Then a number of more technical aspects 
of significance tests are outlined, including the role of two- 
sided tests, the role of the continuity correction, Bayesian 
tests and the use of tests in the comparison of alternative 
models. Finally the circumstances are reviewed under which 
significance tests can provide the main summary of a statistical 
analysis. 
Key words: Absolute test, alternative hypothesis, Bayesian 
tests, continuity correction, diagnosis, discrimination be- 
tween models, foundations of statistical inference, goodness 
of fit, hypothesis testing, multiple comparisons, multivariate 
normal distribution, null hypothesis, quick test, selection 
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1. Introduction 

Overemphasis on tests of significance at the expense 
especially of interval estimation has long been 
condemned (Yates, 1951); for extensive discussion 
in a social science context, see Morrison & Henkel 
(1970). Nevertheless such tests continue to be 
widely used and one aim of the present paper is to 
set out those circumstances under which significance 
tests are likely to be valuable in the intermediate 
stages of an analysis or in the final statement of 
conclusions. The paper is theoretical but non- 
mathematical. 

Two important if indefinite distinctions arise in 
the following discussion. The first is between 
exploratory and specific analyses. In a specific 
analysis, but not in an exploratory one, a fairly 
definite model is available and the questions to be 
answered in the light of the data are well formulated. 

1 The contents of this paper were presented in Forum Lec- 
tures at the European Meeting of Statisticians, Grenoble, 
September 6-10, 1976. The lectures were concluded with 
the discussion which is reported at the end of the paper. 
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50 D. R. Cox 

An exploratory analysis, on the other hand, is 
usually an intermediate step, aimed at pinpointing 
aspects for more detailed study and at the formula- 
tion of a more specific model. 

The second distinction is between the primary 
and the secondary aspects of a statistical model. The 
primary aspects in effect define the matters of direct 
scientific concern, whereas the secondary aspects 
serve to complete the statistical model and, in par- 
ticular, to indicate appropriate statistical procedures 
and to allow the assessment of the precision of the 
primary conclusions. For example, in a simple 
regression problem the assumption of linearity would 
often be the primary assumption, in particular 
defining the slope parameter which might well be 
the main object of study in a specific analysis. As- 
sumptions of normality, constancy of variance and 
independence, if made, would then be secondary 
aspects. Note very particularly, however, that the 
distinction depends on the application and it is 
certainly conceivable that the roles could be inter- 
changed, for example the shape of the conditional 
distribution being of primary concern. 

2. The nature of significance tests 

2.1. Some definitions 
Throughout the rest of the paper we mean by a 
significance test a procedure for measuring the 
consistency of data with a null hypothesis and having 
the following form. Suppose that we have an ob- 
served vector, y, of response variables, sometimes 
written Yobo, and a null hypothesis H. according to 
which y is the observed value of a random variable Y, 
with sample space Sy, and having probability 
density fy(y) in some family Ho. The basis of a 
significance test is an ordering of the points in 
Sy in order of increasing inconsistency with Ho, 
in the respect under study. Equivalently there is a 
function t=t(y) of the observations, called a test 
statistic, and such that the larger is t(y), the 
stronger is the inconsistency of y with H,, in the 
respect under study. The corresponding random 
variable is denoted by T. To complete the formula- 
tion of a significance test, we need to be able to 
compute, at least approximately, 

P(Yobs) Pobs = pr (T> tobs = t(Yobs); Ho), (1) 

called the observed level of significance. Under H,, 
Pobs is the observed value of a random variable, 
P say. 

Application of the significance test consists of 
computing approximately the value of Pobs and 
using it as a summary measure of the degree of 

consistency with H0, in the respect under study. 
Of course, in extreme cases it may be apparent 
from inspection of the data, or by graphical 
analysis, that explicit calculation of Pobs iS un- 
necessary. 

Such a procedure is to be distinguished sharply 
from a decision problem in which 'acceptance' or 
'rejection' is required. There is, however, a close 
mathematical connexion between (1) and the study of 
critical regions of preassigned size. For this a formal 
relation is established via the nested set of critical 
regions w, of size x, where 

Wa= {y; p(y) ? c} 

We shall later discuss how P.bs iS to be used, but 
broadly it is to be regarded as a guide, and no 
more, to interpretation. 

2.2. Physical interpretation of significance levels 
There are two physical interpretations to (1). The 
first is in terms of hypothetical rejection probabilities: 
if we were to take Yobs, as just decisive against Ho, 
then we would also take data with as greater or 
greater a value of t as evidence against Ho; hence 
Pobs is the probability that Ho would be 'rejected' 
when true. 

Note especially that this is an entirely hypo- 
thetical interpretation and not a specification of 
how the significance test is to be used in practice. 
In particular there is no suggestion of choosing in 
advance a particular x0 and noting merely wlhether 

Pobs < ao or Pobs > XO0 

An alternative interpretation is that when Ho is 
true and T continuously distributed, the random 
variable P is uniformly distributed on (0, 1). We 
have, so to speak, replaced assessment of the whole 
data vector y by assessment of a single quantity, 
having a simple distribution when Ho is true. If, 
now, T has a discrete distribution the approximation 
to a uniform distribution is somewhat improved 
by taking 

Pobs = pr (T> tobs; Ho) + j pr (T = tobs; Ho), (2) 

and this has indeed been suggested as a modified 
definition (Stone, 1969). While the point is not a 
major one, it seems to me that (1) is to be preferred 
as leading to the achievement of a clearer physical 
interpretation relevant to the use to be made of the 
test. Indeed an exactly uniform distribution could 
be achieved by introducing a supplementary random 
variable but this would confuse rather than aid the 
interpretation of the data. One situation when there 
is certainly some advantage in having an approxi- 
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mately uniform distribution of significance levels 
under the null hypothesis is when a number of 
significance levels obtained from independent sets 
of data are to be assessed collectively; on the whole, 
however, that is a poor way of pooling information 
from several sources. 

With definition (1) or (2), there is in the discrete 
case a finite or enumerable set of possible values 
for p, which we call achieveable levels. 

2.3. Formulation of tests 
To formulate a test, we therefore need to define a 
suitable function t(.), or rather the associated 
ordering of the sample points. Essential require- 
ments are that (a) the ordering is scientifically 
meaningful, (b) it is possible to evaluate, at least 
approximately, the probability (1). In particular for 
composite null hypotheses, (b) is a requirement 
analogous to but weaker than that of similarity in 
Neyman-Pearson theory. 

The contrast between significance tests, as an 
aid in the summarization of evidence, and decision 
procedures is implicit or explicit in much recent 
discussion; for example, see Kempthorne (1966), 
Kempthorne & Folks (1971), Cox (1958), Cox & 
Hinkley (1974) and Gibbons & Pratt (1975). 

At this stage in the development, the null hypo- 
thesis is the only aspect of the problem explicitly 
formulated, so that such general considerations 
as the likelihood principle are inapplicable. 

2.4. Allowance for selection 
Sometimes a test is constructed in effect by examining 
several test statistics and concentrating eventually 
on the most significant. We discuss later when this 
is sensible. The formal treatment is that we are 
essentially taking as test statistic 

q =min (p1, ...,Pk), (3) 

where pj is the significance level in the jth test and 
small values of q are evidence against H.. 

By the definition (1), the required level of signi- 
ficance is 

pr (Q s qobs; Ho) = 1 -pr (Pj > qobs; 
j = 1, ..., k; Ho). (4) 

We call (4) the allowance for selection. It is, of 
course, well known that if the component tests 
are independent and continuous (4) becomes 1 - 
(1 - qobs)k, and that an upper bound for (4) is in any 
case kq.b8. In particular cases, exact calculation of, 
or more refined bounds for, (4) may be available. 

Before discussing further the choice of test sta- 
tistic, it is useful to review the ways in which null 
hypotheses arise. 

2.5. Types of null hypotheses 
The practical interpretation of significance tests 
depends appreciably on the nature of the null 
hypothesis under test. In addition to the usual 
distinction between simple and composite hypo- 
theses, it is useful to make a number of other 
distinctions, although they are certainly not rigid. 
For a rather different classification of testing prob- 
lems, see Anscombe (1956). 

There is first a broad distinction between plausible 
hypotheses, which on scientific or general grounds 
may well be quite close to the truth, and dividing 
hypotheses, which divide the range of possibilities 
into qualitatively different types. 

Plausible null hypotheses can in fact be sub- 
divided into (a) ones of intrinsic scientific in- 
terest, such as that data are consistent with some 
reasonably well-established physical theory and (b) 
simplifying ones, such as that in a factorial experi- 
ment all three -factor and higher order interactions 
are absent. Such a null hypothesis as (b) will often 
be expected on general grounds to be approxi- 
mately correct, and it will usually be a sound 
strategy of sceptical optimism to proceed with 
the interpretation ignoring high-order interactions, 
unless there is explicit evidence that they are im- 
portant. 

Dividing null hypotheses are considered because 
they form a division between qualitatively different 
cases. Thus in an industrial experiment comparing 
two alternative processes A and B, there might be 
no particular reason for expecting the mean yields 
MA and MB to be exactly or nearly equal. Yet the 
null hypothesis is of interest as dividing the situations 
with MA > MB from those with MA < P. So long as 
the data are reasonably consistent with this null 
hypothesis, the data by themselves do not supply 
clear evidence as to the sign of MA - MB. Of course 
the null hypothesis may more sensibly be taken 
to be MA - MB = MO, where mo is an economic break- 
even point. 

It is consideration of dividing null hypotheses 
that makes some sense of the testing of null hypo- 
theses that are known to be false. For example, 
consider an investigation by computer simulation 
of the sampling distributions of a statistic V, 
known to be asymptotically standard normal, but 
known also not to have a normal distribution for 
finite sample sizes. Suppose, say, that 103 values 
of v are generated and agreement with the standard 
normal distribution tested by some goodness of 
fit statistic. Is this sensible? The null hypothesis is 
certainly false. While it would be more constructive 
to estimate the direction and possible magnitude 
of the departure from the standard normal 
distribution in the region of most interest, the 

Scand J Statist 4 

This content downloaded from 150.162.246.50 on Thu, 15 Oct 2015 03:49:35 UTC
All use subject to JSTOR Terms and Conditions



52 D. R. Cox 

significance test is not entirely misguided. An 
outcome with a moderately high p-value would 
imply that the simulation is inadequate to assess 
even the direction of the departure, in the respect 
tested. 

Some dividing hypotheses assert absence of struc- 
ture in the data, for example that a point process is a 
Poisson process. Even if this hypothesis is not a 
plausible one, it is sometimes useful as dividing, 
for example, "overdispersion" from "underdisper- 
sion". Elaborate explanation of apparent clustering 
would, at the current stage, be unwise if the data 
are reasonably consistent with a Poisson process. 

The next subdivision of null hypotheses is par- 
ticularly relevant to simplifying plausible hypo- 
theses. These can be classified as (i) hypotheses 
of simple primary structure, and (ii) hypotheses 
of simple secondary structure. 

Hypotheses of simple primary structure assert 
the meaningfulness of the primary aspects of the 
model. For example, if the parameter of primary 
interest is the slope of a straight line, a null hypo- 
thesis of linearity is a hypothesis of simple primary 
structure. Again in a factorial experiment, we 
usually hope for an interpretation in terms of main 
effects and perhaps some low order interactions; 
null hypotheses of the absence of high order inter- 
action assert the meaningfulness of such inter- 
pretations. In both examples, we will usually change 
the formulation of the primary question, if clear 
evidence against the null hypothesis is found. Thus 
in the factorial experiment with interaction present, 
the main effects, while mathematically still defined, 
are often physically uninteresting; interpretation will 
usually require more detailed study of multi-way 
tables. 

Hypotheses of simple secondary structure usually 
assert the occurrence of some standard and relatively 
simple set of conditions, such as that errors are 
independently normally distributed with zero mean 
and constant variance. Here we are usually less 
interested in the null hypothesis as such than 
with the effect on the primary conclusions of any 
departures; considerations of robustness become 
very relevant. 

While it is outside the scope of the present paper 
to discuss robustness in detail, three points may be 
made. First assumptions which can be avoided 
without major loss of simplicity or efficiency should 
not be introduced, unless there is good positive 
external evidence for them. Secondly, procedures 
that are automatically robust to occasional gross 
errors are especially likely to be useful when large 
amounts of data have to be analyzed without 
detailed inspection of the data. Thirdly, in the 
analysis of modest amounts of data, especially of 

Table 1 summarizes the main types of null hypo- 
thesis. 

I. Plausible II. Dividing 

I.1. Of intrinsic interest 11.1. Absence of structure 
1.2. Simplifying 11.2. Equivalence of 

1.2(i). Simple primary treatments 
structure 11.3. Difference equal to 

1.2(ii). Simple secondary economic breakeven 
structure point 

A. Embedded B. Not embedded 

relatively complex structure, it will usually be best 
to start from the very simplest secondary assump- 
tions that are at all reasonable. At the end of the 
analysis the sensitivity of the main conclusions to 
the various secondary assumptions can then be 
examined, often qualitatively; this is the traditional 
approach to assumptions in applied mathematics. 
There are several reasons for putting considerable 
weight on simplicity of analysis, not least being 
ease of communication. 

On all these counts. significance tests of hypotheses 
of simple secondary structure seem to be relatively 
unimportant; in particular so-called preliminary test 
procedures should, I think, be avoided if feasible. 

In all the situations discussed so far it is necessary 
only that the null hypothesis should be precisely 
specified in probabilistic terms. Of course there are 
many situations in which the null hypothesis is 
embedded in a family of models, all of which are 
candidates for representation of the data. For 
example, the null hypothesis may correspond to 
particular values for component parameters in a 
parametric family of models. It is in these situations 
where interval estimation of the primary parameter 
is so often more appropriate than significance test- 
ing. 

2.6. An illustrative example 
We return to those distinctions later, but a brief 

example may help to clarify some of the ideas. 
Consider a two-sample problem, based initially for 
simplicity on normal distributions, and let the null 
hypothesis be that of equality of variance. 

(a) If one object is the comparison of the precision 
of two measuring techniques, the null hypothesis 
will be a primary one. If the techniques are thought 
possibly to differ only in irrelevant respects, the 
null hypothesis may be plausible. If the techniques 
are quite different, for example gravimetric and 
photometric, the null hypothesis will be dividing and 
embedded; estimation of the ratio of variances may 
well be more fruitful. Any null hypothesis should 
correspond to an economic breakeven point. 
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(b) In some applications, involving extensive 
(i.e. physically additive) quantities the main objec- 
tive will be the estimation of the difference in mean 
response, regardless of distributional shape. Then 
the null hypothesis of equal variance is one of simple 
secondary structure. A reasonable attitude is that 
such hypotheses are, as far as is feasible, best 
avoided, unless there is strong external evidence in 
their favour. Thus, in the absence of such strong 
evidence, it will be better to use the Welch-Aspin 
method (Pearson & Hartley, 1970, Table 11), or 
some simplification thereof, than the Student t test 
assuming equal variances: of course, the distinction 
is important only when the ratio of the sample sizes 
is far from one. 

(c) The most common situation is probably that 
where we wish to compare the two distributions, but 
hope that this can be done incisively by a compari- 
son of mean values, or more generally by a com- 
parison of location parameters. Here the null hypo- 
thesis of equal variance is one of simple primary 
structure. If there is clear evidence against it, the 
comparison in terms of means will need reconsidera- 
tion; for example, it may then be possible to find a 
transformation so that the distributions can be 
represented by a simple shift of location (Switzer, 
1976; Doksum & Sievers, 1976). 

The more complex the problem, the greater the 
need for simplifying hypotheses of both primary 
and secondary kind. Thus it may well be satisfactory 
to compare just two samples directly by the sample 
distribution functions without simplifying hypo- 
theses, but this will not be feasible in complex 
problems. 

2.7. Choice of test statistics: simple situations 
Even for relatively straightforward situations there 
are three main ways in which tests may be derived: 

(a) by the absolute test, in which the smaller is the 
probability under H., the stronger is the evidence 
against H.; 

(b) by choice of a test statistic on general grounds, 
for example as equivalent to an estimate of a 
relevant feature of the random system; 

(c) via considerations of power under alternative 
models chosen to represent the departures of in- 
terest. 

The first, the absolute test, applies in an 
immediate way to simple null hypotheses involving 
discrete distributions. Here, with the provisos to be 
noted later, the smaller is pr (Y=yObS; H0), the 
stronger the evidence against H0. K. Pearson (1900) 
followed this approach in developing the chi-squared 
goodness of fit test. He showed that the multi- 

nomial probabilities under test are approximately 
monotonic functions of the X2 statistic and that a 
sum over sample points with probabilities as small 
or smaller than that of Yobs is approximately equiva- 
lent to that over a region defined by X2. For similar 
arguments for exact tests of independence in con- 
tingency tables, see Freeman & Halton (1951); 
for goodness of fit of the Poisson distribution, see 
Fisher (1950), who made the important comment 
that sample points must be merged in the maximally 
meaningful way before calculating the probabilities, 
to avoid an obvious arbitrariness. Recently Martin- 
Lof (1974) has studied such tests in detail in a 
special context and there has been some vigorous 
discussion (Sverdrup, 1975; Martin-Lof, 1975). 

There are obvious difficulties in applying these 
ideas to continuous situations. Admittedly all real 
measurements are discrete, but one would be 
uncomfortable with a procedure depending criti- 
cally on a particular system of digitizing. 

The central philosophical point concerns whether 
it is sensible to find evidence against a hypothesis 
solely because an outcome of relatively low probabi- 
lity has occurred, and without regard to possible 
alternative explanations. If the labelling of the sample 
points in the sample space Sy is totally arbitrary 
and no other information is available, there seems no 
option but to use the absolute test; such situations 
do, however, seem quite exceptional in applications. 

The two remaining methods of choosing a test 
statistic both employ alternatives to the null hypo- 
thesis, the one implicitly and the other explicitly, 
i.e. in probabilistic terms. Note that formulating 
alternative distributions representing the direction 
of departure from H. is weaker than embedding H. 
in a family of models on an equal footing. 

For simple null hypotheses, specifying a density 
fo(y) with respect to an underlying measure yt4.), the 
two approaches are formally equivalent, because the 
choice of test statistic t(.) and consideration of the 
exponential family generated by t(.), 

fo(y) exp {Ot(y)} ( ) 0) 
ff0(z) exp {Ot (z)} ,i(dz) ~0 5 

lead to the same test. 
Note that 
(i) if Y consists of n components independent 

under Ho and under the alternatives, t(y) = :t(y); 
(ii) some familiar test statistics, such as the Kol- 

mogorov goodness of fit statistic and many of its 
generalizations, correspond to peculiar families (5), 
whose structure in particular depends in a nonob- 
vious way on n; 

(iii) except where the null hypothesis is naturally 
embedded in a family of models, choice of a family 
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of alternatives is not essentially easier than choice 
of a test statistic; 

(iv) to stress the point that alternatives may serve 
only to indicate a direction of departure, suppose 
that under HO the random variable Y is a scalar 
with the distribution N(O, 1) and that the single 
alternative HA is N(102, 1). If y = 10, the evidence of 
inconsistency with HO is very strong; yet HO fits much 
better than HA. The evidence is of departure from 
HO in the direction of HA. 

2.8. Choice of test statistics: complicated situations 
The discussion of Section 2.7 deals with a relatively 
simple situation. Complications that frequently 
arise are: (i) that the null hypothesis may be com- 
posite; (ii) that departure of several qualitatively 
different kinds may be of interest. 

Composite hypotheses are of various kinds and 
a complete classification, while of interest, will not 
be attempted. Note that what in Section 2.5 is 
called a dividing hypothesis is sometimes called a 
composite hypothesis. The most common compo- 
site hypotheses are, however, those that specify the 
value of one component parameter and leave other 
parameters unspecified. There are in principle 
many other possibilities, including those that in- 
volve parametric models with unusual constraints 
on the parameter space (Chambers, 1970; Cox, 
1976). 

Here, however, we shall concentrate on the second 
possibility, that departures of more than one kind 
are of interest. Typical examples are that 

(i) a distribution may depart from a null hypo- 
thesis of normality by skewness or kurtosis or 
both; 

(ii) the assumptions about error in the normal 
theory linear model may fail in numerous ways; 

(iii) the null hypothesis that random variables 
Y1 ..., Yn, are independently distributed in the 
standard normal distribution can fail, in the mean, 
in the dispersion and in the shape of the distribution; 

(iv) the null hypotheses conventionally considered 
in univariate and multivariate analysis of variance 
can usually fail in multidimensional ways. 

Note that (iii) is not so academic as it might seem; 
the yi's may be similar test statistics calculated 
from independent sets of data. 

The choice of test statistic in such situations is 
usually handled by either intuitive choice of a 
composite test statistic or by power considerations, 
compromising between the various kinds of alter- 
native. Note that in the latter the use of stylized 
alternatives (Andrews et al., 1972; Prescott, 1976) is 
likely often to be helpful. In this most of the observa- 
tions are fixed at conventional values and the test 

statistic is considered as a function of the remaining 
values. However consideration of power is usually 
inconclusive, unless there is a high degree of sym- 
metry in the situation making relevant particular 
averages of power over alternatives in different 
"directions". 

A further important requirement is that of sensi- 
tive diagnosis. In the situations we are considering, 
it will rarely, if ever, be satisfactory to find evidence 
against the null hypothesis and to carry the inter- 
pretation no further. When the null hypothesis is 
embedded in a family of models, testing the null 
hypothesis can usually be fairly intimately linked to 
the estimation of parameters in the richer family, and 
interpretation will usually be via the resulting 
estimates. However, diagnosis of the nature of the 
departure from the null hypothesis may be possible 
without explicit formulation of alternative models, 
and it is reasonable to prefer tests that help towards 
this as much as possible. 

There are two aspects to this. First, it is an ad- 
vantage, although not essential, for a test statistic 
to be fairly directly related to an estimate of some 
aspect of the situation. Secondly, suppose that 
tl, .., tk are test statistics designed for k different 
kinds of departure. Often it will be convenient to 
arrange that the null hypothesis distributions of 
T "...,k are approximately standard normal; often 
in practice this will mean that the joint distribution 
is approximately multivariate normal. Now if linear 
combinations of the ti are just as meaningful as 
individual ti, it will be reasonable to search for the 
most significant linear combination. After the 
allowance for selection, this will involve finding 
t'S-1t, where St is the covariance matrix of the column 
vector (T1,..., Tk), estimated or exact. Its distribu- 
tion under the null hypothesis is at least approxi- 
mately chi-squared; corrections based on Laguerre 
expansion will often be feasible. 

In many situations, however, linear combinations 
of the test statistic are not equally meaningful and 
the above procedure is poor from a diagnostic 
viewpoint. It is reasonable to aim for the following 
situation: (i) the component statistics assess depar- 
tures of qualitatively different kinds; (ii) so far as is 
feasible failure of the null hypothesis in one respect, 
should have relatively little effect on the meaningful- 
ness of and the distribution of the statistics for the 
other aspects. 

Then the use of the most significant of the separate 
statistics, with the allowance (4) for selection, will 
give a procedure with useful diagnostic properties, 
the extreme component statistics indicating the 
nature of the departures, if any. We call this the 
"maximum" test. Note that because of (ii), we may, 
if the most extreme statistic out of k component 
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statistics leads to a very small value of p, examine 
the remaining k -1 components using (4) with the 
smaller value of k, and so on. Very detailed 
consideration of the complicated probability pro- 
perties of such a procedure seems irrelevant. 

As compared with the use of the quadratic sta- 
tistic, the maximum procedure will be less powerful 
for some types of "mixed" departures, but pre- 
sumably more powerful for "pure" departures along 
the component directions. Preliminarv calculations 
suggest that for k =2 the differences in power are 
unimportant, but that for k = 10 there can be 
appreciable loss of power, for example in using the 
"maximum" test if departures occur simultaneously 
in several directions. The point to be stressed here, 
however, is the greater general informativeness of 
the "maximum" test. 

In studying the diagnostic properties of tests it is 
important that effective power should be defined 
to be the probability of detecting a departure from 
the null hypothesis and of making the correct 
diagnosis; in symmetrical situations, this implies 
that at level ac the effective power approaches c/k 
for alternatives very close to the null hypothesis. 

Note that, while it is certainly convenient if the 
component statistics are approximately indepen- 
dently distributed under the null hypothesis, this 
requirement is secondary to (i) and (ii). 

Some examples of this are as follows: 

(a) To test for univariate normality, we may take 
max { hl'(g') l, Ih(')(g2) }, where gl and g2 are the 
sample standardized third and fourth cumulants 
and the functions h(l(.) and h(2)(.) respectively 
transform g1 and g2 into standard normal variables. 
The joint distribution of the statistics tends to in- 
dependence but only rather slowly (Bowman & 
Shenton, 1975). Note that requirement (ii) is only 
partly satisfied in that while g,, say, retains its 
meaning as a measure of symmetry for a distribution 
with nonzero kurtosis, its distribution will be 
affected by the nonnormality. 

(b) In a factorial experiment, let MS'(1, ..., Ms(k) be 
independent mean squares, all for simplicity having 
the same number of degrees of freedom, f say, and 
corresponding to physically different interaction 
terms; let Msres be an independent estimate of error 
with fres degrees of freedom. The quadratic form 
version is essentially equivalent to the usual overall 
F test, {(MS(l) +-... + MSk))/k }/MSres. The maximum 
statistic is max {Ms(?)}/Msres; see Pearson & Hartley 
(1970, Table 19) for the case f = 1. 

The above discussion concentrates on the case 
where the distinct types of departure from the null 
hypothesis are qualitatively different and where any 

one or number of the departures might occur. An 
alternative possibility is where the types of departure 
are nested. The fitting of a polynomial is one 
example. Another is the test of a null hypothesis 
with more than one degree of freedom in multi- 
variate analysis of variance. The standard likelihood 
ratio test based on determinants has reasonable 
power properties but, as it stands, no immediate 
diagnostic value. Examination of the few largest 
canonical roots and their associated canonical 
variables has, hopefully, a more direct interpretation 
and this is an argument for an initial test based on 
the largest canonical root. If, however, it is wanted to 
examine a sequence of a priori canonical variables, 
the analysis can be carried out elegantly in terms of 
a factorization of the likelihood ratio criterion and 
that is then a very good argument for the determi- 
nantal tests (Bartlett, 1974; Kshirsagar, 1976). 

There is, of course, a very extensive literature on 
the combination of tests of significance and on the 
choice of test statistics from considerations of 
power. The maximum test seems first to have been 
suggested by Tippett (1931); on the combination 
of tests the work of van Zwet and Oosterhoff (1967) 
is particularly relevant. 

2.9. Some tests of goodness of fit 
Some of the above points can be illustrated by tests 
of distributional form, first considering a null hypo- 
thesis of multivariate normality. 

A null hypothesis of multivariate, or for that 
matter univariate, normality can arise in at least 
three ways: (a) as a plausible hypothesis of intrinsic 
interest; (b) as a hypothesis of simple secondary 
structure; (c) as a hypothesis of simple primary 
structure. 

Thus in (a), there might be a physical theory 
according to which the observations correspond 
to a random walk. Of course the best way to test 
this would be by observing individual trajectories, 
or by studying the dependence of mean and disper- 
sion on the duration of the walk. In the absence of 
such information, however, recourse to a test of 
distributional shape may be unavoidable. 

As to (b), we may be concerned (Mardia, 1971) 
with applicability, for example, of standard tests for 
means based on an assumption of multivariate 
normality. It can be argued here that such preli- 
minary tests are best avoided and reliance placed 
where possible on considerations of robustness. 

The third possibility, (c), is one that qualitatively 
justifies interpretation of the data in terms of 
estimated mean and covariance matrix. Here we 
concentrate on the covariance matrix; of course 
a large number of multivariate techniques essentially 
deal with covariance matrices. 

Scand J Statist 4 

This content downloaded from 150.162.246.50 on Thu, 15 Oct 2015 03:49:35 UTC
All use subject to JSTOR Terms and Conditions



56 D. R. Cox 

The covariance matrix is a misleading summary 
of interrelationships when substantial nonlinearity 
is present in the relation between some variables. 
Mr N. J. H. Small and I, in unpublished work, 
have investigated in detail tests investigating simul- 
taneously various kinds of nonlinearity, treating 
separately procedures that are coordinate dependent 
and those that are invariant under nonsingular 
linear transformations of the variables. For the 
latter we consider a statistic Q which is essentially 
the maximum curvature achievable in the regression 
of one linear function on another. 

The test statistics are derived by informal argu- 
ments; there seems to be no simple and general 
family of distributions to serve as alternatives. 
Alternatives enter qualitatively in indicating the 
kinds of departure thought of scientific interest. 

By contrast, for the much simpler problem of 
testing goodness of fit of the von Mises density pro- 
portional to 

exp (#,1 cos y +AYi sin y) (O ?y < 2a), 

it will often be reasonable to consider the alternative 
family (Cox, 1975 a) proportional to 

exp (fl1 cos y + y1 sin y + ,B2 cos 2y + y2 sin 2y). 

This requires study of the conditional distribution of 
(E cos 2Yj, I sin 2Yj) given (E cos Yj, E sin Y1) for 
independent and identically distributed Y1, ..., Y,. 
The required distribution is approximately bivariate 
normal; the general problem of finding more refined 
approximations in this and other similar expo- 
nential family problems appears to be unsolved. 

3. Modification of analysis in the light of the data 

3.1. General remarks 
A realistic theory of statistics must take account of 
the facts that very commonly several different 
questions have to be studied on the same data, and 
that the model, and sometimes indeed the questions 
for study, are settled in the light of the data. 

The first point is not a major source of trouble, 
so long as the problems can really be treated as 
separate. For then a separate measure of uncertainty 
need attaching to each conclusion, and consideration 
of so-called experiment-wise error rates is not 
required. 

The second point is much more important. The 
necessity of modifying methods of analysis in the 
light of the data raises difficulties for all approaches 
to the theory of statistical inference. Indeed some 
philosophies of science distinguish between explora- 

tory experiments and confirmatory experiments 
and regard an effect as well established only when 
it has been demonstrated in a confirmatory experi- 
ment. There are undoubtedly good reasons, not 
specifically connected with statistical technique, 
for proceeding in this way; but there are many fields 
of study, especially outside the physical sciences, 
where mounting confirmatory investigations may 
take a long time and therefore where it is desirable 
to aim at drawing reasonably firm conclusions from 
the same data as used in exploratory analysis. 

The whole subject is too large to be discussed in 
detail here. Just four of a number of possible situa- 
tions will be mentioned. These are, respectively, 
where 

(a) the whole primary formulation is the outcome 
of an exploratory analysis; 

(b) simple forms of primary specification are 
chosen from some richer set in the light of the data; 

(c) the primary formulation is an extension of 
that initially chosen; 

(d) the secondary aspects of the model are chosen 
after exploratory analysis of the data. 

A significance level is a summary statement of the 
relation between data and a probability distribution 
that might have generated that data. In one sense, 
therefore, it is immaterial how the null hypothesis 
is arrived at. On the other hand, in extreme cases, 
choice of a null hypothesis in the light of the data 
makes irrelevant the hypothetical physical inter- 
pretation of the significance level. The objective of, 
for example, the allowance for selection is to define 
a significance level whose hypothetical physical inter- 
pretation is more directly related to the procedure 
of analysis actually carried out. 

The four cases summarized above will now be 
discussed briefly. 

3.2. Primary formulation derived from exploratory 
analysis 

The most extreme form of this arises in the study of 
coincidences. Suppose, for example, that it is re- 
ported that in a certain group of 10 neighbouring 
houses in a large city, there are 6 distinct instances 
of a very rare children's condition, the children 
being unrelated, and that the condition had previ- 
ously been thought to be genetic in origin. How 
"significant" is this observation as evidence against 
the hypothesis of genetic origin? The difficulty, of 
course, is that the observation is not obtained by a 
clearly defined procedure and that, while an 
allowance for selection is required, it is not apparent 
what this should be. This kind of observation is not 
typical of scientific observations, but cannot be 
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ignored, being an important source of new ideas. 
A less extreme form of the same situation arises 

when largely haphazard data are inspected, an 
apparently interesting systematic feature is dis- 
covered and assessment of statistical significance of 
this is required. 

Now if the aspect is chosen for study as the most 
significant of a reasonably clearly defined set of 
effects, an allowance for selection can be calculated, 
at least approximately. But often the sequence of 
exploratory analysis is ill-defined. A well-known 
way round this difficulty (Selvin & Stuart, 1966), is 
to manufacture independent exploratory and con- 
firmatory experiments. For this, the data are split 
at random into two parts, and the second part used 
to assess the significance of effects uncovered by 
exploratory analysis of the first part. Note that 
this is a sensible procedure only when considerable 
importance attaches to the significance test, because 
the procedure obviously depends on the particular 
random data split adopted; quite apart from con- 
siderations of efficiency there are strong objections 
on general grounds to procedures where different 
people analyzing the same data by the same method 
get different answers. Cox (1975b) has analyzed the 
technique theoretically in a simple idealized 
situation and shown that quite high efficiencies, of 
about 80% are achieved. 

Incidentally the calculation of confidence limits 
for parameters of models suggested by such explora- 
tory analysis seems not normally to raise special 
problems. 

A less extreme form of choice in the light of the 
data arises when the qualitative nature of the effect 
for study is clear, but its precise quantitative speci- 
fication requires exploratory analysis. A simple 
example is when the relation between a response 
variable Y and an explanatory variable x is to be 
studied, but exploratory analysis is required to 
decide whether to regress Y on x, log Y on log x, 
etc. and whether any unusual specification of error 
structure is called for. If the existence of a depend- 
ence is in question, an allowance for selection will 
be necessary if assessment of significance is based on 
the most significant of the relations examined; 
otherwise, in the calculation of confidence limits 
for the new primary parameters no special methods 
appear to be needed. 

3.3 Primary specification simplified by 
exploratory analysis 

A commonly arising situation, especially in the 
analysis of factorial experiments and multiple re- 
gression with an appreciable number of explanatory 
variables, is that we have initially a rather general 

model with many parameters. It is hoped in the 
light of the data to arrive at a fairly simple 
representation of the data, involving few para- 
meters. For example in a complete factorial experi- 
ment with several factors, the full factorial model 
with main effects and interactions of all orders is 
virtually useless for interpretation. We concentrate 
the discussion on situations where the interpreta- 
tion of which terms are needed in the model is im- 
portant, as contrasted with problems of mean 
square error prediction of future responses and of 
the use of regression equations for control (Lindley, 
1968). 

One simple but important principle is crucial. 
Data that are consistent with several quite dif- 
ferent simple explanations should not be claimed as 
explicit evidence for just one of those explanations. 
Any concentration on one of the explanations needs 
justification from considerations external to the data. 

The following general procedure is thus indicated 
where it is computationally feasible. Test the 
goodness of fit of all relevant simple models; list 
those not significantly discordant at each of a 
number of levels (e.g. 0.1, 0.01). Then if the data 
have indeed been generated to a close approxima- 
tion by one of these simple models, in hypothetical 
repetitions that model will be among those listed 
except for the stated small proportion of cases. Note 
that no allowances for selection are required. One 
relatively minor difficulty is that of some failure of 
logical coherence at a fixed significance level as 
between consistency with a simple model and con- 
sistency with a rather more complex model con- 
taining the simple model as a special case. More im- 
portantly, the approach does, of course, make the 
assumption of constructive optimism that it is 
worth looking for simple explanations and that the 
search for simple explanations has been thorough 
and imaginative enough to embrace all important 
possibilities. 

This approach is applicable in principle to a wide 
range of problems, especially familiar in the context 
of analysis of variance and multiple regression, and 
their generalizations. These problems include: 

(i) the choice of simple regression equations for 
explanatory purposes (Cox & Snell, 1972; Spj0tvoll, 
1977). This procedure is to be contrasted with those 
reviewed by Hocking (1976) which demand the 
selection of a single equation; 

(ii) the grouping of means in a comparison of 
unstructured treatments. Here a "simple" explana- 
tion may consist of arranging the treatments in a 
number of groups with all treatments in a group 
having the same mean. The technique is to list all 
such groupings consistent with the data; 

Scand J Statist 4 

This content downloaded from 150.162.246.50 on Thu, 15 Oct 2015 03:49:35 UTC
All use subject to JSTOR Terms and Conditions



58 D. R. Cox 

(iii) the explanation of complex interactions in a 
factorial experiment. There are a number of well- 
known ways of attempting to explain situations with 
interactions and again the procedure is to list all 
those consistent with the data. Possibilites include 
(a) transformation of the responses; (b) splitting of 
the data by one or more factors; (c) separation of 
a small number of factor combinations; (d) separa- 
tion of abnormal levels of one or more factors; 
(e) introduction of a mixed additive-multiplicative 
model (Mandel, 1971). 

The calculation of confidence limits for the para- 
meters in such a simple model can normally be made 
by the usual formulae. 

3.4. Primary formulation extended by 
exploratory analysis 

A typical example of this is when a regression 
suspected of being linear is found on analysis of the 
data to be nonlinear. This normally leads either to 
the fitting of an extended model with one or more 
additional parameters, or to a modification of the 
whole model, for example the replacement of linear 
regression of Y on x by that of log Y on log x. The 
main technical point concerns whether the calcula- 
tion of confidence limits for the additional para- 
mieter is affected by the conditional nature of their 
definition. It is arguable that in fact no such modi- 
fication is needed. A more important practical point 
concerns situations with a number of independent 
similar sets of data. If the presence of an extra 
parameter is indicated only for some of the sets of 
data, it will usually be a good idea to fit the addi- 
tional parameter to all sets of data, to examine 
whether the additional parameter is in fact constant 
and if not to describe its variation either deter- 
ministically or in terms of some supplementary 
model. 

3.5. Secondary formulation chosen by 
exploratory analysis 

Except where the choice of a secondary formulation 
can be represented, at least approximately, as a 
formal procedure equivalent say to maximum likeli- 
hood estimation, there is little choice but to treat 
inference about the primary parameters as if the 
secondary formulation were fixed. 

4. Some more detailed points 

4.1. General remarks 
The previous discussion has concentrated largely 
on general aspects of significance tests and their 
application. In the present section a number of 

rather more technical matters are reviewed briefly. 
There are a number of further issues which, while 
important, will not be treated. These include the 
limitations of and modifications to locally most 
powerful tests (Cox & Hinkley, 1974, p. 117; Efron, 
1975), the choice between alternative asymptotically 
equivalent procedures, and the role of randomiza- 
tion tests. 

4.2. Two-sided tests 
Quite often a naturally arising test statistic t is such 
that both very large and very small values of t sug- 
gest departure from Ho. Sometimes a natural sym- 
metry will suggest, for example, replacing t by It 1. 
Often, however, there is no such natural conversion 
to a onesided problem and, more importantly, de- 
partures in the two directions represent qualitatively 
quite different kinds of effect, which need to be 
distinguished. In particular, consideration of a 
single "power" function in which direction of 
departure is ignored is in principle confusing. If in 
fact there is a "positive" shift from H0, to find in the 
data evidence of a "negative" shift is misleading and 
not a credit to the test. This implies, in particular, 
that in such situations the notion of unbiasedness 
is a poor basis for defining a procedure. A better 
approach is to regard the tests for "positive" and 
"negative" shifts as distinct and both to be applied, 
an allowance for selection then being necessary. In 
the continuous case, this leads to a doubling of the 
observed smaller one-sided level. In the discrete 
case, we take the one-sided level qob0 plus the one- 
sided level from the other tail nearest to but not 
exceeding q.b0 (Cox & Hinkley, 1974, p. 79; Gibbons 
& Pratt, 1975). 

4.3. Discrete tests and the continuity correction 
When the test statistic has a discrete distribution 
under H0, only certain significance levels are achiev- 
able under the definition (1). If, as will often happen, 
a normal or other continuous approximation is used 
to approximate to p, use of a continuity correction 
will typically lead to an improved approximation. 
If, however, we use the modified definition (2) a 
continuity correction is not, in general, desirable. 

Claims (Conover, 1974) that a continuity correc- 
tion should not be applied, for instance in the com- 
parison of two binomial parameters, are based on 
either (i) an attempt to force achievement of some 
preassigned level, e.g. c= 0.05, or (ii) an implicit 
change in the test statistic or its distribution under 
the null hypothesis, for example in the binomial 
case the use of a test other than Fisher's 'exact' test. 

Thus in (i), if there were a number of 2 x 2 tables 
of different sizes and it were proposed to analyze 
them by computing a significance level from each 
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and then checking on the uniformity of their distri- 
bution, a continuity correction should not be used; 
this is, however, a poor way of handling such data! 
As to (ii), in the special problem, the arguments for 
Fisher's 'exact' test depend either on similarity, or, 
on some appeal to a generalized notion of ancil- 
larity and while, in my opinion, very appealing are 
not overwhelmingly convincing. 

4.4. Similarity 
Many null hypotheses in practice involve nuisance 
parameters, and it is then part of the requirement 
of the test that the relevant significance level can 
be calculated in a form at least approximately in- 
dependent of the nuisance parameter. Exact inde- 
pendence, of course, often leads to conditioning on 
complete sufficient statistics and to exactly similar 
regions of Neyman structure. Conditioning can in 
many cases be justified alternatively via generalized 
notions of ancillarity. The central point is that the 
statistically meaningful concept is approximate not 
exact similarity and that insistence on exact simi- 
larity may be such a stringent requirement that 
satisfactory procedures are excluded. 

This matter, while perhaps rather academic, is a 
fundamental one in a sampling theory approach to 
statistical inference; for an example where exact 
similarity is definitely too strong a requirement, see 
Cox (1967) and Cox & Hinkley (1974, p. 151) and 
for a discussion from the viewpoint of M-ancillarity, 
see Barndorff-Nielsen (1976). 

4.5. Bayesian tests 
The distinction drawn in Section 2.5 between plaui- 
sible null hypotheses and dividing null hypotheses 
is expressed quantitatively in Bayesian theory. In the 
first but not the second a concentration of prior 
probability is placed at or very near to Ho. In the 
first we calculate the posterior odds pr (H, I Y =y)/ 
pr (H, I Y = y), whereas in the second we calculate 
pr (E) <01 Y =y), where the dividing null hypothesis 
is 0 = 0. It is known that for diffuse priors the latter 
is often close to the tail area of a conventional test. 

The Bayesian formulation is much stronger both in 
requiring a knowledge of prior probabilities and also 
in requiring a full specification of alternative pos- 
sibilities. 

The Bayesian calculation of pr (H0 I Y = y)/ 
pr (Fl0 I Y =y) is often roughly related numerically 
to the evaluation of the tail area, but that they are 
really assuming distinct questions is shown by the 
differing dependence on sample size (Jeffreys, 1961, 
Chapter 5; Lindley, 1957; Cox & Hinkley, 1974, 
p. 395). For, typically, if a sample say at about the 
50% level of significance is achieved, then either 
H0 is true or some alternative in a band of order 

IlVn; the latter possibility has, as n-oo, prior 
probability of order 1/1n and hence at a fixed level 
of significance the posterior probabilities shift in 
favour of Ho as n increases. 

4.6. Comparison of models 
One particular application of significance tests which 
has arisen implicitly several times in the above dis- 
cussion is to the comparison of two or more alter- 
native models. A number of approaches can be 
distinguished: 

(i) we may test consistency with all models 
separately and conclude that the data are reasonably 
consistent with all, some or none of the suggested 
models; 

(ii) we may form a comprehensive model reducing 
to the individual models as special cases. By fitting 
the comprehensive model, not only are the objectives 
of (i) achieved but if none of the models fits a 
constructive new possibility is achieved; 

(iii) occasionally it may be required to settle 
whether one of say two models fits better than the 
other and then it will be natural to take a dividing 
null hypothesis that is in some reasonable sense 
halfway between the two models (Williams, 1959; 
Healy, 1955; Atkinson, 1969); 

(iv) sometimes it may be sensible that the test of 
each model used in (i) should be for departures in 
the direction of the other model. Then a test based 
on likelihood ratios (Cox, 1961, 1962) will be reason- 
able; 

(v) when the possibility that none of the models is 
adequate can be disregarded, a Bayesian approach 
may be applicable. Not only is it then necessary to 
specify the prior probabilities of the various models, 
but also at least approximately the conditional prior 
densities of the parameters under the various 
models. Thus with two models, specifying densities 
g(y; O) and h(y; x), the ratio of the posterior prob- 
abilities is (Cox, 1961), under the usual large-sample 
approximations 

ng g(y;) (IT)i "g g(?) A-1, _x 
h h(y; X') (2n)- h (X) A 

where rg and :h are the prior probabilities of the 
two models, qg and qh are the numbers of adjustable 
parameters, pg(.) and Ph(.) are conditional prior 
densities and AO and A. are information deter- 
minants. When qg = qh, there are some reasons to 
expect that approximately the product of the last 
three factors is unity. 

4.7. Quick tests 
The usual way of discussing the performance of 
tests used because of their simplicity is by study of 
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their power functions often via some concept of 
asymptotic relative efficiency. An alternative way 
supplementing consideration of power is to regard 
the quick test statistic, q, as an approximation to 
the exact test statistic, t, and hence to consider how 
precisely t can be estimated from q (Cox, 1956). 
Even assuming that t and q are defined so as to be, 
under H0, bivariate normal with zero means and 
unit variances, it is, unfortunately, necessary to 
assume a prior distribution flat near the null hypo- 
thesis. Then, if the efficiency of q relative to t is E, 
then given q, t has mean q/lV and standard error 

1/(1/? - 1). 
This simple result gives some guidance as to what 

conclusion is likely from an efficient test, t, given the 
result of a quick test on the same data. In any 
particular case, intelligent inspection of the data will 
often sharpen the conclusion that can be drawn 
about t. 

4.8. Analysis of several sets of data 
Frequently a number of independent but similar 
sets of data are available bearing on the same 
issue. It is then important that formally or infor- 
mally the conclusions shall be combined. The ob- 
jective is normally to discuss the common features of 
the different sets of data and to describe any dif- 
ferences in as concise a form as possile. Ideally one 
looks for a single representation of the whole data. 
If each set of data is primarily chosen to examine 
some such effect as a treatment difference, a possible 
initial analysis is to apply a significance test to each 
set of data for a null hypothesis of zero treatment 
effect. The following points are relevant: 

(i) it is potentially misleading to sort the data sets 
into those showing a clearcut effect and those not 
and then treating the two types as different. The 
existence of the two types is perfectly consistent 
with the presence of a constant treatment effect; 

(ii) unless the data sets are of similar size and 
precision it can be seriously inefficient to obtain an 
overall test by unweighted combination of the 
separate test statistics: 

(iii) the most important role of significance tests 
in such situations will be in helping find features 
that are the same in all the data sets, i.e. in establish- 
ing overall models of simple form; 

(iv) it is important that when pooled estimates are 
formed, the consistency of the information from the 
different sources is examined, at least informally. 
This can be regarded as an interesting special case 
of testing a null hypothesis of simple primary struc- 
ture, namely the hypothesis that a single parameter 
suffices to represent the effect under study. If 
evidence against this hypothesis is found, then the 

variation in the effect should if possible be "ex- 
plained" in terms of relevant explanatory variables; 
failing that a random effects representation may be 
considered. 

4.9. Use of conventional levels 
The whole emphasis in this paper has been on the 
use of the observed value of p as a summary measure 
of consistency with Ho. It is totally against the 
spirit of this discussion to set any rigid critical value 
ac0 and to deal quite differently with the cases p 1 o0 
and p > a, let alone to choose some conventional 
value such as ao =0.05. It will, however, often be 
convenient to record p approximately and the levels 
0.1, 0.05, 0.01, ... are convenient reference points; 
values equally spaced on a log scale might be 
slightly preferable. 

Bross (1971) has argued that in fields where there 
is a serious chance of frequent reporting of effects 
not clearly established by the data, the attainment 
of such conventional levels as 0.05 is a reasonable 
requirement for publication of results. Even when 
this is agreed, there seems no case for imposing 
rigid limits and in any case the estimation of the 
magnitude of effects present by some form of 
interval estimation will normally be a more suitable 
final summary of the primary conclusions; see 
Section 5. 

5. General discussion 

As noted in Section 1 there are considerable dangers 
in overemphasizing the role of significance tests in 
the interpretation of data. To conclude the paper we 
summarize briefly some general conclusions about 
the application of significance tests; most, but not 
all, are implicit in the previous sections. 

In any particular application, graphical or other 
informal analysis may show that consistency or 
inconsistency with Ho is so clearcut that explicit 
calculation of p is unnecessary. The discussion 
does embrace such cases. 

First, one main valuable use of significance tests 
is in the intermediate stages of analysis, in particular 
in the testing of plausible null hypotheses of simple 
primary structure. These assert the meaningfulness 
of the primary questions under study. Especially in 
relatively complex situations, simplifying assump- 
tions are essential for incisive interpretation and 
there are two rather different constructive uses for 
significance tests. The first is for examining the 
consistency of data with such assumptions as 
linearity, absence of interaction, parallelism of re- 
gression lines, where these are not the primary 
objects of the analysis. The second case is to find 
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which simple models chosen from some richer set 
fit the data. 

These two types of application, while arising 
only in an intermediate stage of analysis, are of 
central value. The first prevents oversimplification 
to the point of asking meaningless questions, whereas 
the second is an aid to finding simple formulations 
for the final analysis. These are of particular im- 
portance in that formulation of the primary aspects 
of the model, i.e. of the questions for study, is 
often the most critical step in a statistical analysis. 

The remaining comments concern, however, the 
circumstances under which a significance test should 
be the main or only summary of the central con- 
clusions of a statistical analysis. The central point is 
that statistical significance is quite different from 
scientific significance and that therefore estimation, 
at least roughly, of the magnitude of effects is in 
general essential regardless of whether statistically 
significant departure from the null hypothesis is 
achieved. It is only when the qualitative result of 
such estimation is clear from the context that the 
result of the significance test stands almost on its 
own as the main summary of the analysis. In par- 
ticular when the information in the data is very 
limited, it may be taken for granted that scientifically 
important differences could be present. 

As a general rule the final statement of conclusions 
should, if at all feasible, include the estimation of 
parameters representing the magnitude of effects, 
but the significance level can reasonably be regarded 
as the main summary in the following cases. 

One such situation is where 
(i) there is a plausible null hypothesis of intrinsic 

interest; 
(ii) the data are of such limited extent, that it 

can be assumed both that (a) evidence of in- 
consistency corresponds to a departure of scientific 
importance and (b) that even if the data agree very 
well with the null hypothesis, they are consistent 
also with departures of scientific importance. 

Note that without both the requirements (ii), the 
result of the significance test by itself could be in- 
complete and misleading. Thus without (b), we 
would not distinguish between cases where any 
departure from the null hypothesis is of negligible 
scientific importance and those where there could 
be interesting departures. 

An alternative situation, however, is where instead 
of (ii), we have 

(ii)' the data are so extensive that it can be 
assumed that consistency with the null hypothesis 
implies the absence of an effect of practical im- 
portance, and 

(iii) a reasonably high value of Pobs is achieved. 

In some situations it may be admissible to modify 
the null hypothesis to take account of the minimum 
difference of scientific importance (Hodges & 
Lehmann, 1954). 

In any case, where the null hypothesis is readily 
embedded in some family, interval estimation of 
the magnitude of any departure will be more 
informative, whereas, of course, in a decision- 
making context, the significance test is, at most, a 
relatively minor aspect of the analysis. 

A second situation where a significance test can be 
the main summary of the central conclusion is 
where 

(i) there is a dividing null hypothesis of the ab- 
sence of structure; 

(ii) the data are of such limited extent that it can be 
assumed that data consistent with the null hypo- 
thesis are consistent also with departures of scientific 
importance; 

(iii) an outcome with a reasonably high value of 
Pobs is obtained. 

Here further detailed interpretation is explicitly 
justified by the data only when clear evidence of 
departure from the null hypothesis is achieved. Of 
course choice of topics for investigation is a deci- 
sion problem and considerations external to the 
data may suggest, especially in the initial stages of an 
investigation, that it will be a good idea to follow 
up effects not yet firmly established. The object 
of the significance test is not to supplant the personal 
judgement of the research worker, but is to help 
clarify for him and others just what has been shown 
by the data. 

Thirdly, there are plausible hypotheses of simple 
secondary structure. Simplifying secondary assump- 
tions, for example, those of independence, are 
often unavoidable, especially in complicated prob- 
lems, but such assumptions are best avoided as far 
as is feasible, unless there is a substantial gain of 
efficiency or simplicity from making them. Thus 
the importance of significance tests of simple 
secondary structure is less than that of those of 
simple primary structure. 

Finally significance tests are relatively less im- 
portant whenever the null hypothesis is naturally 
embedded in some richer but manageable family. 
Some of the importance of significance tests stems 
from it being not feasible, or worthwhile, especially 
in relatively complex situations, to construct families 
of models representing all features of the problem 
that could reasonably arise. 

This paper has ranged discursively over a range 
of topics, many of which are theoretical in being 
concerned with general principle but which do not 
fit neatly into a mathematical formalization of 
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statistics. As mathematicians we rightly look for 
precisely formulated problems and systematic lines 
of development; as applied statisticians we look for 
procedures immediately valuable in specific applica- 
tions. The present discussion falls uneasily between 
these two requirements. Nevertheless I think that 
more attention to these rather vague general issues 
is required if statistical ideas are to be used in the 
most fruitful and wide-ranging way. 

The paper is based on the Forum Lectures, 
European Meeting of Statisticians, Grenoble, Sep- 
tember 1976. I am very grateful to the Programme 
Committee for the invitation to give the lectures and 
to 0. Barndorff-Nielsen and E. Spj0tvoll for very 
constructive comments on a preliminary version of 
the paper. 
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Discussion of D. R. Cox's paper 

Emil Spj0tvoll (Agricultural University of Norway) 

1. Introduction 
I enjoyed Professor Cox's paper on the role of 
significane tests very much. If I should come for- 
ward with a small point of criticism it would be 
about the title of the paper. I believe that a more 
appropriate description would be: "Issues in 
drawing conclusions from data", since in addition 
to topics concerning pure significance testing, Pro- 
fessor Cox also discussed allowance for selection, 
modification of analysis in the light of the data, 
comparison of mcdels and confidence intervals. 
But this, of course, makes it even more interesting. 

Professor Cox has kept his discussion on such a 
neutral and objective level that it is difficult to 
disagree with what he has written. I will try to keep 
my discussion on the same level. 

2. The nature of significance tests 
First, I would like to comment on what Professor 
Cox called the nature of significance tests. The basis 
of a significance test was an ordering of the points 
in the sample space in order of increasing incon- 
sistency with the null hypothesis. I had the impres- 
sion that he assumed that this could be done without 
reference to any alternative hypothesis. It seems 
to me, however, that implicit in any significance 
test is consideration of some alternative hypothesis, 
and that this should be included in a general descrip- 
tion of significance tests. 

For example, let the null hypothesis, H0, be that 
the random variable Y is distributed N(O, 1). Many 
people would perhaps say that Y= 10 is more 
contradictory to the null hypothesis than Y =O. 
But to me it seems that there is no good reason for 
this unless we have an alternative hypothesis in 
mind which can "explain" Y =10 better than Ho 
and cannot explain Y=0 as good as Ho. The value 
Y = 10 is more contradictory to H. than Y = 0 because 
it is more consistent with an alternative hypothesis. 

Also, if we made the one-to-one transformation 
Z = I(DY) of Y, where D is the cumulative standard 
normal distribution function, the value Z = 'D(0) 
and Z ='(10) would have the same probability 
density and in that sense would be equally reason- 
able under the null hypothesis. 

3. The absolute test 
This brings me to the absolute test, in which the 
smaller is the probability under H0, the stronger 
is the evidence against H0. This statement cannot be 
meant in an absolute sense which the following 
simple example shows. Let Y have a binomial distri- 
bution with parameters n and p, and let Ho be 
that p = J. With n = 1 000 the probability that Y = 
500 is 0.025, while with n = 5 the probability that 
Y = 0 is 0.031. Should the former result be more 
contradictory to Ho than the latter? 

That this idea works and has been used by various 
people is no proof of the soundness of it. The 
reason it works sometimes is that the results 
coincide with the ones derived from better prin- 
ciples. It is when we get to more complicated situa- 
tions that we can see which principle is based on 
sound ideas. 

4. Chloice of test statistics 
I believe that choice of test statistics always should 
be done via consideration of power under alter- 
native models. This does not mean that these 
models need to be specified in a certain parametric 
form. Consider, for example, using the sample 
standardized third moment to test for normality. 
Choice of this test means that we are interested in 
having good power for alternatives with a skew 
distribution. Professor Cox would perhaps say 
that this choice of test is made because it represents 
"a relevant feature of the random system" under 
study. But I don't think this is the main point. One 
could imagine statistics representing a relevant 
feature, but where tests based upon it would be 
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meaningless. I may be doing Professor Cox a 
little injustice because I don't think we disagree 
on the main issues, it is more question how things 
are formulated. But my main point is that one can 
and always should formulate the choice of test 
statistic from power considerations. Or in simple 
words: "This test statistic is chosen because I want 
good power against this particular class of alter- 
natives." 

I believe that Professor Cox should formulate 
his test for multivariate normality in this way. The 
statistics Q,m is used because it is considered to be 
important to have good power against alternatives 
where the conditional distributions have nonlinear 
expectations. 

In addition to the points Professor Cox made 
about the practical considerations in choosing test 
statistics in more complicated situations, I would 
like to bring in one more point. One should also be 
guided by what the result of the test is going to be 
used for. Suppose that in an analysis of variance 
situation you are testing for normality of the 
random errors. Then, if you are planning to proceed 
with standard F-tests or confidence intervals for 
parameters, it is little point in testing for skewness 
since the statistical validity of these techniques is 
not much affected by skewness of the distribution. 
In this situation a test of kurtosis would be relevant. 

Taking this view about the practical significance 
of the result of the test, it also makes sense in certain 
circumstances to use the chi-square test for nor- 
mality even if it is well-known that it is not very 
powerful compared to other tests. Such an example 
could be a situation where one wanted to find out 
whether the sizes of soldiers followed a normal 
distribution, this being of interest when deciding 
how many uniforms one should make in the 
different sizes. In such a situation the chi-square 
statistic seems to be a relevant quantity to look at. 

I would also like to defind the likelihood ratio test 
from this point of view. The likelihood ratio test is 
an overall test and may not be good from a 
diagnostic viewpoint. But if the likelihood ratio 
test has a reasonably high value of the observed 
significance levels, Pobs, it means that the data are 
well described by the distribution specified by H0, 
and hence that this distribution may serve as a good 
approximation for calculating probabilities or mak- 
ing predictions. 

Finally a comment on the maximum procedure 
versus the quadratic statistic in cases with several 
test statistics. My experience or feeling is that the 
quadratic procedure is usually more powerful than 
the maximum procedure. This is probably because 
very often we have several kinds of departures from 
a composite null hypothesis. But also the quadratic 

procedure can be used for diagnostic purposes. When 
the quadratic test indicates that H. is false, then it 
should be permissible to look at the individual 
statistics and state that the most significant one 
is really significant. We can proceed in a stepwise 
manner. 

5. On allowance for selection 
Closely connected with the maximum procedure is 
the technique used when making an allowance for 
selection. 

Having many test statistics testing the same null 
hypothesis, it seems obvious to me that one has to 
make some allowance for the fact that the smallest 
significance probability is the smallest of several such 
probabilities each having a uniform (0, 1) distribution 
when Ho is true. But there are some paradoxial 
aspects to this situation. The imaginative statistician 
can think of many relevant test statistics, while the 
one with less imagination may produce one or two. 
Seemingly the imaginative one is penalized since 
he has to consider a given significance probab- 
ility as less significant than his colleague just 
because he started out with a large number of 
statistics. 

In connection with allowance for selection I would 
also like to point to a technical matter. Although the 
statistic Q =min (pi, ...,Pk) can be used to give a 
very direct measure of the significance of the 
smallest significance probability, it seems to be the 
most suitable measure only in cases where just one 
of the pi's represent a real significant departure 
from Ho. Also here one could use a quadratic 
statistic. Another possibility is using -2 i=_ In pi, 
due to Fisher. 

6. Modifications of analysis in the light of the data 
Professor Cox mentioned the situation where several 
different questions are studied on the same data, 
and that this was not any major source of trouble 
so long as the problems could really be treated as 
separate. I agree if only a modest number of hypo- 
theses is tested, but I can imagine, for example, a 
social scientist measuring an enormous number of 
variables on certain subjects and having the com- 
putor run out all two-way tables to see which ones 
are interesting. Even if the computor by accident 
gave him just random numbers I am sure he would 
find something of interest. This is, of course, an 
extreme situation, but I believe it is a problem in 
research, maybe particularly in he social sciences, 
that a wealth of data is available but only a small 
part of it, the "interesting" part, appear in the 
scientific journals or books. There the F or chi- 
square statistics are reported with no mention of 
the fact that they represent a selection. But this is 
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not a problem concerning only the social sciences. 
I have been reading some textbooks in quantitative 
genetics lately, and I am always surprised to see 
how nice a correspondence it is between theory and 
data. I am sure if we took the empirical distribution 
of the significance probabilities for testing goodness 
of fit reported in the books it would be skewed 
to the right. 

Professor Cox mentioned the method of data 
splitting. I believe this is a sensible way to proceed. 
With a large body of data it may also be the 
practical way. You take a small part of the data to get 
acquainted with it and formulate some ideas about 
the structure of the data and of the random error. 
If you cannot do someting like that and the whole 
conclusion is based upon what the data turned out 
to show, I think that the role of the significance 
test is to find out just what hypotheses are worth- 
while studying further. You cannot draw any firm 
conclusion from the data at hand. 

7. Comparison of models 
Professor Cox spoke about comparison of models 

as a special topic. It seems to me that in statistics 
we are always comparing models. Testing the hypo- 
thesis that z = 0 for the mean of a normal sample is 
comparing this model with the alternative models 
that jt+0. The main distinction between such an 
example and those to which Professor Cox referred 
is the complexity of the problem. 

Cases where the models are equally plansible are 
interesting. I am sorry to admit that I find the 
Bayesian solution to this problem to be rather 
attractive. I will, however, propose a new way of 
dealing with this situation. Conside the case where 
we have two possible models f and g for the variables 

H1:f and H2:g. 

Then I will suggest first taking H1 as the null 
hypohthesis and H2 as the alternative and compute 
the significance probability pfg. Then test H2 as 
the null hypothesis against H1, and compute the 
significance probability pgf. As a measure of the 
evidence against H1 use 

pig 
Pfo +Pgf 

One advantage of this measure is that it does not 
matter what we choose as null hypothesis, 
and it also takes care of the situation where pfg 
and pgf are both small. It can be shown that, if 
properly generalized, this measure reduces to the 
traditional significance value for simpler composite 
hypotheses. 

8. Confidence intervals after exploratory analysis 
Let me turn to the problem of calculating confidence 
limits after an exploratory analysis. Professor Cox 
seemed to indicate tha this did not involve any 
problems. I cannot agree with this. Suppose that we 
are studying k contrasts in certain means, and that 
the data indicate that one of these seems to be 
different from zero. If the estimated contrast is much 
different from zero, I agree that a confidence interval 
can be evaluated in the usual way. But if the true 
value of the contrast is of order of magnitude 2 
standard deviations it will only be in the cases 
where the estimated contrast deviates from its true 
value in the direction away from zero that it is 
found to be interesting. Hence in the long run the 
confidence intervals will be skewed in the direction 
of too large values. 

Also in a simple regression situation when choos- 
ing among the class of power transformation of 
the dependent variable, probably none representing 
the "true" model, I would suspect that the obtained 
fit would be better than in repeated use of that 
particular model. Hence confidence intervals and 
prediction intervals using the selected model would 
be too narrow. 
9. Confidence intervals versus tests 
I will like to discuss the idea that confidence inter- 
vals always are more useful and informative than 
tests. My feeling is that they contain different 
kinds of information. When working with con- 
fidence intervals we use a fixed confidence level and 
hence we do not have the flexibility that Pobs gives 
us in measuring inconsistency with a given hypo- 
thesis. We could, of course, write up the intervals 
corresponding to a number of levels or finding 
ways of representing this graphically, but I believe 
that this will probably be more confusing than 
illuminating. To be very specific, suppose the null 
hypothesis of interest is that a parameter ,u is 
equal to 0, and that, say, the observed 95 percent 
confidence interval is (2,10). This does not give a 
precise information about how much H. is con- 
tradicted by the data. I believe that the observed 
significance level would give valuable information 
in addition to the observed confidence interval. In 
cases where the confidence interval is based upon an 
estimate with an aproximate normal distribution it 
is of course simple to deduce from the length of the 
confidence how much Ho is contradicted. But it 
sometimes happens in statistics that distributions 
different from the normal occurs, even for estimates. 

10. General discussion 
I will also conclude with a general discussion of the 
role of significance tests in scientific work. Let me 
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first look at the empirical evidence of how much 
significance tests are used. Looking at the scientific 
journals from various fields one will find that 
when statistical analysis of data is involved, almost 
invariably some kind of significance test is also used. 
This has become a tradition and part of the 
accepted proper formal way of presenting results in 
many sciences. I would like to mention a personal 
experience I once had when I advised a person taking 
his doctor's degree in veterinary medecine not to 
calculate a t-statistic for comparing two series of 
paired data where the difference between the pairs 
varied between 0.2 and 0.3. I should add that this 
was one of the rather rare situations where a 
confidence interval was of little interest. This person 
was heavily critisized by the opponent at this 
doctoral dissertation discussion because he had 
not followed the traditional formal procedure. 

Professor Cox described situations under which 
the result of a significance test should be the only 
summary of the data. I think it is more interesting 
to discuss when or if it should be a part of the 
statistical analysis of the data. My opinion is that 
the significance test should be there, but that it 
should be emphasized more that it usually con- 
stitutes a preliminary step in the analysis. Wouldn't 
we all feel a bit uneasy if somebody started to analyse 
details of a two-way table without first using an F 
or chi-square type statistic for the whole table? 

Also, we should emphasize more the difference 
between statistical significance and practical signi- 
ficance. With the latter I mean that the deviation 
from the null hypothesis is of practical importance. 
Some people seem to believe that when they have 
established statistical significance they have also 
found something of scientific significance. They 
are not aware that it is usually easy to get statistical 
significance. Let me mention an example from the 
university I work. An F-test had been performed 
with 21 768 degrees of freedom from the numerator 
sum of squares and 82 778 degrees of freedom for 
the residual sum of squares. I guess this is close to 
being a world record! In such cases it is not difficult 
to get statistical significance. I must add, to do 
justice to my colleague, that he also estimated the 
practical implications of his results. 

An entirely different point which I believe should 
need some discussion, is the role of testing theory 
in theoretical or mathematical statistics. To me it 
seems that there we have an overemphasize on 
tests. 

To conclude, I believe that significance tests 
should play a part in the analysis of data. Most 
often, however, it constitutes a preliminary step in 
the analysis. In exploratory analysis it is useful in 
discovering which features of the data are worth- 

while a further study. Finally, using significance 
probabilities seems to be the only way in which one 
can calculate an allowance for selection. 

S0ren Johansen (University of Copenhagen) 

Martin-Lof (1) and Sverdrup (2) have had an 
interesting discussion of the "exact" or "absolute" 
test mentioned by Cox. I should like to make a short 
comment on this test. 

Consider a finite sample space and a family of 
probability measures {po, 0 c 0 } together with a 
null hypothesis, Ho: 0= 0. 

The absolute test rejects of p,00(x) is small and the 
likelihood ratio test rejects if Q(x) is small, where 

Q(x) =po0(x)/sup Po(x). 
0 

If we write 

PoS(x) = Q(x) sup po(x) 
0 

where all quantities are between 0 and 1, then it is 
easily seen that pHO(x) is small if and only if either 
Q(x) is small or sup0p0(x) is small. 

Now take a point x such that p60(x) is small. If 
also sup0p0(x) is small then the point x is not only 
unlikely to have occurred under H. but infact under 
the whole model. It seems therefore not reasonable 
to reject Ho in favor of the model but rather one 
should reject the whole model. 

If p00(x) is small but supopo(x) large then Q(x) is 
small but that means that the absolute test is a 
combination of a likelihood ratio test of H0 within 
the model and an absolute test of the model, using 
sup6p0(x). 

An example is given by a two-peaked distribution 
p0(x) and its exponential alternatives e0pO(x)/(0), 
0 c R. 

Let us assume that the density p0(x) is small for 
large x and small x in the tails of pa but also for 
medium x between the peaks. 

The likelihood ratio test rejects, as usual, for 
large and small x. An observation in the "valley" 
of pJ(x) indicates thus that the whole model is in- 
correct, not that po should be rejected in favor of 
the model. 

Notice the property of the exponential alternatives 
that as 0 goes from - oo to oo the probability mass 
is squeezed to the right, but in such a way that the 
points in the "valley" never get a high probability. 
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Willem R. van Zwet (University of Leiden) 

I thoroughly enjoyed the first part of Professor 
Cox's talk that we just heard. In particular I rather 
like the emphasis on the diagnostic aspect of a test. 
If one rejects a hypothesis one will generally want to 
know why! 

However, the diagnostic aspect does raise a 
question of an admittedly theoretical character, but 
in Professor Cox's own words, I'll try to be theoreti- 
cal but nonmathematical. The point I'd like to make 
is the obvious one that you do not get your 
diagnosis free of charge. If you add a diagnosis to the 
rejection of a hypothesis, you introduce the possi- 
bility of an 'error of the third kind' in addition to 
the two kinds you already have, viz. correct rejection 
of the hypothesis accompanied by an incorrect 
diagnosis. The simplest, rather trivial example is that 
of a two-sided test. When faced with a large positive 
value of some estimator of a parameter 0, you may 
correctly reject the hypothesis 0 =0 and incorrectly 
diagnose 0 to be positive when it is in fact negative. 
I don't suppose this example would worry practically 
minded people unduly, but the matter becomes less 
trivial when, instead of two possible diagnoses, you 
have 3, 4, ... or even infinitely many. Then one has 
to face the fact that one is dealing with a multiple 
decision problem, or perhaps even an estimation 
problem and that it may not really be a good idea 
to view this as a testing problem with a diagnosis 
thrown in at the end. Certainly one would at least 
want to include the possibility of an 'error of the 
third kind' in one's consideration. 

J. F. Bithell (University of Oxford) 

The distinction between "plausible" and "dividing" 
hypotheses seems to me to be a very useful one, but 
implausible hypotheses are not confined in practice 
to "two-tailed" situations in which the range of pos- 
sibilities is divided into two qualitatively different 
cases. It is not uncommon to encounter experimental 
situations where the null hypothesis is intrinsically 
implausible but there is also a strong presumption 
that any effect would be in one specific direction. 
The significance test in this case effectively answers 
not so much the question "does the effect exist?" 
as the question "is any effect there may be sufficient 
to be detectable by a sample the size of mine?" 
This interpretation is not entirely unreasonable, 
although it may well be more natural and informa- 
tive to estimate the effect in this context. 

In situations involving simulation, however, the 
procedure is much harder to justify for here there is 
no "natural" sample size that can be related to real 

life. I recently came across a paper in which an 
experiment had been simulated in order to test the 
adequacy of an approximation to a non-central 
chi-square distribution in the calculation of the 
power of a goodness-of-fit test. The simulations 
themselves were tested to see if the expected propor- 
tion were capable of detecting departure from the 
original hypothesis. While a Monte Carlo estimation 
procedure may be legitimate in the face of intractable 
mathematics, significance tests in this situation seem 
to me to be quite irrelevant. It is simply not illu- 
minating to say of some hypothesis known to be 
false that its falsity could be detected by a Monte 
Carlo experiment of 10 000 repetitions, but not by 
one of 5 000. 

Ole Barndorff-Nielsen (University of Aarhus) 

Professor Cox's authoritative and stimulating paper 
is filling a lacuna in the literature as well as opening 
interesting new areas of study, and I find that he 
has done statistics a great service in presenting this 
comprehensive account of his views on tests of 
significance. I agree in the main with Professor Cox's 
attitude to significance testing (one item on which 
our views seem to differ somewhat is the absolute or 
ordinate test; my own thoughts on this kind of 
test are described in Barndorff-Nielsen, 1976a), 
and I would just like to bring up a few additional 
points. 

Perhaps Professor Cox would expand on the 
meaning of an observed test probability Pob., or 
set of test probabilities PI obs, ... ,Pk obS, in the various 
situations encountered in practice. One aspect of this 
is that one's reaction to a value of, say, 0.01 of 
Pobs is dependent on the circumstances. For in- 
stance, the significance attached to the value 0.01 
will typically be different for a plausible hypothesis 
of intrinsic scientific interest and for a hypothesis 
of simple secondary structure. However, it is 
another aspect which I have particularly in mind. 
There is in practice a widespread tendency, I think, 
to conceive of Pobs as a measure of discrepancy or, 
even, distance between the model (or hypothesis) 
and a "true" model (or hypothesis), and also to 
take high values of Pobs as corroborating the model. 
To what extent are such interpretations sensible 
and what role does the precision of the test play 
here? Berkson (1942) gave some discussion of this. 
However, his paper seems to have had little reverte- 
bration, except for a sharp comment by Fisher 
(1943) on an example considered by Berkson but 
originating with Fisher himself. 

A related question is whether one is not some- 
times mislead in one's thoughts by the unfelicitous 
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68 D. R. Cox 

phrase or concept of a "true" model. Most of the 
models considered in statistics are but rough 
approximations to reality, and a deeper episte- 
mological analysis of the importance of this fact, 
hereunder for the meaning of Pobsw is called for. 

As to the general problem of how to take account 
of the effect of choosing the model in the light of 
the data, a central consideration is that the account 
must depend on a balance between the simplicity 
of the model and the amount of data. 

In relation to the discussion, in Section 2.9, of 
tests for multivariate normality, a family of con- 
tinuous type multivariate distributions introduced 
quite recently (Barndorff-Nielsen, 1976b) seems of 
some interest. A distribution from this family has 
probability function 

f(X;,, , 62 A) 

= a(x, f, 6, A) eVa16'+(xP),l-(x-P)'+ (x)- u) 

(1) 

where x, ,u and fl are p-dimensional vectors, a, ft 
and 6 are scalars with a > 0 and 6 > 0, A is a positive 
definite matrix, and X2-flAfl'>0. Defining %>0 
by x2=,2 - fAft', the norming constant may be 
written 

1 ,~(P+1)/2 

(27)(P - )/2 2a(+1)/2K(p+ll(x 

K,( ) being the notation for the modified Bessel 
function of the third kind and with index v. A side 
condition, e.g. I l = 1, is necessary for identifi- 
ability of the parameters. 

The graph of the log-probability function of this 
distribution is a hyperboloid, whereas that of a 
normal distribution is a paraboloid. However, (1) 
-which I refer to as the hyperbolic distribution- 
tends to the normal distribution Np(u + a2flA, a2A) 
for 6 -a co, 6/ax a2. (Incidentally, the distribution 
(1) is obtainable as a mixture of the normal distribu- 
tion N,(y + a2flA, a2A) by endowing a2 with a 
generalized inverse Gaussian distribution, and it is 
infinitely divisible, cf. Barndorff-Nielsen, 1976b; 
Bamdorff-Nielsen & Halgreen, 1976.) 

It is sometimes convenient to work with the 
parameters &c=dx, o - 6ftA2 and = 62A instead 
of c, fi, 6 and A. For fixed a and v l(=1/p) the 
p-dimensional hyperbolic distributions constitute an 
affine group family, while for ,u, 6 and A (or ,u 
and E) fixed one has a regular exponential family 
of order p + 1 with a and ft (or a and ,) as canonical 
parameters. The mean value (vector), variance 
(matrix) and higher order cumulants of x - , may 
therefore be found by differentiating -lna with 
respect to the coordinates of fl. Thus 

EX =It + (8/X) K-tP t3J/-2-6x p 

K(p+ 1)2(6X) 

which may also be written as 

Ex = Rp(bx)Mx -(Rp(6x) - 1)I (2) 

where RP(*) = K(p+3)2( )/K(p+ 1)/2() and 

Mx =,a + (W/x)PA 

is the mode of (1). The function Rp(-) is monotoni- 
cally decreasing on (0, oc) and Rp(t)t1 ad ttcc, 
cf. Lorch (1967). Moreover, Rp(t).p + I)t-I for 
t-0. 

Now, suppose the hyperbolic variate x is par- 
titioned into two components, x =(x(I", x'2), and 
let q and r denote the dimensions of x(l) and x'2', 
respectively. The conditional distribution of X'2' 
given x('l is also hyperbolic, with parameters a, p(2), 

8(2) + (XlA (1)51^12, 

62 + (X(') -4u(1)) Ajj(x() 8u(1))', and 

A22 - A21 A11 A12, 

in an obvious notation. Hence, using (2), one finds 
that the conditional mean value of x'2' given x(l) is 

E(x(2) lx()) = Rq({22 + (x (1) - (1)) A -1I (x(l) 

8(1))}/l x1 1j) MA(x (2) J'x() - (R ({62 + (X(l) 

_ 81))A -1 ((l)_ (1)).,11/2 /2 1) 4 (2) 3 

where 

X21 = {a2_(2), 21 f(2)'}1/2 

A211 = A22-A21 A1 A12 

and 

M(x(') I X(l)) I (2) + (X(l) _- (1)) A1Il A12 

{62 +(Xl-(1)M)A 
- 
VG()- (1)) Y/2 X- 1p #2 ++ (x~' - 9 Aj'(1' - a9 2}" 11j fl)A21 I 

The first things to note are that the mode regression 
of x'2' on x('l is linear if and only if P(2) =0, which 
is equivalent to (2) =0, and that possible deviation 
from linearity is hyperbolic. Furthermore, for large 
values of the argument of Ra(-) in (3)-and thus 
for 6a = large-the mode regression and the mean 
regression are nearly identical. (Recall that the 
normal distribution occurs as a limit for 6 - oo, 

-*oo and 6/,- a2.) 
How best to test for linearity of the regressions 

under the hyperbolic model is an open question. 
One way of checking the hypothesis , =0 would lie 
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in constructing the marginal likelihood for (a, I 1) 
based on the orbit index statistic for the affine 
group. An approach rather like that taken by Pro- 
fessor Cox and Mr Small may, however, be ad- 
vantageous. 

Finally, relating to the end of Section 2.9, I wish 
to mention that asymptotic expansions, of the 'saddle 
point' or 'steepest descent' type, for conditional prob- 
ability functions from exponential families are fairly 
readily available from Martin-Lof (1970). 
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M. Keuls (Agricultural University of Wageningen) 

With some overemphasis one might state: a good 
experiment allows for statements in terms of con- 
fidence intervals; however, a better experiment 
aims at a conclusion by significance statements. 

The point is that the choice of a null hypothesis 
tested is part of the design of the experiment. For 
instance in testing a fertilizer N one can choose 
two doses n_ and n+ round a 'generally accepted' 
but now disputed dose n0. An eventual rejection of 
a null hypothesis: n+ - n_ = 0, would lead to the 
decision in what direction n0 should be changed. 

In situations with big radom variation in the data 
only the most modest 'questions to nature' lead to 
useful answers by a small experiment. 

The confidence intervals often computed in ex- 
periments without a clearly indicated natural (zero)- 
point of interest often appear to be of little direct 
use and thus to be little more than ornaments in 
the texts of publications. 

Reply by D. R. Cox 

I am most grateful to all six contributors for their 
constructive and thoughtful comments. There seems 

to be rather little serious disagreement and therefore 
my reply can be brief. 

Dr Spj0tvoll, Dr Johansen and Dr Barndorff- 
Nielsen all comment on the absolute test (Section 
2.7 of the paper). I agree with Dr Spj0tvoll's com- 
ments, with the proviso that one can imagine 
structureless situations in which the absolute test 
would provide the only way of examining the null 
hypothesis. He makes also excellent points on a 
number of other issues; the points of disagreement 
are so minor that it would be misleading to 
enumerate them! In his Section 7, however, I think 
the procedure of combining pfg and pgf needs to be 
looked at very coolly if neither model fits. Also my 
remarks about confidence limits (his Section 8) are 
unduly cryptic and are certainly not meant to cover 
the procedure he discusses, where allowance for 
selection is required. 

Dr van Zwet's important point was made at the 
end of the first lecture (Sections 1 and 2 of the 
paper). I agree that it is very desirable that where 
a test is to be used in some sense for diagnosis the 
effective power should be concerned with the prob- 
ability not just that the null hypothesis is "rejected" 
but also that the correct diagnosis is reached; see 
also Section 4.2. 

Dr Bithell mentions two interesting practical 
situations. I think that significance tests are best not 
used in the first example. The comments of Section 
2.5 are relevant to the second; I agree that signi- 
ficance tests are widely misused in analyzing simula- 
tion studies. 

Dr Barndorff-Nielsen's recent work on his hyper- 
bolic distribution is of great interest and the pos- 
sibility of an application to testing multivariate 
normality is intriguing. An answer to his question of 
the meaning of Pobs requires a deeper analysis than 
I can give. At one level the remarks of Section 2.2 
do provide an answer, but this is not in terms of an 
overall judgement or interpretation. Certainly a 
given value of Pobs can reasonably lead to different 
interpretations in different situations. Another way 
of looking at the matter is that the data are replaced, 
for some purposes, by a single observation with a 
universally fixed distribution under the null hypo- 
thesis, but whose distribution under other hypo- 
theses depends on the context. To go any further a 
stronger specification seems essential. The very 
interesting work by I. J. Good on the relation 
between significance tests and Bayes factors is 
relevant here; for a recent account, see I. J. Good 
and J. F. Crook (J. Amer. Statist. Assoc. 69 (1974), 
711-720). 

Dr Keuls argues in favour of experiments designed 
to examine null hypotheses, which in the context he 
describes will presumably usually be dividing null 
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hypotheses. I agree that in many cases the existence 
of such null hypotheses will be implied by clear 
qualitative objectives, but still consider that some 
consideration of estimation is very desirable in 
such contexts. 
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